The present research investigates the implementations of different computational geometry technologies in isogeometric analysis framework for computational fracture mechanics. NURBS and T-splines are two different computational geometry technologies which are studied in this work. Among the features of B-spline basis functions, the possibility of enhancing a B-spline basis with discontinuities by means of knot insertion makes isogeometric analysis method a suitable candidate for modeling discrete cracks. Also, the repetition of two different control points between two patches can create a discontinuity in and demonstrates a singularity in the stiffness matrix. In the case of a pre-defined interface, non-uniform rational B-splines are used to obtain an efficient discretization. T-splines constitute a type of computational geometry technology with the possibility of local refinement and with no topologically rectangular arrangement of control points. Therefore, T-splines can decrease superfluous control points which do not have any major effects on the geometry. Various numerical simulations demonstrate the suitability of the isogeometric approach in fracture mechanics.