Fuzzy Modeling and Synchronization of a New Hyperchaotic Complex System with Uncertainties

Document Type: Research Paper


1 Hamedan university of Technology

2 Department of Electrical Engineering, Hamedan University of Technology


In this paper, the synchronization of a new hyperchaotic complex system based on T-S fuzzy model is proposed. First, the considered hyperchaotic system is represented by T-S fuzzy model equivalently. Then, by using the parallel distributed compensation (PDC) method and by applying linear system theory and exact linearization (EL) technique, a fuzzy controller is designed to realize the synchronization. Finally, simulation results are carried out to demonstrate the performance of our proposed control scheme, and also the robustness of the designed fuzzy controller to uncertainties.


Main Subjects

[1]     Chen, G. and Dong, X.: 'From Chaos to Order: Methodologies, Perspectives and Applications' (World Scientific, 1998, Series a, Book 24)

[2]     Luo, X.S.:  'Chaos control, theory and method of synchronization and its application' (Guangxi Normal University Press, 2007), pp. 5-29

[3]     Elabbasy, E.M., Agiza, H.N., EI-Dessoky, M.M.: 'Adaptive synchronization of a hyperchaotic system with uncertain parameter', Chaos, Solit. & Fract., 2006, 30, pp. 1133-1142

[4]     Jia, Q.: 'Projective synchronization of a new hyperchaotic system', Phys. Lett. A, 2007, 370, pp. 40-45

[5]     Wang, F.Z., Chen, Z.Q., Wu, W.J., Yuan, Z.Z.: 'A novel hyperchaos evolved from three dimensional modified Lorenz chaotic system', Chin. Phys., 2007, 16, pp. 3238-3243

[6]     Wang, F.Q., Liu, C.X.: 'Hyperchaos evolved from the Liu chaotic system', Chin. Phys., 2006, 15, pp. 963-968.

[7]     Zhao, J.C., Lu, J.A.: 'Using sampled-data feedback control and linear feedback synchronization in a new hyperchaotic system', Chaos, Solit. & Fract., 2008, 35, pp. 376-382

[8]     Nikolov, S., Clodong, S.: 'Hyperchaos-chaos-hyperchaos transition in modified Rossler systems', Chaos, Solit. & Fract., 2006, 28, pp. 252-263

[9]     Pecora, L.M., Carroll, T.L.: 'Synchronization in chaotic systems', Phys. Rev. Lett., 1990, 64, pp. 821–824

[10] Chen, X.R., Liu, C.X., Wang, F.Q., Li, Y.X.: 'Study on the fractional-order Liu chaotic system with circuit experiment and its control', Acta Phys. Sin., 2008, 57, (3), pp. 1416-1422

[11] Wang, X.Y., Jia, B., Wang, M.J.: 'Active tracking control of the hyperchaotic LC oscillator system', Int J. Modern Phys. B, 2007, 21, (20), pp. 3643-3655

[12] Wang, F.Q., Liu, C.X.: 'Passive control of a 4-scroll chaotic system', Chin. Phys., 2007, 16, (4), pp. 946-950

[13] Zhang, M., Hu, S.S.: 'Adaptive control of uncertain chaotic systems with time delays using dynamic structure neural network', Acta Phys. Sin., 2008, 57, (3), pp. 1431-1438

[14] Shen, L.Q., Wang, M.: 'Adaptive control of chaotic systems based on a single layer neural network', Phys. Lett. A, 2007, 368, (5), pp. 379-382

[15] Chang, K.M.: 'Adaptive control for a class of chaotic systems with nonlinear inputs and disturbances', Chaos, Solit. & Fract., 2008, 36, (2), pp. 460-468

[16] Liu, X.W., Huang, Q.Z., Gao, X., Shao, S.Q.: 'Impulsive control of chaotic systems with exogenous perturbations', Chin. Phys., 2007, 16, (8), pp. 2272-2277

[17] Guan, X.P., Chen, C.L., Peng, H.P., Fan, Z.P.: 'Time-delayed feedback control of time-delay chaotic systems', Int J. Bifur. Chaos, 2003, 13, (1), pp. 193-205

[18] Wang, X.Y., Gao, Y.: 'The inverse optimal control of a chaotic system with multiple attractors', Modern Phys. Lett. B, 2007, 21, (29), pp. 1999-2007

[19] Ma, Y.C., Huang, L.F., Zhang, Q.L.: 'Robust guaranteed cost H∞ control for uncertain time-varying delay system', Acta Phys. Sin., 2007, 56, (7), pp. 3744-3752

[20] Zhang, H., Ma, X.K., Li, M., Zou, J. L.: 'Controlling and tracking hyperchaotic R¨ossler system via active backstepping design', Chaos, Solit. & Fract., 2005, 26, (2), pp. 353-361

[21] Bonakdar, M., Samadi, M., Salarieh, H., Alasty, A.: 'Stabilizing periodic orbits of chaotic systems using fuzzy control of poincare map', Chaos, Solit. & Fract., 2008, 36, (3), pp. 682-693

[22] Gao, X., Liu, X.W.: 'Delayed fuzzy control of a unified chaotic system', Acta Phys. Sin., 2007, 56, (1), pp. 84-90

[23] Wang, Y.N., Tan, W., Duan, F.: 'Robust fuzzy control for chaotic dynamics in Lorenz systems with uncertainties', Chin. Phys., 2006, 15, (1), pp. 89-94

[24] Lian, K.Y., Liu, P., Wu, T.C., Lin, W.C.: 'Chaotic control using fuzzy model-based methods', Int J. Bifur. Chaos, 2002, 12, (8), pp. 1827-1841

[25] Tanaka, K., Ikeda, T., Wang, H.O.: 'A unified approach to controlling chaos via an LMI-based fuzzy control system design', IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1998, 45, (10), pp. 1021-1040

[26] Takagi, T., Sugeno, M.: 'Fuzzy identification of systems and its applications to modeling and control', IEEE Trans. on Systems, Man and Cybernetics, 1985, 15, pp. 116-132

[27] Delavari, H., Faieghi, M.R.: 'Control of an uncertain fractional-order chaotic system via fuzzy fractional-order sliding mode control', 13th Iranian Student Conference on Electrical Engineering (ISCEE 2010), 15-17 Sep., Tehran, Iran, 2010

[28] Delavari, H., Ghaderi, R., Ranjbar, A., Momeni, S.: 'Fuzzy fractional-order sliding mode controller for nonlinear systems', Comm. In Non. Sci.& Num. Sim., 2010, 15, pp. 963-978

[29] Delavari, H., Faieghi, M.R., Baleanu, D.: 'Control of an uncertain fractional-order Liu system via fractional-order sliding mode control', Journal of Vib. And Cont., 2012, 18, pp. 1366-1374

[30] Zhang, H., Liao, X., Yu, J.: 'Fuzzy modeling and synchronization of hyperchaotic systems', Chaos, Solitons and Fractals, 2005, 26, pp. 835–843

[31] Zhao, Y., Han, X., Sun, Q.: 'Robust fuzzy synchronization control for a class of hyperchaotic systems with parametric uncertainties', IEEE Conf. on Indust. Elect. & Applic., May 2009, pp. 1149-1153

[32] Xia, H., Jinde, C.: 'Synchronization of hyperchaotic Chen system based on fuzzy state feedback controller', Chinese Control Conf., 2010, pp. 672-676

[33] Yi, S., Lin, Z., Liang-rui, T.: 'Synchronization of hyperchaotic system based on fuzzy model and its application in secure communication', Int. Conf. on Wireless Communication Networking and Mobile Computing, 2010, pp. 1-5

[34] Pan, Y., Li, B., Liu, Y.: 'T-S fuzzy identical synchronization of a class of generalized Henon hyperchaotic maps', IEEE Int. Conf. on Information and Automation, 2010, pp. 623-626

[35] Xu, M.-J., Zhao, Y., Han, X.-C., Zhang, Y.-Y.: 'Generalized asymptotic synchronization between Chen hyperchaotic system and Liu hyperchaotic system: a fuzzy modeling method', Chinese Conf. on Control & Decision, 2009, pp. 361-366

[36] Zhao, Y., Chi, X., Sun, Q.: 'Fuzzy robust generalized synchronization of two non-identical hyperchaotic systems based on T-S models', Int. Conf. on Fuzzy Systems and Knowledge Discovery, 2009, pp. 305-309

[37] Fowler, A.C., Gibbon, J.D., McGuinness, M.J.: 'The complex Lorenz equations', Physica D, 1982, 4, pp. 139-163

[38] Ning, C.Z., Haken, H.: 'Detuned lasers and the complex Lorenz equations: Subcritical and supercritical Hopf bifurcations', Phys. Rev. A, 1990, 41, pp. 3826–3837

[39] Gibbon, J.D., McGuinness, M.J.: 'The real and complex Lorenz equations in rotating fluids and lasers', Physica D, 1983, 5, pp. 108–122

[40] Peng, J.H., Ding, E.J., Ging, M., Yang, W.: 'Synchronizing hyperchaos with a scalar transmitted signal', Phys. Rev. Lett., 1996, 76, pp. 904–907

[41] Mahmoud, G.M., Mahmoud, E.E.: 'Synchronization and control of hyperchaotic complex Lorenz system', Mathematics and Computers in Simulation, 2010, 80, pp. 2286-2296

[42] Mahmoud, E.E.: 'Dynamics and synchronization of new hyperchaotic complex Lorenz system', Mathematical and Computer Modelling, 2012, 55, pp. 1951-1962

[43] Lian, K.Y., Chiang, T.S., Chiu, C.S., Liu, P.: 'Synthesis of fuzzy model-based design to synchronization and secure communications for chaotic systems', IEEE Trans. Syst. Man. Cybern., 2001, 31, pp. 66-83

[44] Mahmoud, G.M., Bountis, T., Mahmoud, E.E.: 'Active control and global synchronization of the complex Chen and Lü systems', Int. J. Bifurc. Chaos, 2007, 17, pp. 4295-4308

[45] Mahmoud, G.M., Bountis, T., Al-Kashif, M.A., Aly, S.A.: 'Dynamical properties and synchronization of complex non-linear equations for detuned lasers', Dyn. Syst., 2009, 24, pp. 63-79

[46] Mahmoud, G.M., Ahmed, M.E., Sabor, N.: 'On autonomous and nonautonomous modified hyperchaotic complex Lü systems', Int. J. Bifurc. Chaos, 2011, 21, pp. 1913-1926

[47] Mahmoud, G.M., Ahmed, M.E.: 'A hyperchaotic complex system generating two-, three-, and four-scroll attractors', Journal of Vibration and Control, 2012, 18, (6), pp. 841-849