
Journal of Applied and Computational Mechanics, Vol. 1, No. 4, (2015), 181-186 
DOI: 10.22055/jacm.2015.11256 

 

Vibration analysis of a rotating closed section composite 
Timoshenko beam by using differential transform method 

Saeed Talebi1, Hamed Uosofvand2, Alireza Ariaei3 
 

1 Department of Mechanical Engineering, University of Isfahan 
Isfahan, Iran, saeid_talebi@eng.ui.ac.ir 

2
 Department of Mechanical Engineering, University of kashan 

Kashan, Iran, mr.uosofvand @gmail.com 
3
 Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan 

Isfahan, Iran, ariaei@eng.ui.ac.ir 
 

Abstract 

This study introduces the Differential Transform Method (DTM) in the analysis of the free vibration response of a 
rotating closed section composite, Timoshenko beam, which features material coupling between flapwise bending 
and torsional vibrations due to ply orientation. The governing differential equations of motion are derived using 
Hamilton’s principle and solved by applying DTM. The natural frequencies are calculated and the effects of the 
bending-torsion coupling, the slenderness ratio and several other parameters on the natural frequencies are 
investigated using the computer package, Mathematica. Wherever possible, comparisons are made with the studies in 
open literature. 
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1. Introduction 

Solving the problem of determining vibration characteristics of rotating beams is a requirement in various 
branches of engineering. The determination of the structural response and modal frequencies is essential in designing 
rotating structural elements such as helicopter blades, airplane propellers and turbo machinery blades [1, 2]. The 
common models for beams are Euler-Bernoulli beams and Timoshenko beams. In the latter (i.e., the classical model), 
the ratio of the thickness of the beam to the length is considered to be relatively small and thus, the effect of 
transverse shear and the rotary inertia is negligible. The former, on the other hand, can account for appreciable 
thickness, so the transverse shear and rotary inertia are not neglected.  

Zhou [3] was the first to adopt the differential transformation method (DTM) in engineering applications. The 
first application of DTM was in solving the initial boundary value problems in electrical circuit analysis. Ozdemir 
and Kaya [4] applied DTM to calculate the natural frequency of non-uniform beams. In another study, Mei [5] 
employed DTM for rotating beams. 

This article examines the transverse vibration of the rotating closed section composite beam with constant cross-
section. The effects of the rotational speed on natural frequency and shape modes are also investigated. 
 

2. Formulation 

2.1 Composite model 
A straight composite beam with length L, height h and breadth b is shown in Fig. 1. In the right-handed Cartesian 

coordinate system, the x-axis is the centroidal axis of the beam. The flapwise displacement, ),( txw  and the torsional 
rotation, ),( tx  occur about the y-axis and the x-axis, respectively. Here, x and t, denote the spanwise coordinate 
and the time, respectively. The beam rotates with a constant angular velocity,  . Since the cross-sections of the 
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beam have symmetry in both planes, the x-axis is also the locus of the geometric shear centers of the beam cross-
sections. Therefore, the beam features material coupling between flapwise bending and torsional vibrations only due 
to ply orientation. 
 

2.2 Potential and Kinetic Energy Expressions 

The total potential energy expression, U is given by Ref. [6] and the derivation of the kinetic energy expression, 
is made in this study. As a result, the following expressions are obtained for a rotating, composite Timoshenko 
beam: 
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where primes and dots denote differentiation with respect to spanwise coordinate x and time t, respectively. Here 
  is the material density; A is the cross sectional area; A is the mass per unit length, Iy and Iz are the second 

moments of inertia of the beam cross-section about the y and z axes, respectively; I is the polar mass moment of 
inertia per unit length about the x axis; EIy, GJ, K and kGA are the flapwise bending rigidity, torsional rigidity, 
bending–torsion coupling rigidity and shear rigidity of the composite beam, respectively.  

 

3. Governing Equations of Motion 

The governing differential equations of motion and the associated boundary conditions are obtained by applying 
the Hamilton’s principle to the energy expressions given by Eqs. (1) and (2). 

Equations of motion: 

2 ( ) 2 0y y y yI I EI kAG w K I                     (3) 

  0Aw Tw kAG w        (4) 

  2 2 0y yI I GJ I A T K I                    (5) 

where T is the centrifugal force that is given as follows: 

2( ) ( )
L

x

T x A R x dx    
 

(6) 

Boundary Conditions:  

 The geometric boundary conditions at the cantilever end, x=0, of the composite beam,  

     0, 0, 0, 0w t t t     (7) 

 The natural boundary conditions at the free end, x=L, of the composite beam, 

0
y

EI K     (8) 

  0Tw kAG w      (9) 

  0TI A K GJ          (10) 

3.1 Exponential Solution and Dimensionless Equations of Motion 

A sinusoidal variation of ( , )w x t , ( , )x t  and ( , )x t  with a circular natural frequency   is assumed and the 
functions are approximated as exponential solutions. 

   , i tw x t w x e   (11-a) 
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   , i tx t x e    (11-b) 

   , i tx t x e    (11-c) 

Additionally, the following dimensionless parameters are used to enable comparisons with the studies in open 
literature: 

2
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If Eqs. (11-a,11-b,11-c) are substituted into Eqs. (3)-(5) and the dimensionless parameters are used, equations of 
motion can be rewritten as follows: 
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where the dimensionless coefficients are:  
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4. Application of the Differential Transform Method 

The Differential Transform Method is a transformation technique based on the Taylor series expansion and is a 
useful tool to obtain analytical solutions to differential equations. In this method, certain transformation rules are 
applied and the governing differential equations and the boundary conditions of the system are transformed into a set 
of algebraic equations in terms of the differential transforms of the original functions and the solution of these 
algebraic equations gives the desired solution of the problem with considerable accuracy. The application procedure 
of this method can be found in Ref. [4]. After the Differential Transform Method is applied to Eqs. (13) - (15), the 
following transformed equations of motion are obtained. 
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where  k ,  W k  and  k  are the transformed functions of , w ,  , respectively. Additionally, 

transformed boundary conditions are obtained as follows by applying differential transform method to Eqs. (7)-(10). 
     0 0 0 0                        , W at  x 0      (19) 

       4 1 1 1 1 0   , A k k k k at  x L         (20) 
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     1 1 1 0                  , B k w k k at  x L      (21) 

       1 31 1 1 1 0 , C k k C k k at  x L         (22) 

5. Result and discussion 

The computer package Mathematica is used to write a program for the expressions given by Eqs. (16)-(22). In 
order to validate the computed results, an illustrative example that studies a nonrotating composite Timoshenko beam 
is taken from Ref. [7] which is solved by using the formulas given above. When the results are compared with the 
ones given in Ref. [7], it is seen that there is excellent agreement among the results. Additionally, effect of the 
rotation speed on the natural frequencies is examined and the related graphic is plotted. 

The beam model that is studied in Ref. [7] is a uniform nonrotating cantilever glass-epoxy composite beam with a 
rectangular cross section with a width of 12.7 mm and a thickness of 3.18 mm. Unidirectional plies, each with fiber 

angles of 15  , are used in the analysis. The data used for the analysis are as follows: 

EI = 0.2865 N.m2 , GJ = 0.1891 N.m2 , kGA=6343.3 N 

 =0.0544 kg/m, Is=0.777 10-6 kg.m, K=0.1143 N.m2 

L=0.1905 m  ,  r2=0.00002322 , =0 rad/sec. 

In Table 1, the calculated results are compared with the ones given by Ref. [4] and very good agreement is observ
ed. In Table 2, the effect of the rotational speed on the natural frequencies is given. In Figure 2, mode shapes of a rota
ting composite Timoshenko beam are plotted. 

 

Fig. 1. Configuration of a uniform  rotating composite Timoshenko beam. 

Table 1. Validation of the Calculated Results 

Natural Fequencies 
Methods 

DTM Ref.[7] 

Mode 1 30.747 30.747 
Mode 2 189.779 189.779 
Mode 3 518.791 189.779 
Mode 4 648.169 648.169 
Mode 5 986.199 986.199 
Mode 6 1564.75 1564.751 
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Fig. 2. Mode shapes of a rotating composit Timoshenko beam 

Table 2. Effect of the rotational speed on the natural frequencies 

 

Rotatinal Speed  (rad / sec) 

0 50 100 150 200 250 300 

N
at
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30.7469 32.3631 36.8079 43.2728 51.0809 59.8268 69.3128 

189.7788 189.7328 189.5966 189.3757 189.0808 188.7328 188.3675 

518.7907 518.4607 517.4587 515.7426 513.2417 509.8463 505.4071 

648.1686 648.2308 648.1159 647.9228 647.6509 647.2977 646.8609 

986.1988 985.7556 984.4146 982.1438 978.8860 974.5609 969.0584 

1564.751 1564.237 1562.684 1560.066 1556.335 1551.425 1545.248 

1944.308 1944.231 1943.996 1943.603 1943.050 1942.333 1941.446 

2241.306 2240.888 2239.556 2237.103 2233.288 2228.003 2221.297 

 
6. Conclusions 

The DTM for vibration analysis of cracked rotating uniform beams is formulated. First, the equation of the beam 
is converted to a dimensionless one by using DTM and deriving the transformed equation. Besides, comparisons of 
the results for different configurations of non-cracked beams calculated by the proposed method with those in the 
literature are made and a good agreement between the results is seen. Then, vibration analysis of cracked rotating 
tapered beams is carried out. The effects of the crack location and size, rotation speed and hub radius on vibration 
characteristics of a cracked rotating tapered beam are investigated. It is seen that for a given crack size, the 
fundamental frequency decreases monotonically when the crack location varies from the free end to the fixed root.  
Also, the mode shapes of the cracked rotating tapered beam are obtained. It is seen that with the increase of the crack
 size, the mode shapes of cracked rotating beam change significantly and a local perturbation occurs at the crack loc
ation. The present work provides helpful information for structural design and diagnosis and can be extended to stud
ying the vibration of arbitrarily cracked rotating beams. 
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