Analytical Solution of Linear, Quadratic and Cubic Model of PTT Fluid

Document Type: Research Paper

Authors

1 Shanghai University, Shanghai China

2 Hafr al Batin Saudia Arabia

Abstract

An attempt is made for the first time to solve the quadratic and cubic model of magneto hydrodynamic Poiseuille flow of Phan-Thein-Tanner (PTT). A series solution of magneto hydrodynamic (MHD) flow is developed by using homotopy perturbation method (HPM). The results are presented graphically and the effects of non-dimensional parameters on the flow field are analyzed. The results reveal many interesting behaviors that warrant further study on the equations related to non-Newtonian fluid phenomena.

Keywords

Main Subjects

[1] L-M. Maria, M. Hana, N. Sarka, Global existence and uniqueness result for the diffusive peterlin viscoelastic model, Nonlin. Anal. Meth. Appl.120 (2015) 154-170.
[2] Z. Ting, Global strong solutions for equations related to the incompressible viscoelastic fluids with a class of large initial data, Nonlin. Anal. Meth. Appl. 100 (2014) 59-77.

[3] G. Matthias, G. Dario, N. Manuel, L-p-theory for a generalized nonlinear viscoelastic fluid model of differential type in various domains, Nonlin. Anal. Meth. Appl. 75 (2012) 5015-5026.

[4] F. Ettwein, M. Ruzicka, B. Weber, Existence of steady solutions for micropolar electrorheological fluid flows, Nonlin. Anal. Meth. Appl. 125 (2015) 1-29.

[5] F. J. Suarez-Grau, Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary, Nonlin. Anal. Meth. Appl. 117 (2015) 99-123.

[6] Y. Ye, Global existence and blow-up of solutions for higher-order viscoelastic wave equation with a nonlinear source term, Nonlin. Anal. Meth. Appl.112 (2015) 129-46.

[7] R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, 1Fluid Mechanics second edition, John Wiley & Sons, Inc. 1987.

[8] N. Phan-Thien and R. I. Tanner, A new constitutive equation derived from network theory, J. Non-Newtonian Fluid Mech. 2(1977) 353–365.

[9] L. Quinzani, R. Armstrong, R. Brown, Use of coupled birefringence and LDV studies of flow through a planar contraction to test constitutive equations for concentrated polymer solutions. J. Rheolm. 39 (1955) 1201–1228.

[10]A. Baloch, P. Townsend, M. Webster, On vortex development in viscoelastic expansion and contraction flows. J Non Newton Fluid Mech. 65 (1996) 133–149.

[11]J. Tichy, B. Bou-Said B, (2008) The Phan-Thien and Tannermodel applied to thin film spherical coordinates: applications for lubrication of hip joint replacement. J Biomech Eng, 130 (2008) 021012.

[12]A. M. Siddiqui, Q. A. Azim, A. Ashraf et al, Exact Solution for Peristaltic Flow of PTT Fluid in an Inclined Planar Channel and Axisymmetric Tube, Int.J. Nonlin. Sci. Num. Sim. 10 (2009) 75-91

[13]L. Ferras, J. Nobrega, F. Pinho, Analytical solutions for channel flows of Phan-Thien-Tanner and Giesekus fluids under slip. J. Non Newton Fluid Mech. 171 (2012) 97–105

[14]P. J. Oliveira and F. T. Pinho, Analytical solution for fully-developed channel and pipe flow of Phan-Thien, Tanner fluids, J. Fluid Mech. 387 (1999) 271–280.

[15]F. T. Pinho and P. J. Oliveira, Analysis of forced convection in pipes and channels with simplified Phan-Thien Tanner Fluid, Int. J. Heat Mass Transfer. 43(2000) 2273–2287.

[16]Hou Lei, V. Nassehi, Evaluation of stress effecting flow in rubber mixing, Nonlin. Anal. Meth. Appl. 47 (2001) 1809-1820.

[17]Hou Lei, Member, IAENG, D.Z. Lin, B.Wang, H.L. Li, L. Qiu,Computational Modelling on the Contact Interface with Boundary-layer Approach , Pro. Worl. Cong. Eng., I (2011) July 6 – 8, London, U.K.

[18]Hou Lei, H. L. Li, H. Wang , L. Qiu, Stochastic Analysis in the Visco-Elastic Impact Condition, Conference on Chemical Engineering and Advanced Materials (CEAM) VIRTUAL FORUM Naples 2009

[19]Hou Lei, J. Zhao and L. Qiu, The non-Newtonian fluid in the collision, Appl. Mech. Mat. 538 (2014) 72-75.

[20]Z. Shaoling, Hou Lei, Decoupled algorithm for solving Phan-Thien-Tanner viscoelastic fluid by finite element method, Comp. Math. App. 69 (2015) 423-437.

[21]Hou Lei, Li, Han-ling, Zhang Jia-jian; et al Boundary-layer eigen solutions for multi-field coupled equations in the contact interface, App. Math. Mech., 31 (2010) 719-732.

[22]N. Faraz, Study of the effects of the Reynolds number on circular porous slider via variational iteration algorithm-II, Comp. Math. App. 61 (2011) 1991-1994.

[23]N. Faraz, Y. Khan, D. S. Shankar, Decomposition-transform method for Fractional Differential Equations, Int. J. Nonl. Sci. Num. Sim. 11 (2010) 305-310.

[24]Y. Khan, N. Faraz, S. Kumar, et al, A Coupling Method of Homotopy Perturbation and Laplace Transformation for Fractional Models, Uni. Pol. Buch. Sci. Bull.-Ser. A-App. Math. Phy. 74 (2012) 57-68.

[25]N. Faraz, Hou Lei, Y. Khan, Homotopy Perturbation Method for Thin Film Flow of a Maxwell Fluid over a Shrinking/Stretching Sheet with Variable Fluid Properties International Conference On Mechanics And Control Engineering, MCE (2015) 52-57.

[26]N. Faraz, Y. Khan, Study of the Rate Type Fluid with Temperature Dependent Viscosity, Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences. 67 (2011) 460-468.

[27]Y. Khan, Q. Wu, N. Faraz; et al, Heat Transfer Analysis on the Magnetohydrodynamic Flow of a Non-Newtonian Fluid in the Presence of Thermal Radiation: An Analytic Solution, Zeitschrift Fur Naturforschung Section A-A Journal Of Physical Sciences. 67 (2012) 147-152.

[28]Y. Khan, N. Faraz, Y. Ahmet; et al. A Series Solution of the Long Porous Slider, Tribology Transactions. 54 (2011)187-191.

[29]F. Talay Akyildiz, K. Vajravelu, Magnetohydrodynamic flow of a viscoelastic fluid, Physics Letters A. 372 (2008) 3380-3384.