An Analytical Technique for Solving Nonlinear Oscillators of the Motion of a Rigid Rod Rocking Bock and Tapered Beams

Document Type: Research Paper

Author

Mathematics Department Faculty of Science Sohag University Sohag, Egypt

Abstract

In this paper, a new analytical approach has been presented for solving strongly nonlinear oscillator problems. Iteration perturbation method leads us to high accurate solution. Two different high nonlinear examples are also presented to show the application and accuracy of the presented method. The results are compared with analytical methods and with the numerical solution using Runge-Kutta method in different figures. It has been shown that the iteration perturbation approach doesn't need any small perturbation and is accurate for nonlinear oscillator equations.

Keywords

Main Subjects

[1]     He, J. H., “Homotopy perturbation method for bifurcation of nonlinear problems”, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 6, No. 2, pp. 207-208, 2005. 

[2]     Bayat, M., Pakar, I., Domairry, G., “Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review”, Latin American Journal of Solids and Structures, Vol. 1, pp. 1-93, 2012.

[3]     Nofal, T. A., Ismail, G. M., Abdel-Khalek, S., “Application of homotopy perturbation method and parameter expanding method to fractional Van der Pol damped nonlinear oscillator”, Journal of Modern Physics, Vol. 4, pp. 1490-1494, 2013.

[4]     He, J. H., “Preliminary report on the energy balance for nonlinear oscillations, Mechanics Research Communications”, Vol. 29, No. (2-3), pp. 107-111, 2002.

[5]     Khan, Y., Mirzabeigy, A., “Improved accuracy of He’s energy balance method for analysis of conservative nonlinear oscillator”, Neural Computing and Applications, Vo. 25, pp. 889-895, 2014.

[6]     Bayat, M., Pakar, I., Bayat, M., “High conservative nonlinear vibration equations by means of energy balance method, Earthquakes and Structures”, Vol. 11, No. 1, pp. 129-140, 2016.

[7]     He, J. H., “Some asymptotic methods for strongly nonlinear equations”, International Journal of Modern Physics B, Vol. 20, No. 2, pp. 1141-1199, 2006.

[8]     El-Naggar, A. M., Ismail, G. M., “Applications of He's amplitude frequency formulation to the free vibration of strongly nonlinear oscillators”, Applied Mathematical Sciences, Vol. 6, No. 42, pp. 2071-2079, 2012.

[9]     Sedighi, H. M., Daneshmand, F., Abadyan, M., “Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators”, Composite Structures, Vol. 124, pp. 55-64, 2015.

[10]   He, J. H., “Variational iteration method-Some recent results and new interpretations”, Journal of Computational and Applied Mathematics, Vol. 207, pp. 3-17, 2007.

[11]   Herisanu, N., Marinca, V., “A modified variational iteration method for strongly nonlinear problems”, Nonlinear Science Letters A, Vol. 1, pp. 183-192, 2010.

[12]   Ganji, S. S., Barari, A., Ganji, D. D., “Approximate analyses of two mass-spring systems and buckling of a column”, Computers and Mathematics with Applications, Vol. 61, pp. 1088-1095, 2011.

[13]   Sedighi, H. M., Reza, A., Zare, J., “Using parameter expansion method and min-max approach for the analytical investigation of vibrating micro-beams pre-deformed by an electric field”, Advances in Structural Engineering, Vol. 16, No. 4, pp. 693-699, 2013.

[14]   He, J. H., “Hamiltonian approach to nonlinear oscillators”, Physics Letters A, Vol. 374, No. 23, pp. 2312-2314, 2010.

[15]   Bayat, M., Pakar, I., Bayat, M., “On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams”, Steel and Composite Structures, Vol. 14, No. 1, pp. 73-83, 2013.

[16]   Yildirim, A., Saadatnia, Z., Askari, H., Khan, Y., KalamiYazdi, M., “Higher order approximate periodic solutions for nonlinear oscillators with the Hamiltonian approach”, Applied Mathematics Letters, Vol. 24, pp. 2042-2051, 2011.

[17]   Bayat, M., Pakar, I., Bayat, M., “Nonlinear vibration of conservative oscillator's using analytical approaches”, Structural Engineering and Mechanics, Vol.59, No.4, pp. 671-682, 2016. 

[18]   Bayat, M., Pakar, I., “Nonlinear vibration of an electrostatically actuated microbeam”, Latin American Journal of Solids and Structures, Vol. 11, 534-544, 2014.

[19]   Ghalambaz, M., Ghalambaz, M., Edalatifar, M., “Nonlinear oscillation of nano electromechanical resonators using energy balance method: considering the size effect and the van der Waals force”, Applied Nanoscience, Vol. 6, pp. 309-317, 2016.

[20]   Khan, Y., Vazquez-Leal, H., Faraz, N., “An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations”, Applied Mathematical Modelling, Vol. 37, No. 5, pp. 2702-2708, 2013.

[21]   Akbarzade, M., Khan, Y., “Dynamic model of large amplitude non-linear oscillations arising in the structural engineering: analytical solutions”, Mathematical and Computer Modelling, Vol. 55, No. (3-4), pp. 480-489, 2012.

[22]   Jun-Fang., “He’s variational approach for nonlinear oscillators with high nonlinearity”, Computers and Mathematics with Applications, Vol. 58, No. (11-12), pp. 2423-2426, 2009.

[23]   El-Naggar, A. M., Ismail, G. M., “Analytical solution of strongly nonlinear Duffing oscillators”, Alexandria Engineering Journal, Vol. 55, No. 2, pp. 1581-1585, 2016.

[24]   El-Naggar, A. M., Ismail, G. M., “Solution of a quadratic non-Linear oscillator by elliptic homotopy averaging method”, Mathematical Sciences Letters, Vol. 4, No. 3, pp. 313-317, 2015.

[25]   El-Naggar, A. M., Ismail, G. M., “Analytical solutions of strongly non-linear problems by the iteration perturbation method”, Journal of Scientific Research and Reports, Vol. 5, No. 4, pp. 285-294, 2015.

[26]   Sadeghzadeh, S., Kabiri, A., “Application of higher order Hamiltonian Approach to the nonlinear vibration of micro electro mechanical systems”, Latin American Journal of Solids and Structures, Vo. 13, pp. 478-497, 2016.

[27]    Nofal, T. A., Ismail, G. M., Mady, A. M., Abdel-Khalek, S., “Analytical and Approximate Solutions to the Fee Vibration of Strongly Nonlinear Oscillators”, Journal of Electromagnetic Analysis and Applications, Vol. 5, pp. 388-392, 2013.

[28]   He, J. H., “An improved amplitude-frequency formulation for nonlinear oscillators”, International Journal of Nonlinear Science and Numerical Simulation, Vol. 9, pp. 211-212, 2008.

[29]   Davodi, A. G., Gangi, D. D., Azami, R., Babazadeh, H., “Application of improved amplitude-frequency formulation to nonlinear differential equation of motion equations”, Modern Physics Letters B, Vol. 23, pp. 3427-3436, 2009.

[30]   Zhang, Hui-Li, “Periodic solutions for some strongly nonlinear oscillators by He's energy balance method”, Computers and Mathematics with Applications, Vol. 58, pp. 2423-2426, 2009.

[31]   Wu, B. S., Lim, C. W., He, L. H., “A new method for approximate analytical solutions to nonlinear oscillations of nonnatural systems”, Nonlinear Dynamics, Vol. 32, pp. 1-13, 2003.

[32]   Ganji, S. S., Ganji, D. D., Babazadeh, H., Sadoughi, N., “Application of the amplitude-frequency formulation to nonlinear oscillation system of the motion of a rigid rod rocking back”, Mathematical Methods in the Applied Sciences, Vol. 33, pp. 157-166, 2010.

[33]   Khah, H. E., Ganji, D. D., “A Study on the Motion of a Rigid Rod Rocking Back and Cubic-Quintic Duffing Oscillators by Using He’s energy balance method”, International Journal of Nonlinear Science, Vol.10, No.4, pp. 447-451, 2010.

[34]   Ganji, D. D., S. Karimpour, S., Ganji, S. S., “Approximate analytical solutions to nonlinear oscillators of nonlinear systems using He’s energy balance method”, Progress in Electromagnetics Research M, Vol. 5, pp. 43-54, 2008.

[35]   Hibbeler, R. C., Engineering Mechanics Dynamics, Prentice-Hall, New Jersey, 2001.

[36]   Hoseini, S. H., Pirhodaghi, T., Ahmadian, M. T. Farrahi, G. H., “On the large amplitude free vibrations of tapered beams: an analytical approach”, Mechanics Research Communications, Vol. 36, pp. 892-897, 2009.

[37]   Gangi, D. D., Azimi, M., “Application of max min approach and amplitude frequency formulation to nonlinear oscillation systems”, U.P.B. Sci. Bull., Series A, Vol. 74, pp. 131-140, 2012

[38]   Gangi, D. D., Azimi, M., Mostofi, M., “Energy balance method and amplitude frequency formulation based simulation of strongly non-linear oscillators”, Indian journal of Pure and Applied Physics, Vol. 50, pp. 670-675, 2012.