Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method

Document Type: Research Paper

Authors

1 Department of Mathematics, Faculty of Science, Benha University, Egypt

2 Mathematics Department Faculty of Science Sohag University Sohag, Egypt

Abstract

Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM) for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF) and numerical solutions using Runge-Kutta method. The results show the presented method is potentially to solve high nonlinear oscillator equations.

Keywords

Main Subjects

[1]     He, J. H., “Variational iteration method: a kind of nonlinear analytical technique: some examples”, International Journal of Non-Linear Mechanics, Vol. 34, No. 4, pp. 699-708, 1999.

[2]     He, J. H., “Variational approach for nonlinear oscillators”, Chaos Solitons and Fractals, Vol. 34, No. 5, pp. 1430-1439, 2007.

[3]     He, J. H., “Variational iteration method - some recent results and new interpretations”, Journal of Computational and Applied Mathematics, Vol. 207, No. 1, pp. 3-17, 2007.

[4]     He, J. H., Wu, X. H., “Construction of solitary solution and compaction-like solution by variational iteration method”, Chaos Solitons and Fractals, Vol. 29, No. 1, pp. 108-113, 2006.

[5]     Mickens, R. E., “Mathematical and numerical study of the Duffing-harmonic oscillator”, Journal of Sound and Vibration, Vol. 244, No. 3, pp. 563-567, 2000.

[6]     Hu, H., Tang, J. H., “Solution of a Duffing-harmonic oscillator by the method of harmonic balance”, Journal of Sound and Vibration, Vol. 294, No. 3, pp. 637-639, 2006.

[7]     Lim, C. W., Wu, B. S., “A new analytical approach to the Duffing-harmonic oscillator”, Physics Letters A, Vol. 311, No. 4-5, pp. 365-373, 2003.

[8]     Guo, Z., Leung, A. Y. T., Yang, H. X., “Iterative homotopy harmonic balancing approach for conservative oscillator with strong odd-nonlinearity”, Applied Mathematical Modelling, Vol. 35, No. 4, pp. 1717-1728, 2011.

[9]     Leung, A. Y. T., Guo, Z., “Residue harmonic balance approach to limit cycles of non-linear jerk equations”, International Journal of Non-Linear Mechanics, Vol. 46, No. 6, pp. 898-906, 2011.

[10]   Ozis, T., Yildirim, A., “Determination of the frequency-amplitude relation for a Duffing harmonic oscillator by the energy balance method”, Computers and Mathematics with Applications, Vol. 54, No. 7-8, pp. 1184-1187.

[11]   Ganji, D. D., Esmaeilpour, M., Soleimani, M., “Approximate solutions to Van der Pol damped nonlinear oscillators by means of He's energy balance method”, International Journal of Computer Mathematics, Vol. 87, No. 9, pp. 2014-2023, 2010.

[12]   Yazdi, M. K., Khan, Y., Madani, M., Askari, H., Saadatnia, Z., Yildirim, A., “Analytical solutions for autonomous conservative nonlinear oscillator”, International Journal Nonlinear Sciences and Numerical Simulation, Vol. 11, No. 11, pp. 979-984, 2010. 

[13]   Yildirim, A., Saadatinia, Z., Askari, H., Khan, Y., Yazdi, M. K., “Higher order approximate periodic solutions for nonlinear oscillators with the Hamiltonian approach”, Applied Mathematics Letters, Vol. 24, No. 12, pp. 2042-2051, 2011.

[14]   Khan, Y., Wu, Q., “Homotopy perturbation transform method for nonlinear equations using He's polynomials”, Computers and Mathematics with Applications, Vol. 61, No. 8, pp. 1963-1967, 2011.

[15]   Belendez, A., Gimeno, E., Alvarez, M. L., Mendez, D. I., Hernandez, A., “Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators”, Physics Letters A, Vol. 372, No. 39, pp. 6047-6052, 2008.

[16]   Belendez, A., Mendez, D. I., Fernandez, E., Marini, S., Pascual, I., “An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method”, Physics Letters A, Vol. 373, No. 32, pp. 2805-2809, 2009.

[17]   Sedighi, H. M., Shirazi, K. H., “Vibrations of micro-beams actuated by an electric field via Parameter Expansion Method”, Acta Astronautica, Vol. 85, pp. 19-24. 2013.

[18]   Sedighi, H. M., Shirazi, K. H., Zare, J., “Novel equivalent function for deadzone nonlinearity: applied to analytical solution of beam vibration using He’s Parameter Expanding Method”, Latin American Journal of Solids and Structures, Vol. 9, pp. 443-451, 2012.

[19]   He, J. H., “Solution of nonlinear equations by an ancient Chinese algorithm”, Applied Mathematics and Computation, Vol. 151, No. 1, pp. 293-297, 2004.

[20]     El-Naggar., A. M., Ismail, G. M., “Applications of He’s amplitude-frequency formulation to the free vibration of strongly nonlinear oscillators”, Applied Mathematical Sciences, Vol. 6, No. 42, pp. 2071-2079, 2012.

[21]   He, J. H., “Variational iteration method a kind of non-linear analytical technique: some examples”, International Journal of Non-Linear Mechanics, Vol. 34, No. 4, pp. 699-708, 1999.

[22]   He, J. H., “Variational approach for nonlinear oscillators”, Chaos Solitons and Fractals, Vol. 34, No. 5, pp. 1430-1439, 2007

[23]   Ozis, T., Yildrm, A., “A study of nonlinear oscillators with  force by He's variational iteration method”, Journal of Sound and Vibration, Vol. 306, No. 1-2, pp. 372-376, 2007.

[24]   Sedighi, H. M., Shirazi, K. H., Noghrehabadi, A., “Application of Recent Powerful Analytical Approaches on the Non-Linear Vibration of Cantilever Beams”, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 13, No. 7-8, pp. 487-494, 2012.

[25]   Khan, Y., Vazquez-Leal, H., Faraz, N., “An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations”, Applied Mathematical Modelling, Vol. 37, No. 5, pp. 2702-2708, 2013.

[26]   Akbarzade, M., Khan, Y., “Dynamic model of large amplitude non-linear oscillations arising in the structural engineering: analytical solutions”, Mathematical and Computer Modelling, Vol. 55, No. 3-4, pp. 480-489, 2012.

[27]   Ganji, S. S., Barari, A., Karimpour, S., Domairry, G., Motion of a rigid rod rocking back and forth and cubic-quintic Duffing oscillators”, Journal of Theoretical and Applied Mechanics, Vol. 50, No. 1, pp. 215-229, 2012.

[28]   El-Naggar, A. M., Ismail, G. M., “Analytical solution of strongly nonlinear Duffing oscillators”, Alexandria Engineering Journal, Vol. 55, No. 2, pp. 1581-1585, 2016.

[29]   El-Naggar, A. M., Ismail, G. M., “Solution of a quadratic non-Linear oscillator by elliptic homotopy averaging method”, Mathematical Sciences Letters, Vol. 4, No. 3, pp. 313-317, 2015.

[30]   El-Naggar, A. M., Ismail, G. M., “Analytical solutions of strongly non-linear problems by the iteration perturbation method”, Journal of Scientific Research and Reports, Vol. 5, No. 4, pp. 285-294, 2015.

[31]   Fan, J., He's frequency-amplitude formulation for the Duffing harmonic oscillator”, Computers and Mathematics with Applications, Vol. 58, No. 11-12, pp. 2473-2476, 2009.