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Abstract 

Deflection analysis of a simply supported microbeam subjected to a concentrated load at the middle is 
investigated on the basis of a shear deformable beam theory and non-classical theory. Effects of shear deformation 
and small size are taken into consideration by hyperbolic shear deformable beam theory and modified strain 
gradient theory, respectively. The governing differential equations and corresponding boundary conditions are 
obtained by implementing minimum total potential energy principle. Navier-type solution is employed to achieve 
an analytical solution for deflections of simply supported homogeneous microbeams. The effects of shear 
deformation, material length scale parameter and slenderness ratio on the bending response of microbeams are 
investigated in detail. 

Keywords: Bending, hyperbolic shear deformation theory, modified strain gradient theory, size dependency. 

1. Introduction 

  As a result of the great advances in technology (especially in nanotechnology), the applications of the miniaturized 
structures increase in micro- and nano-electro mechanical systems (MEMS and NEMS) [1-3]. Microbeam is one of 
the basic structures for MEMS/NEMS such as micro-resonators [4], Atomic Force Microscopes [5], micro-actuators 
[6], micro-switches [7]. The dimensions of the microbeams are on the order of microns and sub-microns and it is 
demonstrated by some experimental studies that the mechanical deformation behavior of these structures affected by 
small size [8-11]. Consequently, size effects should be taken into consideration on the determination of the mechanical 
characteristics of such structures. However, the continuum models evaluated by conventional elasticity theory fail to 
predict the mechanical responses of micro- and nano-sized structures due to the lack of any additional material length 
scale parameters. Subsequently, various non-classical continuum theories have been developed like couple stress 
theory [12-14], micropolar theory [15], nonlocal elasticity theory [16, 17] and strain gradient theories [18-21]. 
  One of the most popular higher-order continuum theories is modified strain gradient theory elaborated by Lam et al. 
[10]. Unlike in the classical continuum mechanics, the total deformation energy density is not only a function of first-
order deformation gradient but also a function of second-order deformation gradients in this theory. A number of studies 
have been performed to investigate mechanical responses of homogeneous microbars [22–25] and microbeams [26–
32]. Approximate solutions for static and dynamic analyses of microbeams were also carried out by finite element 
method based on Bernoulli-Euler and Timoshenko beam theories, respectively [33, 34]. Buckling behavior of boron 
nitride nanotube surrounded by an elastic matrix is investigated by discrete singular convolution method [35]. Nonlocal 
continuum and discrete rod models are developed for the size-effects in the torsional and axial vibration responses of 
microtubules [36]. 
  In order to determine the mechanical characteristics of beams, several beam theories have been introduced such as 
Bernoulli-Euler (BET), Timoshenko, parabolic [37,38], trigonometric (sinusoidal) [39], hyperbolic (HBT) [40], 
exponential [41] and a general exponential [42] beam theories. BET is useful for slender beams with a large aspect 
ratio due to the lack of shear deformation effects. Effects of shear deformation can be taken into account by TBT. 
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However, the distributions of transverse shear stress and strain are assumed as uniform along the thickness of the beam 
in this theory. Consequently, TBT needs a shear correction factor due to there are no transverse shear stress and strain 
at the top and bottom surfaces of the beam. On the other hand, the transverse shear stress and strain vary throughout 
the height of the beam and equal to zero at the upper and lower surfaces of the beam in the other shear deformation 
beam theories mentioned above. Recently, several size-dependent shear deformation beam models have been 
developed to investigate the static and dynamic analyses of microstructures [43-56]. 
  In the present study, bending response of a simply supported microbeam under a point load at the middle is 
investigated on the basis of hyperbolic shear deformable beam theory and modified strain gradient theory. The 
governing differential equations and corresponding boundary conditions are derived by implementing minimum total 
potential energy principle. Navier-type solution is employed to obtain an analytical solution for deflections of simply 
supported homogeneous microbeams. A parametric study is performed to determine the effects of shear deformation, 
material length scale parameter and slenderness ratio on the bending response of microbeams. 
 

2. Preliminaries 

  Lam et al. [10] simplified the strain gradient theory proposed by Fleck and Hutchinson [18, 21] and introduced a 
relatively new modified strain gradient theory in which there are three additional material length scale parameters 
related to the dilatation gradient vector, deviatoric stretch and symmetric rotation gradient tensors in addition two 
classical ones for linear elastic materials. The strain energy ܷ based on this theory can be written as [10, 26] 
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where ݑ, ߠ, ߝ, ߛ, ߟ
(ଵ) and ߯

௦  represent the components of the displacement vector u , the rotation vector θ , 

the strain tensor ε , the dilatation gradient vector γ , the deviatoric stretch gradient tensor (1)η  and the symmetric 

rotation gradient tensor χ s , respectively. Also, ߜ and ݁  are the Kronecker delta and the permutation symbols, 

respectively. On the other hand, the components of the classical stress tensor σ  (conjugated with the strain tensor) 

and the higher-order stress tensors p , (1)τ  and ms  (conjugated with the higher-order deformation gradient tensors) 

can be expressed by [10] 
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where 0 1 2, ,l l l  are additional material length scale parameters related to dilatation gradients, deviatoric stretch 

gradients and rotation gradients, respectively. Furthermore, ߣ and ߤ are the Lamé constants defined as follows 
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3. Hyperbolic shear deformable microbeam model 

In this section, the equilibrium equation and corresponding boundary conditions of a hyperbolic shear deformable 
beam model are derived. The displacement components of an initially straight beam on the basis of hyperbolic beam 
theory (HBT) can be expressed as [40]  
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in which 
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where ݑଵ, ଶݑ   and ݑଷ  are the ݔ−, ݕ −  and ݖ −  components of the displacement vector, and also ݓ  is the 
transverse displacement, ߮ is the angle of rotation of the cross-sections about ݕ −axis of any point on the mid-plane 
of the beam, respectively. (ݖ)ܪ is a function which depends on ݖ and provide zero-shear stress and strain conditions 
at the top and bottom surfaces of the beam. It is notable that the displacement components for BET can be directly 
achieved by setting (ݖ)ܪ in Eq. (12) equal to zero. Substituting Eqs. (12) and (13) into Eq. (2), we obtain the non-
zero strain components as 
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and the non-zero components of higher-order gradients are determined by implementing Eqs. (12)-(14) in Eqs. (3)-(5) 
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By implementing Eq. (14) in Eq. (7), the non-zero components of classical stress tensor σ  can be written as 
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By employing above related equations into Eqs. (8)-(10), the non-zero components of higher-order stress tensors are 
achieved as 
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The governing differential equations and corresponding boundary conditions are derived by implementing the 
minimum total potential energy principle. In this principle, the first variation of total potential energy should be equal 
to zero as following 
 

ߜ ∏ = ܷߜ − ܹߜ = 0              (23) 
 
where ∏ is the total potential energy, ܷߜ and ܹߜ  are the first variations of strain energy and work done by 
external forces, respectively. After some mathematical manipulations and using the fundamental lemma of the calculus 
of variation, the following equilibrium equations for hyperbolic shear deformable microbeam model can be achieved 
as 
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ଷݔ݀  

− ቀ
ଶ

ହ
ܾଵଷଵቁ ߮ + ቀ2ܾଽ +

ସ

ହ
ܾଽଵቁ

ௗమఝ

ௗ௫మ − ܳହ = 0 or 
ௗఝ

ௗ௫
= 0                      (30) 

    
where  (ݔ)ݍ is the transverse distributed load. In addition, ܳ  (݆ = 1,2, … ,5) are the specified forces or moments of 
them at the end of the microbeam and 
 

ሼܾଵ, ܾଶ, ܾଷ, ܾସሽ =  ,ሼ1ߟܧ ,ଶݖ ,ܪݖ ܣଶሽ݀ܪ


,       

 ܾହ =  ߤ ቀ
ௗு

ௗ௭
ቁ

ଶ


 ,ܣ݀

ሼܾ , ܾ , ଼ܾ , ܾଽ , ܾଵ , ܾଵଵሽ =  ݈ߤ
ଶ ൜1, ,ଶݖ ,ݖܪ ,ଶܪ ቀ

ௗு

ௗ௭
ቁ , ቀ

ௗு

ௗ௭
ቁ

ଶ
ൠ


 ,ܣ݀

ሼܾଵଶ , ܾଵଷ , ܾଵସሽ =  ݈ߤ
ଶ


ቀ

ௗమு

ௗ௭మ ቁ ቄݖ, ,ܪ ቀ
ௗమு

ௗ௭మ ቁቅ  (31)            ܣ݀

 
 

4. Analytical solutions for static bending problem of microbeams  

In this section, Navier’s solution procedure is employed to solve the static bending problem of simply supported 
microbeams. The following expansions of generalized displacements which include undetermined Fourier coefficients 
and certain trigonometric functions can be successfully employed as 

(ݔ)ݓ =  ܹ

ஶ

ୀଵ

sin ߚ  ݔ
(32) 

(ݔ)߮ =  ܴ

ஶ

ୀଵ

cos  ݔߚ
(33) 

 
where ܹ and ܴ are the undetermined Fourier coefficients and ߚ = ߨ݊ ⁄ܮ . This means that Eqs. (32) and (33) must 
satisfy the corresponding boundary conditions. It is seen from the previous works that these functions are valid for the 
simply supported microbeams [45-50]. On the other hand, the external applied force ݍ can be expanded by Fourier 
series with Fourier coefficient ܳ as following 

(ݔ)ݍ =  ܳ

ஶ

ୀଵ

sin ߚ  ݔ
(34) 

 

ܳ =
ଶ


 (ݔ)ݍ sin ݔߚ ݔ݀




                     (35) 

 
and ܳ can be expressed as in the case of point load at the middle of the microbeam as 
 

(ݔ)ݍ = ݔ)ߜܲ −  (36)            (2/ܮ

ܳ =
ଶ


sin

|గ

ଶ
  for ݊ = 1,2,3, …                     (37) 
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where δ is the Dirac delta function, P is the magnitude of the point load Substituting Eqs. (32)-(37) into Eqs. (24) and 
(25), the following relation is achieved as 
 


ଵଵܭ ଵଶܭ
ଶଵܭ ଶଶܭ

൨ ൜ ܹ
ܴ

ൠ = ቄܳ
0

ቅ                    (38) 

 
where  
 

ଵଵܭ = ଶߚ ൬ܾହ +
8

15
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1
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−
4
5
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15
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15
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5
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16
15

(2ܾଵଵଵ − ܾଵଵ) 

+
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4
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ଵ
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ଵ

ସ
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ସ
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Solving the above algebraic equations set in Eq. (38), the Fourier coefficients ܴ  and ܹ  can be determined. 
Analytical expressions of (ݔ)ݓ and ߮(ݔ) will be obtained for the static bending of simply supported microbeams 
under point load by substituting these coefficients into Eqs. (32) and (33). 
 

5. Numerical results and discussion 

  Static bending problem of a simply supported microbeam subjected to a concentrated load at the mid-span of the 
microbeam is analytically solved with Navier’s solution procedure based on hyperbolic shear deformable microbeam 
model. For illustration purpose, the microbeam is taken to be made of epoxy with the following material properties: 
the Young’s modulus E= ݒ the Poisson’s ratio , ܽܲܩ 1.44 = ߟ ,0.38 = 1, ܾ = 2ℎ and the material length scale 
parameter (݈ = ݈ଵ = ݈ଶ = ݈) ݈ =  .[33,54] ݉ߤ11.01
Variations of dimensionless maximum deflections of the simply supported microbeam under point load are depicted in 
Figs. 1 and 2 based on different beam theories for various values of slenderness ratio of microbeam, respectively. It is 
shown that an increase in the slenderness ratio leads to a decrease in the dimensionless deflections. Moreover, it can 
be observed that the dimensionless maximum deflections evaluated by HBT are higher than those obtained by BET 
due to effects of shear deformation and it is more considerable for lower slenderness ratios.  

 
Fig. 1 Variation of the dimensionless center deflection with respect to slenderness ratio corresponding to different beam 

theories based on CT 
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Fig. 2 Variation of the dimensionless center deflection with respect to slenderness ratio corresponding to different beam 

theories based on MSGT 
 

 
6. Conclusions 
Size-dependent static bending analysis of a microbeam subjected to a point load is investigated based on hyperbolic 
shear deformable beam theory in conjunctions with modified strain gradient theory. The equilibrium equations and 
corresponding boundary conditions in bending are derived by implementing minimum total potential energy principle. 
Analytical solutions for deflections under sinusoidal load for simply supported homogeneous microbeams are 
presented by Navier solution procedure. The influences of shear deformation, material length scale parameter and 
slenderness ratio on the bending response of microbeams are investigated in detail. It is observed from the results that 
effects of shear deformation lead to an increment in deflections and these effects may become more considerable for 
lower slenderness ratios. Moreover, it can be interpreted that the microbeam model based on MSGT is stiffer than those 
based on CT. 
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