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Abstract

A 5™ order shear deformation theory considering transverse shear deformation effect as well as transverse normal strain
deformation effect is presented for static flexure analysis of simply supported isotropic plate. The assumed displacement
field accounts for non-linear variation of in-plane displacements as well as transverse displacement through the plate
thickness. The condition of zero transverse shear stresses on the upper and lower surface of plate is satisfied. Hence the
present formulation does not require the shear correction factor generally associated with the first order shear deformable
theory. Governing equations and boundary conditions of the theory are obtained using the principle of virtual work. Closed-
form analytical solutions for simply supported square isotropic thick plates subjected to single sinusoidal distributed loads
are obtained. Numerical results for static flexure analysis include the effects of side to thickness ratio and plate aspect ratio
for simply supported isotropic plates. Numerical results are obtained using MATLAB programming. The results of present
theory are in close agreement with those of higher order shear deformation theories and exact 3D elasticity solutions.

Keywords: Thick isotropic plate, 5th order shear deformation theory, static flexure, transverse shear stress, transverse
normal stress, Navier solution.

1. Introduction

Plates are the basic structural components that are widely used in various engineering disciplines such as aerospace,
civil, marine and mechanical engineering. The transverse shear and transverse normal deformation effects are more
pronounced in shear flexible plates which may be made up of isotropic, orthotropic, anisotropic or laminated composite
materials. To address the correct structural behavior of structural elements made up of these materials; development of
refined theories, which consider refined effects in static and dynamic analysis of structural elements, becomes necessary.

The wide spread use of shear flexible materials has stimulated interest in the accurate prediction of structural behavior
of thick plates. Thick beams and plates, either isotropic or anisotropic, basically form two and three dimensional problems
of elasticity theory. Reduction of these problems to the corresponding one and two dimensional approximate problems for
their analysis has always been the main objective of research workers. The shear deformation effects are more pronounced
in the thick plates when subjected to transverse loads than in the thin plates under similar loading. These effects are
neglected in classical plate theory. To describe the correct bending behavior of thick plates including shear deformation
effects and the associated cross sectional warping, shear deformation theories are required. A comprehensive review of
refined shear deformation theories for isotropic and anisotropic laminated plates is given by Ghugal and Shimpi [1] and
further recently reviewed by Sayyad and Ghugal [2].

It is well-known that the classical plate theory based on Navier-Kirchhoff hypothesis underpredicts deflections and
overpredicts natural frequencies and buckling loads due to the neglect of transverse shear deformation effects. This theory
is known as classical plate theory. Timoshenko and Woinowsky-Krieger [3] presented the static flexure and buckling
solutions various thin plates subjected various loading and boundary conditions.
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The progress in the theory of plates formulation made in 1789-1988 has been carefully reviewed by Jemielita [4].
Refined theories, mainly due to Levy [5], Reissner [6], Hencky [7], Mindlin [8] and Kromm [9] are improvements over the
classical plate theory in which the effect of transverse shear deformation is included. Reissner’s theory is stress based and
Hencky, Mindlin theories are displacement based in which the displacements are expanded in powers of the thickness of
plate. These theories are well-known as first order shear deformation theories (FSDTs) in the literature and widely referred
to as Reissner-Mindlin plate theory. These theories, however, do not satisfy the shear stress free boundary conditions on
the surfaces of the plate and require shear correction factors to consider strain energy due shear deformation appropriately.
The deficiencies in classical and first order shear deformation theories led to the development of higher order or equivalent
shear deformation theories.

The first refined (higher order) theories are due to Levy’s paper of 1877 [5]. Hundred years later in 1977 Lo, Christensen
and Wu [10, 11] developed a consistent higher order theory, based on Levy’s kinematic hypothesis, for homogeneous and
laminated plates including effects of transverse shear deformation, transverse normal strain and a nonlinear distribution of
the in-plane and transverse displacements with respect to the thickness coordinate. Lo et al. theory contains eleven unknown
displacement variables. It is basically a third order unconstrained shear deformation theory which includes transverse shear
and normal deformation effects.

Many higher order shear deformation theories are developed later based on Lo et al., theory which are either constrained
or unconstrained theories. These theories are reviewed in great details in Ref. [1] and [2]. Kant [12] studied the bending
behavior of a thick homogeneous and isotropic rectangular plate using higher order shear and normal deformation theory
in conjunction with segmentation method. A linear elastic analysis is presented. Kant and Swaminathan [13] presented a
review of various unconstrained models derived from Lo et al. third order theory for the static analysis of composite plates.
The third-order parabolic shear deformation theories satisfying shear stress free boundary conditions on the bounding
planes of plate are studied by many researchers and critically reviewed by Jemielita [14]. It is shown by the Jemielita that
the kinematical hypotheses proposed by various authors are the sub set of kinematical hypothesis proposed by Vlasov in
1957 [15, 16]. Among the several, third order shear deformation theory of Reddy [17, 18] is very well known and well
established in the static and dynamic analyses of isotropic and composite plates.

In 1877 Levy [5] also developed a refined theory for thick plate for the first time using sinusoidal functions in the
displacement field in terms of thickness coordinate to include the effects of transverse shear deformation. This belongs to
a non-polynomial class of theories and termed as trigonometric shear deformation theory. However, efficiency of this plate
theory was not assessed for more than a century. The discussion on Levy’s theory can be found in history of theory of
elasticity by Todhunter and Pearson [19]. Jemielita in Ref. [4] remarked that the Levy’s theory would be remembered by
next generation of researchers and its results taken into account and referred to in further developments. Sine function for
describing the warping through the thickness of plate has been implemented in shear deformation theory by Touratier [20].
Ghugal and Sayyad [21-23], Sayyad and Ghugal [24-28] presented further developments in this theory including transverse
normal strain effect (a qusi-3D sinusoidal shear deformation theory) and applied to bidirectional and one dimensional static
and dynamic analyses of isotropic and composite plates. It is shown that sinusoidal or trigonometric shear deformation
theory based Levy’s kinematical hypothesis is very simple, efficient and accurate for the analysis of thick plates. This
theory satisfies shear stress free boundary conditions on bounding planes of the plate exactly and obviates the need of shear
correction factors, and kinematic is independent of material behavior.

Third order shear deformation theories are extensively studied by many researchers for the analysis of homogeneous,
isotropic, orthotropic, anisotropic and specially orthotropic composite plates to derive the correct structural characteristics
of plates subjected to mechanical and thermal loads. Because of the isotropic nature of thermal loadings, plates theories
that neglect transverse normal strain lead to very inaccurate results in both thick and thin plates analysis. At least a parabolic
expansion of transverse displacement is required to capture linear thermal strains. In view of this, Carrara [29] and Rohwer
et al. [30] recommended that the theories with fifth order expansion or higher than fifth order including transverse strain
effect are required for acceptable description of thermal response. This has motivated the authors of present paper to
investigate the bending response of thick isotropic plates and composite plates.

In this paper a fifth order shear deformation theory with transverse normal strain effect is developed for the first time
and accurate description transverse shear stresses is presented. The displacements and stresses obtained are compared with
those of exact elasticity solutions in case of isotropic plate. The generalized theory formulation suitable for homogeneous,
linearly elastic, isotropic and orthotropic composite thick plate is presented.

2. Theoretical formulation

2.1. Isotropic Plate Under Consideration

Consider a plate made up of isotropic material as shown in Fig. 1. The plate occupies a region given by Eq. (1):

0<x<agq, 0<y<b, -h/2<z<h/2. )
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Fig. 1. Plate geometry and co-ordinate system

2.2. Kinematic Assumptions made in the proposed theory

The displacement components U and V are the displacements in x and y -directions and each consists of extension, bending
and shear components as

U =uy+u, +u, and V =v,+v, +v, 2
The extension components #gand v, are the middle surface displacements in the x and y directions, respectively.
The bending components 2, and V, are assumed to be same as those given by the CPT. Therefore, the expressions for
bending components are given as:
ow(x ow(x
, —Z—( ) and v, =—Z—( 2
Ox oy

The displacements due to shear deformation u, and v are assumed to be cubic and fifth order in thickness coordinate z

€)

such that maximum shear stress occurs at neutral plane of the plate. These components are as follows:
Ug :fl(Z) ¢x (x,y)+f2(z) Vs (xsy)
Vs =f1(Z) ¢y (an’)"‘fz(Z) '//y (xyy)

where the functions f (Z ) and f, (Z ) are defined as follows:

z? 16 z*
fl(z)=z(l—§h—2J and f,(z)=z [1——2—]

“4)

5 p*
The transverse displacement w in z-direction is assumed to be a function of x, y, z Co-ordinates to include the effect of

transverse normal strain /stress.

w=wx,y)+g(z) 4 (x,y)+8,(2) . (x,y) (&)

where functions g (Z) and g, (z) are as given below:

2 4
gl(z)=[1—4;—zj, gz(z)=[1—162—4J

The body forces are ignored in the analysis. The plate is subjected to transverse load only.

2.3. Kinematics of the proposed plate theory

Based upon the before mentioned assumptions, the displacement field of the proposed plate theory is given as below:
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ow
U(x,y,z)=u0 -z E"‘fl(z) ¢x (X,y)+f2(z) Vs (xsy)

V(an’sZ)=V0_Z%+f1(Z) b, (0 +f>E) vy (6o ©)

W(xaysZ)=W(x,J’)+g1(Z) ¢z (an’)Jfgz(Z) v, (st’)

2.4. About the Present Theory

The kinematics of the present theory is based on nine independent field variables. The inplane displacements are expressed
in terms of thickness coordinate z of the plate and the highest power of it is five (quintic). Hence it is termed as fifth order
shear deformation theory. The transverse displacement contains. The inplane displacements vary non-linearly through the
thickness of the plate. The displacement field of the theory enforces the realistic variation of the transverse shear stresses
(parabolic and quartic) across the thickness of the plate. These stresses satisfy the shear stress free boundary condition on
the bounding planes of the plate. Thus, the theory obviates the need of shear correction factor. The effect of transverse
normal strain is considered. Thus, the theory presents the quasi-3D description of bending response. The usage of theory
could be very effective in the bending, buckling, vibration and thermal analysis of nonhomogeneous, anisotropic,
composite or sandwich thick plates within the scope of linear elasticity with small deformations.

2.5. Strain-displacement relationships

Normal strains (& and ¢, ) and shear strains (7, ,7,, ,7,, ) are obtained within the framework of linear theory of

x o y
elasticity using the displacement field given by Eqns. (6).
oU  ou g, oy,
g ==~ +f1(Z) ? +f2(Z)—W
Ox Ox ox
o vy,  Ow ¢, ’
g, ==z N f1(2) L4 f5(2)
dy oy oy o
ow z z?
= =82 4 —64=—
& oz h 2 ¢z I 4 v,
oV oU du, v 2w og, o9, v,
Fo = L B o _: TV @y P fie) sy )
ox Oy Oy Ox Ox Oy Oy Ox oy

0
- OV RUAC AR "’ ) a""z
iz X
v, = aaV W @) 8, 412 vy +ai) o %. ™)

2.6. Constitutive Equations

Since the thick plate is made up of orthotropic layers, the stress-strain relations in the K orthotropic layer are given as:

. —k  —k =k . ‘ —k '
o, On 9n 9 E; Tyy Qu O 0 Vxy
k Sk Sk Sk k k k k
o, =91 O»n 01§ and 17, r=| 0 QOs5 0 |§7 (3
k —k —k —k k k —k k
o O Oxn Osn|lE: Tyz 0 0 Qg ||/

_k .
where Q; are the transformed material constants, are expressed as:

Journal of Applied and Computational Mechanics, Vol. 2, No. 2, (2016), 80-95



Bending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory ~ 84
k _ 4 -2 2 -4
01 =0,,c08" 6, +2(0,, +2044)s8in” G, cos” 6, +0,,sin" 6,

Qlk2 = (Qll +Q22 —4Q44jsi112 Hk cos? 6k +Q12(Sin4 Hk +cos” Hk )
0fs =03 cos” O +0,;sin” 6,

03, =0y sin* 6, +2(0,, +20,44)sin’ 6, cos® 6, +0,, cos* 6,

0% =0,3sin? 6, +0,; cos’ 6,

0% =035, 4y =(Q1; +02 ~201, ~20,)sin’ 6, cos® 6 +0y, (Sin4 6, +cos* 6, )
sts =0s;s cos? 6, +0¢s sin? 0,

Qé6 =046 cos’ O +0s;s sin® O, )

where 6, is the angle of material axes with the reference coordinate axes of each layer andQ,; are the plane stress-reduced

stiffness and are known in terms of the engineering constants in the material axes of the layer:
El(l_#z3ﬂ32), El(ﬂzl —#31/123), El(ﬂ31 —#21/132)

Oy = A 3 O = A ; O3 = A
_Ez(l—ﬂnﬂn), _Ez(ﬂ32—ﬂ12ﬂ31), _Es(l—ﬂlzﬂzl)_ (10)
05 ST A (%) T A 053 T A

044 =Gp; Os5=Gy35 Oge =0 and A=1 — w1ty — fp3fily — faths — 24 My 3

InwhichE,, E,, E5 are the Young’s moduli in the x, y and z directions respectively, Gy, G;3, G, are the shear moduli
and 4; are the Poisson’s ratios for transverse strain in j-direction when stressed in the i-direction. Poisson’s ratios and

Young’s moduli are related as:
#y E;= wy E; (i,j =123

3. Governing Equations and Boundary Conditions

Using the Eqgs. (6) — (8) and the principle of virtual work, variationally consistent governing differential equations and
associated boundary conditions for the plate under consideration can be obtained. The dynamic version of principle of
virtual work when applied to the plate leads to

y=bx =a
}dx dy dz — _[ j g(x,y) 6w dx dy =0 11

z=+h/2 y=b x =a
J~ [Cfx d¢ +o0, b¢, +0, O¢,
y=0x=0

Z=—h/2 y =0 x =0 +Txy 57xy + 7 57” +Tyz é‘yyz

where symbol § denotes the variational operator. Employing Green’s theorem in Eq. (11) successively, we obtain the
coupled Euler-Lagrange equations, which are the governing equations and the associated boundary conditions of the plate.

The governing differential equations in terms unknown variables are obtained by collecting the coefficients of du, v,

ow , 08, , oy, , 09, , Oy, ,0¢. ,0y. and equating them to zero we get field equations and boundary conditions as

follows:
2 2 2 2 3 3
0uy 0u, 0vy 0vy ow ow
A +A4 —-A - +| B +(B, +2B
11 o 2 44 8y2 12 ox 0 44 ox oy 11 JSE ( 12 44)axay2
2 2
¢ 62¢ 621// 621// o°¢
Su,: -I x 7 X _J X _J X (1, +1 z (12)
0 11 o2 44 6y2 11 o2 44 ay2 (12 44)6x6y
2
oy 8 ¢ 64 oy
(V12 +J44) +—Bj3—+—FE3——=0
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o%u, v, v, o%w ow
~(4y, +A44)axay Ay, o2 —dy o2 +By JNE +(312+2B44)m
x y y X oy
2 2 2
oy o’y o4, 0 vy
OVy: _(112+144)ﬁ—(t]12+J44)axa; 1y o2 Ly ol 2 o2 (13)
R 4. 64 . 0
y v
Iyt 5By Ep——=0
ox h o h oy
O’ o’u o o o*
0 0 0 w
~Bjj— (B2 +2B44) 5~ Byn—— _(312+2B44)aT+ 113
X ox
4 4 3 3 3
o'w ow 09 09 oy
+(2Dy, +4Dyy) 25,2 Dzza 7L —(Lip +2L4y) 8;:2_ 117 >
3 3 3
Oy o°¢ o)
ow: —(M,+2M L 2+ (L, +2L - (14)
44)6x6y2 n—5 +(Ln 44)ax28y
o’ Yy 8 %4 8 8°¢ 64 0°
V.
M 3 ~(Myy+2M yy)—5—+D;3——5 +Dyy——5 +F3—
3 2 W2 o PERPYE FERPS)
64 0%y
+F23—4 ZZ =
h' 0
0%, 0%u, o o ow
—I o2 Ly — (113 +144) tLy— +(L12+2L44)6x6y2
4 ¢ o’y o’y
Niy—5 ~Nyy—5+Cssé, —Py—— Py — +Hssp,
5¢ . X oy Ox oy (15)
)
¢ ? 8 o4
v
(N3 +Ny) (P, 44)8 +(h2L13 +C55j -
0
+( S13+H55) (;’;Z =0
0%u, 0%u, 0 G ow
I~ Jas— (V12 +J4s) My 5+ (M5 +2M 4y) o2
y X oy
0’4 0%¢ oy &
-P ;—P446_;+H55¢x Ry —5 Ry —5+Gsspy
Sy . Y o (16)
X
ey 2 ’ ) ]
(Pip +Py) (Rip +Rys) + w2 Mz s
64 oy,
+ 4T13 +Gss =0
2 2 3
07u, 0vy 0vy ow
(112 +144) Iy~ =l +Lyp —5+(Lip +2Ly) 2,
v y x oy
2 2
04 o2 ¢
(N3 +Nyy) . j} ~(Pa +Pyy) . ; ~Np—5 =Ny —5+Ce0,
0P, Y x (17)
r 2 2
oy
—Pyy ——5 =Ny —5+Heev, +( 2L23+C66j =
oy h
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ug 62v0 62v0 ow w
~(J12 +744) I Ju o2 +M 5 +(Myy +2M 4y)——
i x Ox “oy
2 2 2 2
o°¢ y ¢y oYy
_(P12+P44)6x6 _(R12+R44)axax —Py——5 =Py ——5+Heed,
Sy, i 4 i 4 S (18)
oy, oy, 8 o¢,
Ryy——F5 Ry —5+Gg¥, + h—2M23+H66 o
64 0
+(—4T23+G66j Y: _o
h oy
8, Oug 8 8v0+8D62w+8 0w (8L+C ja(px
hz 13 A 2 P23 ay h2 13 axz 2 23 ayz h2 13 55 o
8 oy 8 09, 8 oy,
0. : ( M13+H55ja_xx—(h_2L23 +C66JE_ h_2M23 %)% (19)
o%¢ o%¢ 64 o’y o’y 512
—Css 6x§ ~Ce6—> D33h—4¢z “Hss——5—Hee— +F3—y. =0
64, Ouy 64 v 64 w64 o%w (64S on jaqﬁx
h4 13 o 4 723 6)/ h4 13 axz h4 236y2 h4 13 55 P
64 el 64 o¢ 64 oy
oy (—T+Gj X—( S+ij——T+G Y 20
V. PERIERAEY pron e Jom o aT e J 70 (20)
2 2
) o) 512 oy 8 y/ 4096
—H ;s axj —H g 5 > +F33h_6¢z —Gss axz —Ges o2 —+033 8 Ve =0
The boundary conditions at x = 0 and x = a obtained are of the following form:
_ *w o, v, v, *w o4,
Oug : Ay _3116_2+IMT+J“ e 3126 3 +112?
X
g 1)
8 64 . .
+J1 -Bp3 h—2¢z -E3 h—4(//z =0or u, isprescribed.
o ov o o4, o4 )
Y X X Y (22)
oy
+J 44 L =0or v is prescribed.
ox
0%u, 82u o% o*w ow
ow By — +2B44 [312+ZB44] Dlla [D12+4D44]m
X oy
2
az¢ az¢ 82 «,/ %y ¢
tLy——5 2y~ My 4 2M gy ——t [Lyy + 2Ly | (23)
ox 2 0 Ox Oy
oy, 8 g, 64 oy, . A
M, +2M - ————F,——=—=0 or w is prescribed.
[ 12 44] ox oy 13 02 ox 13 PEPS p
oow dug *w o, oy, v *w
—— B, —2+D)— 7 L - M —- B, —2+Dp— 3
ox ox ox 2 ox ox oy
(24)
02y 2 p BBy oo 2V ibed
- —_— — —1_ =0 or — is prescribed.
12 ay 12 ay 13 5 7z 13 h4 z P
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ou 82w og, 1% ov *w o4,
8 1Ly = Ly Nyt By [y =Ly —+ Ny ——
Ox ox 2 Ox ox oy ay (25)
oy, 8 64 . _
+ Py —Li h—2¢z -S13 h—4(//z =0 org, isprescribed.
ou *w o4 61// ov *w o
Sy, Sy —=—- My, —t P + =M, 2+P12_y
ox ox oy oy oy
(26)
oy, 8 64 _ ,
+ Ry -M 5 —2¢Z -T15 h—4(//z =0 or y, isprescribed.
h
ouy 0 o og. 0O 0 0
54, 1y Fo P o, S Ny, % | b wpy | ey v 1o
oy Ox Ox Oy oy  Ox Oy Ox 27
or ¢y is prescribed.
duy 0 o> og, O 0 0
PR FTILLTN PV Y S PP e A
oy  Ox Ox Oy oy  Ox oy Ox (28)
or v, is prescribed.
0 0
09, : Cssp, +Hssy, +C55ﬁ+ Hss Yz —0or @, is prescribed. (29)
oy o
0 0 . .
Sy, : Hssp, +Gssy, +H556;¢Z+ Gss (’;//z =0 or y, is prescribed. (30)
Y
The boundary conditions at y = 0 and y = b obtained is of the following form:
d o d d
Sy Agy—>+Ayy %—2344 ud +144L+144_+J44 -
’ ; > G31)
14
+J 44 Y 0 or u is prescribed
ox
ou o*w o4 oy v o*w
Vot dp—= By~ +lp——+Jp———+dy—— By —
Ox Ox ox oy oy (32)
og oy 8 64 . .
+ 1y 6_yy+J22 z —Bys h—2¢z —Ey; h—4y/z =0 or v isprescribed.
2 2 2
Ou 0, 0y 6 w &w
ow :(B,+2B U4 By —+2Byy——-—D Dy, +4D
( 12 44)6x6y 2 o2 “o0 23 SE ( 12 44)6x 20
2 2
o o’ ¢ o°¢
+(Lyy +2L4) b + (M + 2M 4 ) Sy Ly~ 2L gy — (33)
6x6y 6x8y ayz ox
2 2
oy, oy 8 o 64 0
+ My ———+2M yy ; - 23—2£— BT Yz —0orw is prescribed.
oy Ox h* Oy h
oW dug o%w o4, v, v, *w
—— =B —+Dp—5- L - My, ~ By —L4+Dy— 3
Ox oy oy (34)
o¢ oy 8 64 ow . .
_ Lzzgy_ M22#+D23h—2¢2 +F23h—4l//z =0or g is prescribed.
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duy 0 o og, 0
&&.u%iﬁ+ll}dg4 Y Ny b, il
oy Ox Ox oy  Ox 35)
0
+P44[ al/;x + al//y ] 0 or ¢, isprescribed
X
ouy 0 o 0
Sy gy | S+ ot Py 2 +&
oy X ox 0 oy  Ox (
36)
0 0
+R44( (;x + %}:OOr v, is prescribed.
dug o*w 24, oy, v, *w o,
op, i 1 ~Lp—5+N + Py—+1lpy——Lypy——+ Ny ——
b, Ty —— . 277 127 127, 2 o 2 o 2 -
+ P vy L ¢ -8 64 Oor ¢, i ibed
———Lyy—¢. —S,;—w, =0o0r ¢ isprescribed.
22 ay 23 h2 z 23 h4 z y
G o> G G G o> og,
oy, leﬂ— Mlz_w+ Plzﬁ"L RlzﬁJr Joyp—— -0 My — _ Py ——
ox ox 2 ox ox oy oy’ (38)
6l//y 8 64 . .
+ Rzz?—M23 h—2¢z =Ty h—41//z =0 or v, is prescribed.
0 0
09, : Ceefy +HegVy, +C666L;+ H g al//z =0 or ¢, is prescribed. 39)
0 0
Oy, @ Heep, +Gogyy, +Heg GL;+ Ges al/;z =0or y, isprescribed. (40)

The boundary condition at corners (x =0, y =0), (x =a, y =0), (x =0, y = b) and (x = @, y = b) obtained in terms of
displacements is of the following form:

du, 0 2 0 0 0 0
[ "o VOJ—ZB446—W+166[ Lt &Jﬁ"]éﬁ( ;/;" +ﬁj:0 (41)

oy 6x Ox Oy oy Ox Ox

where Aij , Bij , etc., are the plate stiffnesses, as defined below:

+h/2 _
(42155 N Py Ry ) = hI/zQij (LA )2 ()2 (2) S5 () o) =12 4)
+h/2 _ 5
(BU’DU’L’] ,M ) I QU (ZyZ 7Zf1(Z)’Zf2(Z))dZ> (l ’j = 13 2’ 39 4)
-h/2
+h/2 _ 3 4 3 3
(By By Sy Ty)= 10y (272"2 ()2 s (2)) e (g =123
—h/2
+h/2 )
(Cy oty )= 1 0y (7(2):83(2).21(2) g2 (2)) e, @/ =56
—h/2
+h/2
Oi' = I _.. Z6 dZ, (l 7j = 3)
0,)- 170, ¢
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4 3 16 5 2 4
1 (z):[z —52—2]; I (z)z(z —?2—4} g (z)= [1-4%} candg, (z)= {1—162—] (42)

h4

4. Closed-Form Solutions for Simply Supported Plate

Example 1: Bending analysis of isotropic plates subjected to sinusoidal load.

The rectangular thick isotropic plate with all edges simply supported is subjected to transverse sinusoidal loading
q(x,y)= 0 sin (%j sin (IZ—yj on the top surface of the plate where ¢, is the magnitude of the sinusoidal distributed

load at the center of the plate. The following material properties are used.

E=210 GPa, £ =0.3 and G = E2(1+ u)

4.1 Navier Solution

The governing differential equations and the associated boundary conditions for static flexure of rectangular plate under
consideration can be obtained directly from Eqgs. (10) through (41). The following are the boundary conditions of the simply
supported isotropic plate.

Vo=w=¢ .=y =¢ =y =0atx=0, x=a (43)

u0=w=¢y=l//y=¢z=l//z=0aty=0,y=b (44)

The transverse load acting on the top surface of the plate is presented in the double trigonometric series,
o0

e 0]
g(x,y)= X > q,, Sin ax sin By
Mm=13.5..n=13.5..

wherea =mnz/a and f=nn/b . The coefficientq,,, are the coefficient of double Fourier expansion. For single sine
load in both the directions m =1 and n =1 and ¢,,, = qo. The unknown variablesuy(x,y), vo(x,»), w (x,y), &, (x,»),

v (x.y), @, (x,y) v, (x,y), 4, (x,y), v, (x,y)are represented in the following trigonometric form, which satisfy
governing equations and boundary conditions exactly.

ug Uy, Sinax cosfy
Vo Vomn COsax sinfy
W, Sinax sinpy
P, w o Gemn Sinax cos By
V. 1= z z Vemn COSGX sinfy (45)
g | ™ =1,3,5,..n =1,3,5,... B SinCX COS By
v, Yymn €OSQX sin By
@, Gy SiDOX sin By
v, Vomn Sinax sin By

where Ug,,, > Vomn > W s Gemn > Wmn » Bomn > Vymn » @B » Womn are the unknown coefficients of the respective Fourier
expansions are governed by,

[k, ] {a}={F} G.,j =1, 9 (46)

where
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T T .
(A} = {tgmn Vomn® mn Bemn Vemn Pomn Vymn Pomn Vomn )+ 1F}={004,,, 000000} and the elements of stiffness

matrix [K] are given as follows:
2 2 3 2
' =[A11a +A4f ];Ku =(dpy + 4y )afiK 5 :‘[Bll @+ (Bip+2By)ap ];
2 2 2 2
K14=([110‘ +1yup );K15=(J110‘ +Jub );K16=(112+144)aﬂ;

. 8 . 64 .
K7 = () +J4)afiK s =h_23130"K19 =h_45130"

2 2 3 2
Ky =(App +4u)efiK ) =(A22a +Ayup )2K23 :—[Bzz B+ (By+2By) a ,3};
2 2
Ky =11y +144)0fiK s = (J1p +J44) B K o :(122,3 +1 );
2 2 8 64

Ky =(Jzzﬂ +tJ g );Kzg =h—2323ﬂ;K29 =h—4E23ﬂ;

3 2 3 2
K3 :—[311 a + (Byy +2Byy)af J;K32 =—[822 B+ (B, +2By,) a ﬂ};

4 2 2 2
K33 :[Dn o +(2Dy; +4Dyy) a” B+ Dy, B ];

3 2 3 2
K34 :_I:Lll @ + (L +2Lyy) off J;K}5 =—[M11 @+ (M, +2M 44) off ];

3 2 3 2
K36 :—[Lzz B+ (Lip+2Ly) @ ﬂJ;KW :—[Mzz B+ My +2M yy) a ,BJ;

8 2 2 04 2 2
K :_h_2[1313a +Dyf” |iKsg :—h—4[Fl3a +Ff |,
Koy =(11@% + 13 ):iKao = (11, +1 ;
a={Ina” +1up"); 42—( 1t 44)05ﬁ,

3 2 2 2

Ky =-[Lyy &+ (L +2Ly) af® |iK oy :(N“a +N B )+c55;

2 2
K45:(Pna +Pup )+H55;K46=(N12+N44)aﬂ;
8 64
Kyp =(Py+Py)ap:K g = h—2L13+C55 ;K 49 = h—4513+H55 a;
2 2 3 2
Ksy=Jpa” +Juf " Ks; =(Jp +Ju) af;Kss :_|:M11 a+ (M +2M ) a B }

2 2 2 2
Ksy =P a” +Pyuf” +Hss;Kss =Rjja” + Ry 7 +Gss;
Ksg=(Py+Py) afiKs; = (R, + Ry ) app;

8 64
Ksg :(h_zMn +H55ja;K59 :(h_4T13 +G55)0‘;

Kél :([12 +I44)aﬂ;K62 :([22ﬂ2 +144(,¥2);
te :_[Lzz pe (ke +2L44)a2ﬂ}K64 =[(N12 +Nus)aB];

2 2
Kes = (P +Pu)aB:K g =(N B> +N @ )+ Co:
K—P,B2+P2H~K—1L Ces | 5:
67 = ({22 44 |+ H g6 K g = 2 23 +Ces |53

64
Ko :(h_4S23 +H66jﬂ5
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Ky = +Ju)afKy, :(Jzzﬂz +J44a2);

K73 :—[Mzz B+ (M, +2M44)0‘2ﬂ}

K4 :(Plz +P44)aﬂ;K75 =(Rpy +Ryy)ap;

2 2 2 2
K76:[(P22ﬁ + Py )+H66:|;K77:|:(R22ﬂ + Ry )+G66:|;
8 64
Ky = h_2M23+H66 B |:Kq9 = h_4T23 +Ges |5 |

8 8 8 , , 8
K :h_sza;ng :h_szsﬂ;Kss :—h_z(Dwa +Dy 8 )§K84 —Lh_les +C55j0‘5

8 8 8
Kgs = (h_zMB +H55ja;K86 _[h_zLB +C66):B;K87 = (h_zMzs +H66jﬂ;

64

512
2 2 2 2
Ky =Cssa” +Cosf” + D3 h45K89:H5505 +Heo ™+ Fs

#e
64 64 64 2 2
Koy =h_4E130‘§K92 =h_4Ez3ﬁ§K93 =—h_4(F13a +Fyp )é

64 64 64
Koy =(h_4513 +H55]0‘§K95 =(h_4T13 +G55Ja;K% =(h—4S23 +H66)’B;

64 5 5 512
Kg7 = h_4T23 +Ggg |BiKog =Hssa™ +HeefS +F33h_6§

4096
2 2
Kog =Gssa™ +Geeff +033h_g;

6. Numerical results and discussion

6.1. Numerical Results

The results for examples solved on flexure analysis are obtained for different side to thickness ratios (a /& =4, 10, 20,
50, 100) and aspect ratios (a/ b = 1) are presented in Table 1. The results of present theory are compared with those of
first order shear deformation theory Mindlin [8], higher order shear deformation of Reddy [17, 18], trigonometric shear
deformation theory of Sayyad and Ghugal [21, 25], exponential shear deformation theory of Sayyad and Ghugal [31],
hyperbolic shear deformation theory of Ghugal and Pawar [32] and classical plate theory of Kirchhoff. Exact elasticity
results are generated from the theory provided by Pagano [33] for comparison of results. The results obtained for in-
plane displacements, transverse displacement, in-plane normal and shear stresses; and transverse shear stress using
constitutive relation are presented in the following non-dimensional forms commonly used in the literature.

(b z uk 5 _(a b z 100wE 5 _
U0, = —|=—5; Wl —,—,— = 7 (0, 0))
2 h) qhS 2°2 h qhS

—_ a b z (Txy)' — b
Txy 5357; :_27 X 09_7
qs 2

whereS =a/hand E; =E is elastic modulus.

N

Table.1 Comparison of non-dimensional in-plane displacement u , transverse displacement W, in-plane normal stress (o, ), in-plane shear stress

(?xy ) and transverse shear stress (7, ) of simply supported square isotropic plate (@ =b) subjected to sinusoidal distributed load.

S Theor Model u w — = =
Yy u w O-x sz Txy
(-h/2) 0) (-h/2) 0) (-h/2)
4 Present 5t OSDT 0.0440 3.5350 0.2108 0.2362 0.1342
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Sayyad and Ghugal [25] SSNDT 0.0440  3.6534 0.2267 0.2444 0.1063
Pagano [33] Exact 0.0454 3.6630 0.2040 0.2361 -
Sayyad and Ghugal [31] ESDT 0.0460 3.7480 0.2130 0.2380 0.1140
Reddy [17, 18] TSDT 0.0460 3.7870 0.2090 0.2370 0.1120
Sayyad and Ghugal [21] HSDT 0.0440 3.6530 0.2260 0.2440 0.1330
Ghugal and Pawar [32] HPSDT 0.0470 3.7790 0.2090 0.2360 0.1120
Mindlin [8] FSDT 0.0440 3.6260 0.1970 0.1590 0.1060
Kirchhoff CPT 0.0440 2.8030 0.1970 - 0.1060
10 Present 5% OSDT 0.0440 29143 0.1996 0.2383 0.1106
Sayyad and Ghugal [25] SSNDT 0.0439 2.9333 0.2125 0.2454 0.1060
Pagano [33] Exact 0.0443 2.9425 0.1988 0.2383 -
Sayyad and Ghugal [31] ESDT 0.0440  2.9540 0.2000 0.2390 0.1080
Reddy [17, 18] TSDT 0.0440 2.9610 0.1990 0.2380 0.1070
Sayyad and Ghugal [21] HSDT 0.0440 29330 0.2120 0.2450 0.1100
Ghugal and Pawar [32] HPSDT 0.0440 29590 0.1990 0.2370 0.1070
Mindlin [8] FSDT 0.0440 2.9340 0.1970 0.1690 0.1060
Kirchhoff CPT 0.0440 2.8020 0.1970 - 0.1060
20 Present 5% OSDT 0.0440  2.8303 0.1981 0.2386  0.1074
Sayyad and Ghugal [25] SSNDT 0.0439  2.8286 0.2105 0.2455 0.1060
Pagano [33] Exact 0.0440  2.8377 0.1979 0.2386 -
50 Present 5 OSDT 0.0440 2.8070 0.1977 0.2387 0.1066
Sayyad and Ghugal [25] SSNDT 0.0439 2.7991 0.2100 0.2456 0.1060
Pagano [33] Exact 0.0440 2.8082 0.1976 0.2386 -
100 Present 5 OSDT 0.0440 2.8037 0.1976 0.2387 0.1064
Sayyad and Ghugal [25] SSNDT 0.0439  2.7949 0.2099 0.2456 0.1060
Pagano [33] Exact 0.0440 2.8040 0.1976 0.2387 -
0.5
z/h |
0.25 —
S L RO L B B
-0.06 -0.04 -0.02 0.02 0.04 * 0.06
-0.25 —
-0.5 -

Fig. 2. Variation of in-plane displacement 2 through the thickness of the simply supported thick isotropic square plate subjected to
sinusoidal distributed load for aspect ratio (a/h = 4).
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0.5 —
z/h

0.25 —

-0.25 —

-0.5 —

Fig. 3. Variation of in-plane normal stress &, through the thickness of the simply supported thick isotropic square plate subjected

to sinusoidal distributed load for aspect ratio (a/h = 4)
0.5

z/h

0.25 4

-05 -«

Fig. 4. Variation of transverse shear stress fzx via constitutive equation through the thickness of the simply supported thick isotropic

square plate with sinusoidal distributed load for aspect ratio (a/h = 4).

6.2. Discussion of Results

Tablel shows comparison of displacements and stresses for simply supported square isotropic thick plates subjected to
sinusoidal distributed load. The in-plane displacements obtained by present theory are very close to those of refined
theories and exact solution. Present theory underpredicts the transverse displacement slightly for aspect ratio 4 compared
to other refined theories and the exact solution. For moderately thick plate, all the theories yield identical results. The
results of inplane normal stress are in close agreement with those of refined theories and the exact theory. The transverse
shear stresses predicted by present theory using constitutive relations are exactly matching with those of elasticity
solutions. The variations of inplane displacement, inplane normal stress and transverse shear stress are shown in Figs. 2
through 4. The results of displacement and stresses match with those of classical plate theory in thin plate limits.

7. Conclusions
From the study of bending analysis of thick isotropic plates by using 5" order shear deformation theory, following
conclusions are drawn:

1. The governing differential equations and the associated boundary conditions are variationally consistent.

2. Present theory obviates the need of shear correction factor due to the realistic variation of transverse shear stress.

3. The in-plane displacements and in plane stresses obtained by present theory are identical with those other refined
theories and the exact solutions.

4. Transverse shear stresses obtained by present theory using constitutive relations satisfy shear stress free boundary
conditions on the top and bottom surface of the plate. The present theory predicts exact transverse shear stresses as
compared to exact solution.
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The present quasi three-dimensional theory could be used effectively in the static thermal, bending, buckling and
vibration analyses of nonhomogeneous, anisotropic, composite or sandwich thick plates.
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