Thermodynamic Study of Water Activity of Single Strong Electrolytes

Document Type: Technical Brief


Graduate Msc Chemical Engineering, The nuclear martyrs Technologies Incubator ,Shiraz,Iran


Today, due to the natural decline of oil exploitation, the use of methods of oil recovery, has made significant progress. However, these methods are accompanied by accumulation and deposition of mineral deposits in oil field installations. In the present study, aqueous solutions, strontium sulfate, barium sulfate, manganese sulfate and nickel sulfate are studied, in terms of EUNIQUAC model and genetic algorithms. Based on the findings of this article, as temperature increases, in order to increase the solubility of the system, the ionic strength decreases; but with increasing pressure, the solubility of barium sulfate increases. Meanwhile, in this article, to evaluate water activity, aqueous solutions of manganese sulfate and nickel sulfate is studied. 


Main Subjects

[1] Hashemi, S. H. Mirzayi, B., Mousavib D.A., Din Mohammed, M.Study the process of the formation of mineral deposits on the surface and subsurface facilities oil fields, The first international conference on oil, gas and petrochemical sustainable development approach (communication with industry University), Tehran, 1393.

[2] Moghadasi, J., Jamialahmadi, M., Muller-Steinhagen, H., Sharif, A. Scale Formation in Oil Reservoir and Production Equipment during Water Injection (Kinetics of CaCO4 and CaCO3 Crystal Growth and Effect on Formation Damage), The SPE European Formation Damage Conference SPE 82233, 1-12. 2003.

[3] Bedrikovestsky, P., Lopes, R., Rosario, F., Bezerra, M., Lima,, E. Oilfield Scaling Part I: mathematical and Laboratory Modeling, Latin American and Caribbean Petroleum Engineering conference, Port-of-Spain, Trinidad, West India, SPE 81127, 2003.

[4] Ahmed, J. Laboratory Study on Precipitation of Calcium Sulphate in Berea Sand Stone Cores, King Fahd University of Petroleum & Minerals, M.E., 2004.

[5] Fan, C., Kan, A., Zhang, P. Quantitative Evaluation of Calcium Sulfate, SPE J., 17(2), 379-392, 2012.

[6] Haghtalab, A., KamaliM, J., Shahrabadi, A. Prediction mineral scale formation in oil reservoirs during water injection, Fluid Phase Equilibria, 373, 43–54, 2014.

[7] Safari, H., Shokrollahi, A., Moslemizadeh, A., Jamialahmadi, M., Ghazanfari, M.H. Predicting the solubility of SrSO4in Na–Ca–Mg–Sr–Cl–SO4–H2Osystem at elevated temperatures and pressure, Fluid Phase Equilibria, 374, 86-101, 2014.

[8] Wang, W., Zeng, D., Chen, Q., Yin, X. Experimental determination and modeling of gypsum and insoluble anhydrite solubility in the systemCaSO4–H2SO4–H2O, Chemical Engineering Science, 101, 120-129, 2013.

[9] Thomsen, K., Rasmussen, P. Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolytesystems, Chemical Engineering Science, 54, 1787-1802, 1999.

[10] Abrams, D., Prausnitz, J. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems, AIChE Journal, 21(1), 116-128, 1975.

[11] Sander, B., Rasmussen, P., Fredenslund, A. Calculation of solid-liquid equilibria in aqueous solutionsof nitrate salts using an extended UNIQUAC equation, Chemical Engineering Science, 41, 1197-1202, 1986.

[12] Garcia, A., Thomsen, K., Stenby, E. Prediction of mineral scale formation in geothermal and oilfield operations using the extended UNIQUAC model Part I. Sulfate scaling minerals, Geothermics, 34, 61-97, 2005.

[13] Wagman, D., Evans, W., Parker, V., Schumm, R., Halow, I., Bailey, S. The NBS Tables of Chemical Thermodynamic Properties: Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units, Chem. Ref. Data, 11(2), 2-9, 1982.

[14] Lyashchenko, A.K., Churagulov, B.R. Influence of pressure on the temperature coefficients of the solubility of electrolytes in water, Russ. J. Inorg. Chem., 26, 642-644, 1981.

[15] Howell, R.D., Raju, K., Atkinson, G., Thermodynamics of "Scale" mineral solubilities 4. SrSO4, J. Chem. Eng. Data, 37, 464-469, 1992.

[16] Robinson, R. A., Stokes, R. H. Eletrolyte Solutions, 2nd ed., 5th Revised Impression, Butterworth, London, 1970.

[17] Yang, H. T., Zeng, D. W., Voigt, W., Hefter, G., Liu, S. J., Chen, Q. Y. Isopiestic measurements on aqueous solutions of heavy metal sulfates: MSO4+H2O (M = Mn, Co, Ni, Cu, Zn). 1. T = 323.15 K., J. Chem. Eng. Data, 59, 97-102, 2014.