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Abstract 
In this paper, nonlinear dynamic behaviour of the carbon nanotube conveying fluid in slip boundary conditions is 
studied using the variation iteration method. The developed solutions are used to investigate the effects of various 
parameters on the nonlinear vibration of the nanotube. The results indicate that an increase in the slip parameter leads 
to a decrease in the frequency of vibration and the critical velocity, while the natural frequency and the critical fluid 
velocity increase as the stretching effect increases. Also, as the nonlocal parameter increases, the natural frequency 
and the critical velocity decreases. The analytical solutions help to have better insights and understand the 
relationship between the physical quantities of the problem.  
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1. Introduction 

Following the discovery of the nanotube by Iijima [1], there have been rapid developments of nanotechnology 
due to the unique mechanical, thermal, chemical, electrical, electrochemical, and electronic properties of the carbon 
nanotube (CNT). As one of the various applications of CNT, it has been used for conveying fluid, and the study of 
the effects and conditions of the moving fluid on the overall mechanical behaviour of CNTs has aroused significant 
research interests. Consequently, the dynamic analysis of flow-induced vibration of CNT has led to a large number of 
studies in the literature in recent years [2-9]. Modeling the dynamic behaviours of the structures under the influence 
of some thermo-fluidic or thermo-mechanical parameters often results in nonlinear equations; thus, it is difficult to 
find the exact analytical solutions. In some cases, where spatio-temporal decomposition procedures are carried out, 
the resulting nonlinear equation for the temporal part comes in the form of the Duffing equation. The application of 
analytical methods such as the Exp-function method, He’s Exp-function method, the improved F-expansion method, 
the Lindstedt-Poincare techniques, and the quotient trigonometric function expansion method to the nonlinear 
equation presents analytical solutions, either in implicit or explicit form, which often involve complex mathematical 
analysis leading to an analytic expression which involve a large number of terms. Furthermore, the methods are time-
consuming tasks which require high skills in mathematics. Also, they do not provide general analytical solutions 
since the solutions are often accompanied with conditional statements which make them limited in use because many 
conditions accompanied with the exact solutions do not meet up with the practical applications. In practice, the 
analytical solutions with large number of terms and conditional statements are not convenient for use by designers 
and engineers [10]. Consequently, recourse has always been made to the numerical methods or the approximate 
analytical methods in solving the problems. However, the classical way for finding an analytical solution is still very 
important since it serves as an accurate benchmark for the numerical solutions. Moreover, the experimental data are 
useful to access the mathematical models but are never sufficient to verify the numerical solutions of the established 
mathematical models. The comparison between the numerical calculations and the experimental data often fails to 
reveal the compensation of the modelling deficiencies through the computational errors or the unconscious 
approximations in establishing applicable numerical schemes. Additionally, the analytical solutions for specified 
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problems are essential for the development of efficient applicable numerical simulation tools. Inevitably, exact 
analytical expressions are required to show the direct relationship between the models’ parameters. When such 
analytical solutions are available, they provide good insights into the significance of various system parameters 
affecting the phenomena, as they give continuous physical insights than pure numerical or computation methods. 
Furthermore, most of the analytical approximations and the purely numerical methods that were applied to the 
nonlinear problems are computationally intensive in the literature. An analytical expression is more convenient for 
the engineering calculations compared with the experimental or numerical studies, and it is obviously a starting point 
for a better understanding of the relationship between physical quantities. It is convenient for the parametric studies 
accounting for the physical quantities of the problem. The analytical expression appears more appealing than the 
numerical solution as it helps to reduce the computation costs, simulations, and tasks in the analysis of the real life 
problems. Therefore, an exact analytical solution is required for the problem. Different approximate analytical 
methods such as the Perturbation method (regular or singular perturbation method), the homotopy perturbation 
method (HPM), the homotopy analysis method (HAM), the variational iterative method (VIM), the differential 
transformation method (DTM), the harmonic balancing method, the Adomian’s decomposition method, etc. [11-15] 
solve nonlinear differential equations without linearization, discretization, or approximation of the derivatives. 
However, most of the approximate methods give accurate predictions only when the nonlinearities are weak, and 
they fail to predict accurate solutions for the strong nonlinear models. Also, when these methods are routinely 
implemented, they can sometimes lead to erroneous results [15]. Additionally, some of them require more 
mathematical manipulations and are not applicable to all problems, and thus suffer a lack of generality. For example, 
DTM is proved to be more effective than most of the other approximate analytical solutions as it does not require 
many computations that are carried out in ADM, HAM, HPM, and VIM. However, the transformation of the 
nonlinear equations and the development of the equivalent recurrence equations for the nonlinear equations using 
DTM is proved to be somehow difficult in some nonlinear systems such as the rational Duffing oscillator, the 
irrational nonlinear Duffing oscillator, and the finite extensibility nonlinear oscillator. Moreover, the determination of 
the Adomian polynomials as carried out in ADM; the restrictions of HPM to weakly nonlinear problems; the lack of 
rigorous theories or proper guidance for choosing the initial approximation, the auxiliary linear operators, the 
auxiliary functions, and the auxiliary parameters in HAM; the operational restrictions to small domains and the 
search for a particular value for the auxiliary parameter that will satisfy the second boundary condition which leads 
to additional computational cost in using DTM are the deficiencies of these methods. Therefore, the quest for 
comparatively simple, flexible, generic, and highly accurate analytical solutions continues. In this work, the variation 
iteration method (VIM) is used to develop the approximate analytical solutions to the nonlinear vibration analysis of 
the single-walled carbon nanotube under the slip effects. The variational iteration method is shown to be one of the 
most effective, accurate, and convenient approximate analytical methods for a large class of weakly and strongly 
nonlinear equations. It is a user friendly method with reduced size of calculation and direct and straightforward 
iteration which generates solutions with a rapid rate of convergent without any restrictive assumptions or 
transformations. In VIM, the initial solution can be freely chosen with some unknown parameters, and the unknown 
parameters in the initial solution can be achieved easily. Although there is a rigour of step-by-step integrations 
coupled with the problem of determination of the Lagrange multiplier in the application of VIM with few number of 
iteration, in some cases, even a single iteration of VIM can converge to correct solutions or results. The analytical 
solutions which are developed in this work can serve as a starting point for a better understanding of the relationship 
between the physical quantities of the problems, since they provide continuous physical insights into the problem 
than the pure numerical or computation methods. 

 
2. Problem formulation based on the nonlocal beam theory 

Consider a carbon nanotube (CNT) conveying fluid as shown in Fig.1. Based on the Eringen’s nonlocal elasticity 
theory [16-19], the stress at a reference point x in an elastic continuum depends not only on the strain field at the 
same point but on the strains at all other points of the body. Therefore, the equation for the linear homogeneous 
isotropic and the nonlocal elastic solids with zero body force are given as 
  

 
 

Fig. 1. A carbon nanotube (CNT) conveying fluid 
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It can be seen that it is very difficult to solve the elasticity problems by using the integral constitutive relation as 

given by Eq. (2). Consequently, an alternative and simplified constitutive relation in a differential form is given by 
Eringen [16-19] as follows: 

 

  2 21 oe a T                                                                 (4)                                                                                                          

For a nanotube (considering the small-size relation based effect), the nonlocal constitutive relation based on the 
one-dimension equation of the Eringen’s nonlocal theory for the Euler-Bernoulli beam is given as follows: 

 

 
2

2

2
xx

xx o xxe a E
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
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                                                         (5)                                                                                           

Also, the internal moment for the Euler-Bernoulli beam is given as:                                                                                           

 

( , ) xx

A

T x t z dA                                                               (6)                                                                                                                     

where A is the cross sectional area of the nanotube. By substituting σxx from Eq. (5) into Eq. (6), we have [20]:
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By incorporating the von Karman’s nonlinearity, the internal shear force on the structural cross section must 

satisfy the moment equilibrium relation: 
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                                                              (8)                                                                              

 
It should be pointed out that the internal membrane force N is constant along the beam as:  
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Therefore, Eq. (9) becomes: 
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Differentiating Eq. (10) with respect to the spatial variable x considering the absence of an external axial load on 

the beam yields:  
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                                                                    (11)                                                                                                              

 

The differential equation of the motion for the free vibration of the fluid-conveying nanotube can be expressed as:  
 

2

2c w

Q w
m F

x t

 
 

 
                                                                        (12)                                                                                  

 
where mc is the mass per unit length of CNT, and Fw is the external force by the fluid on the beam structure which 
can be expressed as: 
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Therefore,   
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Substituting Eq. (14) into Eq. (11) gives: 
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For the immovable supports, the internal membrane force is given as:  
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Therefore, eq. (15) can be expressed as: 
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If we substitute Eq. (17) into Eq. (7), we obtaine:  
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Using the Hamilton’s principle gives:  
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In Eq. (19), the first integral is the kinetic energy of the nanotube, while the second integral represents the elastic 

energy which is induced by bending, and the third integral is the elastic energy in extension because of the stretching 
of the neutral axis. From Eq. (19), the nonlinear partial-differential equation of the CNT conveying fluid is expressed 
as:  
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For the simply supported beam considered in this study, the initial and the boundary conditions are:  
 

          (0, )w x A (0, ) 0w x   

                                                                                          (21) 

          (0, ) ''(0, ) 0w t w t  ( , ) ''( , ) 0w L t w L t   

 
If the stretching effect in the nanotube is neglected in the Eq. (20), we recovere the classical governing equation 

for flow-induced vibration of the fluid-conveying nanotube as follows: 
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where the natural frequency gives:  
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If the nano-size and the stretching effects are neglected in the Eq. (20), we obtain:  
 

4 2 2 2
2

4 2 2
2 0f f

w w w w
EI m vm m v

x tx t x

   
   

   
                                             (24) 

 
which is the classical governing equation for the flow-induced vibration of the fluid-conveying pipe, where the 
natural frequency gives:  
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For CBT conveying fluid, the radius of the tube is assumed to be the characteristics length scale, the Knudsen 

number is larger than 10-2. Therefore, the assumption of the no-slip boundary conditions does not hold, and the 
modified model should be used as follows: 
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where Kn is the Knudsen number, and σv is the tangential moment accommodation coefficient which is considered to 
be 0.7 for most practical purposes [21]. 
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Therefore,  
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and Eq. (20) could be written as:  
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Using the Galerkin’s decomposition procedure to separate the spatial and temporal parts of the lateral 

displacement functions as:  
 

( , ) ( ) ( )w x t x u t                                                                         (31) 

 
where ( )u t is the generalized coordinate of the system, and ( )x is a trial or comparison function that will satisfy 

both the geometric and the natural boundary conditions. 
 
Applying the one-parameter Galerkin’s solution given in Eq. (31) to Eq. (30) yields:  
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For the simply-supported nanotube  
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Under the transformation, t  , Eq. (35) turns out to be: 
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2 3( ) ( ) ( ) ( ) ( ) 0M u G u K C u Vu                                                     (36a) 

 
For the undamped simple-simple supported structures G = 0 we have: 
 

2 3( ) ( ) ( ) ( ) 0M u K C u Vu                                                           (36b)                                        

 
 
3. Method of solution: Variational iteration method 
 
It is very difficult to generate any closed form solution for the above nonlinear simultaneous Eqs. (36a) and (36b). 
However, a closed form series solution or an approximate analytical solution can be obtained for the non-linear 
differential equations.  In finding direct and practical solutions to the problem, the variational iteration method is 
applied to the nonlinear equations. As pointed previously, the variational iteration method is an approximate 
analytical method for solving the differential equations. The basic definitions of the method are as follows: 

 
The differential equation to be solved can be written in the following form: 
 

( )Lu Nu g t                                                                (37) 

 
Where L is a linear operator, N is a nonlinear operator, and g(t) is an inhomogeneous term in the differential 

equation. 
 
Following the VIM procedure, we have a correction functional stationary as:  
 

 1

0

( ) ( ) ( ) ( ) ( )
t

n n nu t u t Lu Nu g t d        

                                        

(38) 

 
where  is a general Lagrange multiplier, the subscript n is the nth approximation, and u  is a restricted variation 

0u  . Making the above correction functional stationary and considering 1 0nu   , we have: 

 

1 0 0
0

( ) ( ) ( ) ( ) 0
t

t t

n n n n n

K C
u t u t u u u d

M
         

             
  


                  

(39) 

 
where its stationary conditions are as follows:  
 

         
1 ( ) 0

t
 


   

 
( ) 0

t
 




                                                                        
(40) 

 

         
    0

K C

M
       

 
 

 
By solving Eq. (40), we have a Lagrange multiplier as:  

 

   
0

tM K C
sin t

K C M
  

    
   


                                                    

(41) 

 
 
therefore, Eq. (38) can be written as:  
 

   
2

2 3
1 2

0

t
n

n n n n

d uM K C
u u sin t M K C u Vu d

K C M d
  



          
    

                      (42) 

 
In order to find the periodic solution of Eq. (42), assume an initial approximation for the zero-order deformation 

to be as: 
( )ou Acos                                                                             (43) 
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Then, the residual is given as:  
 

  2 3 3( )oR M Acos K C Acos V A cos                                                         (44) 

 
which is also given as:   

  2 3 3 3
( )

4

cos cos
R M Acos K C Acos VA

            
 

                                    (45) 

 
Collecting like terms at RHS gives: 
 

 
3

2 33 1
( ) 3

4 4

VA
R K C A M A cos VA cos   

 
     
 

                                   

(46) 

 
In order to eliminate the secular term, the coefficient of cos  must be vanished. Therefore,  

 
3

23
( ) 0

4 o

VA
K C A M A

 
    

 
                                                         (47) 

 
Thus, for the zero-order nonlinear natural frequency, we have: 
 

23

4o

K C VA

M M
 

                                                                      (48) 

 
Therefore, the ratio of the zero-order nonlinear natural frequency ωo to the linear frequency ωb yields:  

 

23
1

4( )
o

b

VA

K C




 


                                                                      (49) 

where 

               
b

K C

M
 

  

 
Similarly, for the first-order nonlinear natural frequency, we have: 

2
2 2 2 4

1 2

1 3 3 3

2 4 4 32

K C VA K C VA V A

M M M M M


                              
             

                       (50) 

 
The ratio of the first-order nonlinear frequency ω1 to the linear frequency ωb will be:   

 

2
2 2 2 4

1 1 3 3 3
1 1

2 4( ) 4( ) 32( )b

VA VA V A

K C K C K C




                                   

                             (51) 

 
For the first iteration,  

   1 0 0

0

t

u u R d                                                                (52) 

 
By substituting Eqs. (41), (43), and (46) into Eq. (52), we have: 

    2 3
1 0 0 0 0

0

tM K C
u u sin t M u K C u Vu d

K C M
  

        
   

                      (53) 

 
By substituting Eq. (43) into Eq. (53), we have:  
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   2 3 3
1

0

( )
t

o

M K C
u Acos sin t M Acos K C Acos VA cos d

K C M
      

         
   

     (54) 

 
A further simplification gives: 

 

 
2 3 3

1 2

9
3

16 169

K C AM A A
u cos Acos cos cos

K CM K C

    


 
    

   
                         (55) 

 
which can be written as: 

         
2 3 3

2

9
3

16 169

K C AM A A
u t cos t Acos t cos t cos t

K CM K C

    


           
            (56) 

 
Substituting Eqs. (34) and (56) into Eq. (32), we have: 

 

       
2 3 3

2

9
( , ) 3

16 169

K C AM A A n x
w x t cos t Acos t cos t cos t sin

K C LM K C

    


           
          (57) 

where 

       

2
2 2 2 4

2

1 3 3 3

2 4 4 32

K C VA K C VA V A

M M M M M


                              
             

 

It can easily be seen that as the nonlinear term tends to zero, the frequency ratio of the nonlinear frequency to the 
linear frequency / b  tends to 1. 

2 0
1

b

lim






                                                                              

(58) 

Also, as the amplitude A tends to zero, the frequency ratio of the nonlinear frequency to the linear frequency 
/ b  tends to 1. 

0
1

A
b

lim



                                                                                (59) 

For very large values of the amplitude A, we have: 

A
b

lim



                                                                                (60) 

 
 
4. Results and Discussion 

 
The first five normalized mode shapes of the beams simple-simple are shown in Fig. 2. Moreover, the figure 

shows the deflections of the beam along the beams’ span at five different buckled and mode shapes. 
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Fig. 2. The first five normalized mode shaped of the under simple supports nanotube 
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Fig. 3. Midpoint deflection time history for the nonlinear analysis of SWCBT when Kn=0.03 and U= 100 m/s 

 
The effects of the slip parameter called the Knudsen number and the fluid flow velocity on the deflection of the 

nanotube are presented in Figs. 3-5. Fig. 3 illustrates the midpoint deflection time history for the nonlinear analysis 
of SWCBT when Kn = 0.03 and U= 100 m/s, while Fig. 4 presents the midpoint deflection time history for the 
nonlinear analysis of SWCBT when Kn = 0.03 and U= 500 m/s. Furthermore, Fig. 5 depicts the midpoint deflection 
time history for the nonlinear analysis of SWCBT when Kn = 0.1 and U= 500 m/s, while Fig. 6 shows the midpoint 
deflection time history when Kn = 0.05, U= 500 m/s, and when Kn = 0.1 and U= 500 m/s, respectively. Fig. 7 shows 
the comparison of the linear vibration with the nonlinear vibration of SWCNT. It could be seen in the figure that the 
discrepancy between the linear and nonlinear amplitudes increases with increment of the maximum vibration. These 
results are in line with the results obtained by Ali-Asgari et al. [20]. 
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Fig. 4. Midpoint deflection time history for the nonlinear analysis of SWCBT when Kn=0.03 and U= 500 m/s  
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Fig. 6. Midpoint deflection time history for the linear analysis of SWCBT when Kn=0.1 and U= 500 m/s  

 
The effects of the slip parameter, the Knudsen number, on the dimensionless frequency ratio of the nanotube are 

shown in Figs. 8. It is depicted that an increase in the slip parameter leads to a decrease in the dimensionless 
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frequency ratio of the vibration of SWCNT. It should be pointed out that the Knudsen number predicts various flow 
regimes in the fluid-conveying nanotube. The Knudsen number with zero value has the highest frequency as shown 
in the figure. As the Knudsen number increases, the bending stiffness of the nanotube decreases; as a consequent, the 
critical continuum flow velocity decreases as the curves shift to the lowest frequency zone. 

0 2 4 6 8 10 12 14 16 18 20
-8

-6

-4

-2

0

2

4

6

8

Time  (sec)

D
ef

le
ct

io
n,

  
w

(x
,t

) 
(x

10
-3

 n
m

)

Linear vibration

Non-linear vibration

 
Fig. 7. Comparison of the midpoint deflection time history for the linear and nonlinear analysis of CBT when Kn=0.03 and 

U= 500 m/s  
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Fig. 8. Effects of the Knudsen number on the dimensionless frequency of the simply supported single-walled nanotube 
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Fig. 9. Effects of the fluid-flow velocity on the nonlinear amplitude-frequency response curves of the nanotube 

 
Fig. 9 shows the effects of the fluid-flow velocity on the nonlinear amplitude-frequency response curves of the 

nanotube. It is observed that as the fluid-flow velocity increases, the nonlinear vibration frequency ratio increases, 
and the difference between the nonlinear and linear frequency becomes pronounced. The results in Fig. 9 reveal that 
the fluid flow velocity has significant effects on the nonlinear behaviour of the nanotube, therefore, this and other 
significant parameters can be used to control the nonlinearity of the structure. 
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Fig. 10. Effects of the nonlocal parameter on the natural frequency of the nonlinear vibration 
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Fig. 11. Effects of the nonlocal parameter on the natural frequency of the nonlinear vibration 

 
The studies and the investigations of the dynamic and stability behaviours of the structure are largely dependent 

on the effects of the fluid flow velocity and amplitude on the natural frequencies of the vibration. The effects of the 
nonlocal parameter on the vibration of the nanotube are shown in Figs. 10-11. It is depicted that an increase in the 
slip parameter leads to a decrease in the frequency of the vibration of the structure and the critical velocity of the 
conveyed fluid. It should be pointed out, as shown in the figures, that the zero value for the nonlocal parameter, i.e., 

0oe a  , represents the results of the classical Euler-Bernoulli model which has the highest frequency and critical 

fluid velocity (a point where the structure starts to experience instability). When the flow velocity of the fluid attains 
the critical velocity, both the real and imaginary parts of the frequency are equal to zero. Additionally, the figures 
present the critical speeds corresponding to the divergence conditions for different values of the nonlocal parameters. 
In Figs. 10 and 11, the real and imaginary parts of the eigenvalues related to the two lowest modes with different 
nanotube parameters are shown.  

 
 

7. Conclusion 
In this work, the analytical solutions have been provided to analyze the effects of the slip boundary conditions on 

the nonlinear dynamic behaviours of the carbon nanotube conveying fluid using the variation iteration method. The 
results show that the alteration of the nonlinear flow-induced frequency from the linear frequency is significant as the 
amplitude, the flow velocity, and the aspect ratio increase. The analytical solutions can serve as benchmarks for other 
methods of the solutions of the problem. They can also provide a starting point for a better understanding of the 
relationship between the physical quantities of the problems. 

 
 Nomenclature 
A    
E    
I     
Kn   

Area of the structure 
Young Modulus of Elasticity 
moment of area 
Knudsen number  
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lo, l1, l2  
L    
mp    
mf   
N   
r    
t    

( )u t   

w   
   x   

Zo(x) 
σv   

( )x   

 υ        
 μ     

 

independent length scale parameters 
length 
mass of the structure 
mass of fluid 
axial/Longitudinal force 
radius of the structure 
time 
generalized coordinate of the system 
transverse displacement/deflection 

   axial coordinate 
the arbitrary initial rise function 
tangential moment accommodation coefficient 
trial/comparison function 
Poisson’ ratio   
damping coefficient 
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