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Abstract 

Magnetic field effects on the elastic response of polymeric piezoelectric cylinder reinforced with carbon 
nanotubes (CNTs) is studied. The cylinder is subjected to internal pressure, a constant electric potential 
difference at the inner and outer surfaces, thermal and magnetic fields. The Mori-Tanaka model is used for 
obtaining the equivalent material properties of the cylinder. Based on the charge and equilibrium relations, 
the governing differential equation of the cylinder is derived and solved analytically. The main purpose of 
this paper is to investigate the effect of magnetic field on the stresses, the electric potential and radial 
displacement distributions of the polymeric piezoelectric cylinder. The presented results indicate that 
considering magnetic field can reduce the stresses of nano-composite cylinder. 
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1. Introduction 

In recent years there has been a resurgence of interest in piezoelectricity, motivated by advances in smart structures 
technology. The piezoelectric phenomenon has been exploited for decades. Classic piezoelectric devices include 
microphones and record players. More recent applications have focused on improving existing devices and 
transforming them into ‘‘smart structures.’’ For example, piezoelectric actuators can be used to modify the shape of 
an airfoil, thereby reducing transverse vortices, or to maintain proper tension with overhead electrical wires on a 
locomotive pantograph. In addition to being used as actuators, which respond to changes in an electric field by 
producing mechanical strain, they can also be used as sensors, which respond to a mechanical strain by producing an 
electrical signal. One notable civil engineering application of piezoelectric sensors is in structural health monitoring. 
A change in the level of strain will produce an electric charge and trigger sensors in the structure.  

For homogeneous piezoelectric media, Ghorbanpour et al. [1] investigated the stress and electric potential fields in 
piezoelectric hollow spheres. Their results showed that an existing mechanical hoop stress distribution could be 
neutralized by a suitably applied electric field. Saadatfar and Razavi [2] analyzed the stress in piezoelectric hollow 
cylinder with thermal gradient. An analytic solution to the axisymmetric problem of an infinitely long, radially 
polarized, radially orthotropic piezoelectric hollow circular cylinder rotating about its axis at constant angular 
velocity was also developed by Galic and Horgan [3]. The analytical solution of a functionally graded 
piezothermoelastic hollow cylinder was presented by Chen and Shi [4]. They assumed that only the piezoelectric 
coefficient was varying quadratically in the radial direction while the other material parameters were constants. 
Babaei and chen [5] later presented the analytical solution for a radially FGPM rotating hollow shaft. The same as [4] 
and [5], the elastic and piezoelectric constants were assumed to vary as a power function of radius by Khoshgoftar et 
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al. [6] who studied the behaviors of a thick walled cylinder made of FGPM subjected to the temperature gradient and 
inner and outer pressures. In [4] and [5] however, other in-homogeneity parameters such as thermal conduction 
coefficient and modulus of elasticity were neglected.  

With respect to developmental works on stress analysis of the cylinders, it should be noted that none of the research 
mentioned above, have considered smart composites and their specific characteristics. Active control of laminated 
cylindrical shells using piezoelectric fiber reinforced composites was studied by Ray and Reddy [7] using Mori-
Tanaka model. However, the reinforced materials used were CNTs which are not smart. Also, Mori–Tanaka models 
for the thermal conductivity of composites with interfacial resistance and particle size distributions were studied by 
Bohm and Nogales [8]. Micromechanical modeling which has the potential to take into account the electrical load 
was used by Tan and Tong [9] for studying an imperfect textile composite. However, neither the matrix nor the 
reinforced material used in the composite employed in this work was smart. Agglomeration effect on the electro-
magneto-thermo elastic response of a hollow piezoelectric circular cylinder reinforced with carbon nanotubes (CNTs) 
was presented by Loghman and Cheraghbak [10]. 

In the present work, magnetic field effects on magneto-electro-thermo elastic behavior of piezoelectric nano-
composite cylinder are considered. The cylinder is subjected to mechanical, magnetic and thermal loads, moreover 
an electric potential difference is also induced by electrodes attached to the inner and outer surfaces of the cylinder. 
Finally, using exact solution, the stresses, electric potential and displacement distributions of the piezoelectric 
cylinder are obtained. 
  

2. Mori-Tanaka Model 

In this section, the effective modulus of the composite shell reinforced by CNTs is developed. Different methods 
are available to obtain the average properties of a composite [11]. Due to its simplicity and accuracy even at high 
volume fractions of the inclusions, the Mori-Tanaka method [11] is employed in this section. The CNTs content are 
assumed to be aligned and straight with uniform dispersion in the polymer matrix. The matrix is assumed to be 
isotropic and elastic, with the Young’s modulus mE   and the Poisson’s ratio m . The constitutive relations for a 

layer of the composite with the principal axes parallel to the r,θ and z directions are [10]: 
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where , , , , , , ,ij ij ij k m n l p    are the stress components, the strain components and the stiffness coefficients 

respectively. According to the Mori-Tanaka method the stiffness coefficients are given by [10-12]: 
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where the subscripts m  and r  stand for matrix and reinforcement respectively. mC   and rC  are the volume 

fractions of the matrix and the CNTs respectively and kr ، lr ، nr ، pr , mr are the Hills elastic modulus for the 
CNTs [10].  

3. Governing equations 

As presented in Fig. 1, the hollow circular piezoelectric cylinder considered here with inner and outer radius of  
a  and b  respectively, and is subjected to axisymmetric thermo-mechanical and electrical loadings. The governing 



    Cheraghbak and Loghman Vol. 2, No. 4, 2016  

Journal of Applied and Computational Mechanics, Vol. 2, No. 4, (2016), 222-229 

224 
equations for a homogeneous anisotropic piezoelectric cylinder can be written as ([13]) 
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(4) 

where ij  and ij  are mechanical strain and stress respectively, ijklc  is the elastic compliance, mD  is the 

component of electric displacement (also referred to as charge density), mE  is the component of electric field, mie  

is the piezoelectric module, which relate the electrical and mechanical effects and mk  is the dielectric permittivity 

constant at constant stress. It is also noted that the electric field mE   can be written in terms of electric potential    

as 
.E    (5) 

In addition, the temperature distribution can be obtained as 

1 2( ) ln(r) F ,T r F   (6) 

where 1F  and 2F  are obtained from the thermal boundary conditions at the inner and outer surfaces. 
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The equation of equilibrium and the Maxwell's equation for free electric charge density ([11] and [14]) are written as: 
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where ( , )ii i r   is the stress tensor and rrD  is the radial electric displacement, respectively. 

Furthermore, zf  is the Lorentz force which may be written as [15] 
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The corresponding constitutive relations and components of radial electric displacement vector may be written as   
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To develop the analytical solution, the following dimensionless quantities are introduced  
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Using these dimensionless variables the constitutive equations may be rewritten in non-dimensional form as: 
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The solution of Eq. (25) is /r F    where 3F  is a constant. Substituting this equation into Eq. (23), we obtain 
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Substituting Eq. (27) into Eqs. (20), (21) and (22) yields 
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Finally, substituting Eqs. (27) and (28) into Eq. (24) yields the following non-homogeneous ordinary differential 
equation as: 
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Equation (30), a non-homogeneous second-order ordinary differential equation, is the governing equation for 
displacement of the cylinder subjected to axisymmetric thermo-electro-magneto-mechanical loading. The 
corresponding general solution for the homogeneous differential equation can be written as 
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(36)  

 
1 2

1 2

4 5 ,

g g

g

u u

U F F     

in which 4F and 5F   are integration constants to be determined by the boundary conditions. 
1

  and 
2

 are the 

roots of the corresponding characteristic equation of Eq. (36) and may be evaluated from  
(37) 2

1 1 2
1,2

(1 ) ( 1) 4

2

L L L   
   

The particular solution for Eq. (30) is assumed to have the form  
(38)  1 2

1 2 ,p p pU U U     

Where 
(39) 2

1
( )

,p
p

R
U d

W
  


   

(40) 1

2
( )

,p
p

R
U d

W
  


   

In which 
(41) 

   
1 2

' '
1 2

,
g g

p

g g

U U
W

U U

 
 
  

  

(42) 
3 4 5( ) ln( ) ,R L L L      

Finally, the radial displacement is the sum of general and particular solution as 
(43)  ,g pU U U   

Substituting U  from Eq. (43) into Eq. (36) and performing the integration,   is obtained as 

   3
1 1 2 2 1 2 6ln( ) ln( ) d F .rr

F dU U
F F F F

d     
  

     
              

      
  

(44) 

Also, by substituting U  from Eq. (43) into Eqs. (27), (28) and (29) expressions for radial, circumferential and axial 
stresses can be obtained. The boundary conditions at the inner and outer surfaces for each case can be written as 
follows:  

(1) 1, ( ) 0, (1) 1, ( ) 1, (1) 1, ( ) ,r r T T b               (45) 

4. Numerical results and discussion 

The numerical results are drawn in Figs. 2-6 showing the effects of magnetic field effects on the variation of stress, 
electric potential and radial displacement across the thickness of the nano-composite cylinder. Presented results are 
for the boundary conditions described above in Eq. (68), with aspect ratios of / 2b a  . The plots in these figures 
correspond to ( ) 323 KT a  and ( ) 298 KT b  . The piezoelectric material PVDF has been selected with the 

following mechanical and electrical properties [16] 
 

Table.1 Mechanical and electrical properties for PVDF 
 
 
 
 
 
 
 
 
 
 
 
 
 
The magnetic permittivity of CNTs is selected as 7 24 10 /N A     and the magnetic field intensity is 

81 10 /zH A m  . 

  The magnetic field effects on the graphs of radial stress, circumferential stress, axial stress, effective stress, electric 
potential and radial displacement along the radial direction are shown in Figs. 2-6 respectively for the proposed 
boundary condition. These figures indicate clearly that the magnetic field has a major effect on the electro-thermo-

Properties PVDF 

11c   238.24  (GPa) 

12c   3.98    (GPa) 

22c   23.6     (GPa) 

11e   -0.135    (C/m2) 

12e   -0.145    (C/m2) 

11e   1.1e-8  (C2/Nm2) 

r   7.1e-5    (1/K) 

  
 7.1e-5    (1/K) 
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elastic stresses, radial displacement and electric potential. Fig. 2 depicts the distribution of radial stress along the 
radius. As can be seen, the radial stresses at the internal and external surfaces of the cylinder satisfy the given 
boundary conditions. Moreover, considering the magnetic field decreases the radial stress.  
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Fig. 2 Magnetic field effects on the redial stress 

 
The distributions of the hoop and effective stresses are displayed in Figs. 3 and 4, where the hoop and effective 
stresses are monotonically changed from the inner to the outer radius. Furthermore, the hoop and effective stresses 
decrease with considering Magnetic field. It is due to the fact that with considering Magnetic field, the stiffness of 
cylinder increases.  
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Fig. 3 Magnetic field effects on the hoop stress 
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Fig. 4 Magnetic field effects on the effective stress 
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Fig. 5 shows the electric potential through the thickness of the nano-composite cylinder. It is seen from this figure 
that the electric potential satisfies the boundary conditions and increases with considering Magnetic field.  
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Fig. 5 Magnetic field effects on the electric potential 

 
The variations of the radial displacement along the radius are demonstrated in Fig. 6 which indicates that the radial 
displacement decreases considering magnetic field and its maximum value occurs at the outer radius. It is because 
that with considering magnetic field, the stability of structure increases and hence the radial displacement decreases.  
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Fig. 6 Magnetic field effects on the radial displacement 

 

5. Conclusions  

  Magnetic field effects on the electro-magneto-thermo-mechanical analysis of piezoelectric cylinders reinforced 
with CNTs were the main contribution of this work. The equivalent material properties of system are obtained using 
Mori-Tanaka model. The coupled governing equation is derived based on Maxwell and equilibrium equations. In 
order to obtain the stresses, electric potential and radial displacement distributions, an analytical method is applied. 
Results indicate that with considering magnetic field, the stresses reduce. Furthermore, the tensile hoop and effective 
stresses were monotonically changed from the inner to the outer radius.  
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