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Abstract 

A comparison of the buckling analysis of the nanoplate and nanocomposite plate with a central square hole 
embedded in the Winkler foundation is presented in this article. In order to enhance the mechanical properties 
of the nanoplate with a central cutout, the uniformly distributed carbon nanotubes (CNTs) are applied through 
the thickness direction. In order to define the shape function of the plate with a square cutout, the domain 
decomposition method and the orthogonal polynomials are used. At last, to obtain the critical buckling load of 
the system, the Rayleigh-Ritz energy method is provided. The impacts of the length and width of the plate, the 
dimension of the square cutout, and the elastic medium on the nanoplate and nanocomposite plate are presented 
in this study. 

Keywords: Buckling analysis; Nanocomposite plate; Central square hole; Winkler foundation; Domain 
decomposition method; Rayleigh-Ritz energy method 

1. Introduction 
Nowadays, composite materials are applied as the modern generation materials in industry, and they are used 

instead of the conventional materials such as metallic, woody, and concrete materials. The development of the 
material science as well as the appearance of a novel branch of science which is called nanotechnology caused a 
modern group of composites entitled nanocomposites. The nanocomposites are a branch of composite materials 
whose reinforcing factor has a nanoscale. The marvelous discovery and invention of CNTs with extraordinary 
mechanical, thermal, electric, and magnetic properties tempted researchers to apply CNTs for reinforcing the 
composites. Some significant applications of the nanocomposites are abrasion resistant coatings, corrosion resistant 
coatings, conductive plastics, sensors, resistant lining in high temperature, and separation membranes for gases and 
petroleum fluids. 

The buckling analysis of the nanoplates has been considered by many researchers hitherto. Murmu and Pradhan 
[1] investigated the elastic buckling behavior of the orthotropic small scale plates under biaxial compression. This 
study discussed the small-scale effects on the buckling loads of the nanoplates considering various materials and the 
geometrical parameters. The buckling of a single layer graphene sheet (SLGS) based on the nonlocal elasticity and 
the higher order shear deformation theory was addressed by Pradhan [2]. The levy type solution method for the 
vibration and buckling of the nanoplates using the nonlocal elasticity theory was reported by Aksencer and Aydogdu 
[3]. The results are presented for different nonlocal parameter, different length of plates, and different boundary 
conditions. In addition, the results demonstrated that nonlocality effects should be considered for the nanoscale plates. 
Hashemi and Samaei [4] carried out the buckling analysis of the nanoscale plates via the nonlocal elasticity theory. 
The effect of the length scale on the buckling behavior of a SLGS embedded in a Pasternak elastic medium using the 
nonlocal Mindlin plate theory was discussed by Samaei et al. [5]. It is understood that the nonlocal assumptions 
present larger buckling loads and stiffness of the elastic medium in comparison with the classical plate theory (CPT). 
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Farajpour et al. [6] reported the buckling analysis of variable thickness nanoplates using the nonlocal continuum 
mechanics. The result showed that the influence of the percentage change of the thickness on the stability of the 
graphene sheets is more remarkable in the strip-type nanoplates (nanoribbons) than in the square-type nanoplates. 
The buckling response of orthotropic SLGS is investigated using the nonlocal elasticity theory by Farajpour et al. [7]. 
The differential quadrature method (DQM) has been applied to solve the governing equations for various boundary 
conditions. It is explicit that the nonlocal effects play a considerable role in the stability behavior of the orthotropic 
nanoplates. Murmu et al. [8] addressed the nonlocal buckling of double-nanoplate-systems (DNPS) under biaxial 
compression. Both the synchronous and asynchronous buckling phenomenon of biaxially compressed DNPS are 
presented in this work. The buckling analysis of the double-orthotropic nanoplates embedded in the Pasternak elastic 
medium using the nonlocal elasticity theory was discussed by Radić et al. [9]. The effects of the small scale 
coefficient, the aspect ratio, and the stiffness of the internal elastic media and the external elastic foundation on the 
non-dimensional buckling was considered. Golmakania and Rezatalab [10] proposed the non-uniform biaxial 
buckling of the orthotropic nanoplates embedded in an elastic medium based on the nonlocal Mindlin plate theory. 
The influences of the small scale effect, the aspect ratio, the polymer matrix properties, the type of planar loading, the 
mode numbers, and the boundary conditions were probed in details. 

CNTs can be used as an amplifier in different structure (beam, plate, etc.) and produce a nanocomposite system in 
order to enhance the mechanical properties and improve the behavior of the system. The buckling analysis of the 
laminated composite rectangular plates which were reinforced with CNTs using the analytical and finite element 
methods was carried out by Ghorbanpour Arani et al. [11]. In this article, the effects of the CNTs orientation angle, 
the edge conditions, and the aspect ratio on the critical buckling load are considered using both the analytical and 
finite element methods. The critical buckling load of the composite rectangle plate reinforced with CNTs which were 
subjected to an axial compressive load using CPT is discussed by Jam and Maghamikia [12]. Mohammadimehr et al. 
[13] proposed the buckling and vibration analysis of a double-bonded nanocomposite piezoelectric plate reinforced 
with a boron nitride nanotube based on the Eshelby-Mori-Tanaka approach using the modified couple stress theory 
under electro-thermo-mechanical loadings surrounded by an elastic foundation. The buckling analysis of the annular 
composite plates reinforced with CNTs which were subjected to the compressive and torsional loads was addressed 
by Asadi and Jam [14]. It is concluded that the stability of the plate increases as the thickness or the inner to outer 
ratio rises, and when CNTs are arranged in the circumferential direction, the highest buckling load is obtained. 
Mohammadimehr et al. [15] analyzed the biaxial buckling and bending of the smart nanocomposite plate reinforced 
with CNTs using the extended mixture rule approach. 

Considering the literature, the buckling analysis of the nanoplate with a square cutout has not been studied yet. 
These considerations stimulated us to present the buckling analytical investigation of the nanoplate and 
nanocomposite plate with square cutout embedded by the Winkler medium. CPT is applied to simulate the plate, and 
the rule of mixture is used to obtain the mechanical properties of the nanocomposite plate. A detailed parametric 
study is conducted to explicate the effects of the dimensions of the plate, the length of the square cutout, and the 
elastic medium on the buckling analysis. 

2. Nanocomposite Plate  
Consider a nanocomposite plate as illustrated in Fig. 1, with the length a, width b, thickness h, and a central 

square hole with length d. The plate is subjected to an uniaxial load along x-direction ( xN ) and surrounded by the 

Winkler foundation. Moreover, the plate is reinforced with CNTs through the thickness direction. 

 
Fig. 1. A nanocomposite plate with a square cutout subjected to the uniaxial buckling load surrounded by the Winkler 

foundation. 
The plate is assumed to be isotropic but after using the orthotropic CNTs in it, the system changes to the 

orthotropic structure. Therefore, by using CNTs in the plate, the mechanical properties of the system will be 
improved, thus, the effective mechanical properties of the nanocomposite plate are extended through the rule of 
mixture and the Young’s modulus, 11E and 22E , and the shear modulus, 12G , are [16, 17] 

11 1 11 ,CNT m
CNT mE V E V E   (1) 
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in which 11
CNTE , 22

CNTE , and 12
CNTG  are the Young’s modulus and the shear modulus of CNTs, respectively, 

moreover, mE and mG  show the corresponding properties related to matrix. The CNT efficiency parameters, 

 1,2,3j j  , demonstrate the scale-dependent material properties which are obtained by matching the effective 

mechanical properties of the nanocomposite plate calculated from the MD simulations with those calculated from the 
rule of mixture. The relation between the volume fractions of CNT, CNTV , and the volume fractions of matrix, mV , 

is expressed as:  
1.CNT mV V   (4) 

where for UD type 

,CNT
CNT

CNT CNT
CNT CNT

m m

W
V

W W
 
 


   

    
   

 
(5) 

in which  CNTw  expresses the mass fraction of the nanotube. The Poisson’s ratio, 12  , of the nanocomposite plate 

is: 

12 12 ,CNT m
CNT mV V     (6) 

where 12
CNT  and m are the Poisson’s ratios of CNTs and plate, respectively. 

The constitutive equations of the nonlocal elasticity are: 
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(7) 

in which ij
 

and ij  
are the stress and strain, respectively. Cij  are the elasticity coefficients with respect to the 

orthotropic structure and are considered as [18] : 

11 22 21 11
11 22 12 66 121 1 112 21 12 21 12 21

E E E
C  ,C .   ,C  ,C  G


    

   
  

 
(8) 

 

3. Plate Theory 
CPT is derived from the Euler–Bernoulli beam theory for thin plates. This theory is based on the following 

assumptions as: 
 After displacement, straight lines normal to the mid-surface stay straight. 
 After displacement, straight lines normal to the mid-surface stay normal. 
 During displacement, thickness of the plate remains and does not change. 

According to CPT, the displacement field can be considered as [19, 20]: 

 u x , y , z ,z x  (9) 

 v x , y , z ,z y  (10) 

 w w x , y  ,  (11) 

where u, v, and w denote the displacement vector along x-, y-, and z-direction, respectively. 

x  and y are the rotations around x- and y-direction which are expressed as:  

w
,

xx


 


 (12) 

w
,

yy


 


 (13) 
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The von Karman strains based on the above displacement field can be calculated as:  

 
2

2x z w x , y ,
x

 
 


 

(14) 

 
2

2y z w x , y ,
y

 
 


 

(15) 

 
2

2xy z w x , y ,
x y

 
 

 
 

(16) 

where x y,  , and xy  are the normal strain along x and y axis and the shear strain component, respectively. 

 

4. Nonlocal Elasticity Theory and Energy Method 
In nanoscale the local theory is not valid, and some other theories are suggested such as the Eringen’s nonlocal 

elasticity theory. This theory expresses that the stress state at a reference point in the body is related not only to the 
strain state at this point but to the strain states at all of the points throughout the body. According to this theory, it can 
be express as [21]: 

 2 21 ,
ij ij

nl l      (17) 

where the parameter  20e a   demonstrates the small scale effect regarding the nanoscale, and 2  is the 

Laplacian operator. It should be represented that the nonlocal stresses tensor changes to a local one when the 
nonlocal parameter is set to zero. 

The energy method is applied to obtain the equations of the system as [22]: 
U W  ,    (18) 

where U and W are the strain energy and external works, respectively, and   is the total energy of the system. 

4.1. Strain energy 
The strain energy can be obtained as [23]: 

 2

2

1

2

h

xx xx yy yy xy xyhA
U dzdA .          

(19) 

By substituting Eqs. (14-16) and Eq. (7) into Eq. (19) we obtain: 

     
2 2 2

2 2

1
, 2 , ,

2 x xy yA
U M w x y M w x y M w x y dA

y xx y

   
       
  

(20) 

in which the moment resultants are considered as [24]: 

  2

2

, , ( , , ) ,
h

hx y xy x y xyM M M z dz  


   
(21) 

4.2. External works 
According to Fig. 1, the nanocomposite plate is subjected to two types of forces such as the foundation forces and 

the buckling load. 
 

4.2.1. Foundation forces 
The plate is embedded by the Winkler foundation. As it is known, this foundation model considers the normal 

load from the environment to the system. Therefore, the work of this foundation can be obtained as [25]: 

  ,e w
A

W K w w dA   

(22) 

wK is the Winkler’s spring modulus. 

 
4.2.2. Buckling load 
The nanocomposite plate is subjected to buckling, thus the work of this force can be calculated as [22]: 

   
22

b xx yy
A

1
W N w x , y N w x , y d

x y
,A

2

   
 
 
 

           
(23) 

the buckling load is uniaxial, so xxN P   and 0yyN  .  

With respect to the Eringen’s nonlocal elasticity theory and the energy method, the total energy of the 
nanocomposite plate is equal to: 
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(24) 

where 

   D w x , y h D w x , y ,
y

M h
x

2 2
11 1x 22 2


        
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(25) 
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    
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 
2

66xy 2 D w x , y h ,
y x

M
 

     
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(27) 

and the stiffness components in aforementioned equations can be specified as [16]: 

          22
11 22 12 66 11 22 12 66

2

, , , , . , , , ,
h

hD D D D z C z C z C z C z dz


   
(28) 

5. Buckling of Nanocomposite Plate with Cutout 
5.1. Domain decomposition method and orthogonal polynomials 

In this section, the shape function of the plate with a central cutout in the simply supported boundary conditions 
(S-S-S-S) will be calculated by applying the domain decomposition method and the orthogonal polynomials. At first, 
the domain decomposition method [22, 26-33], which considers not only the outer boundary conditions (S-S-S-S) but 
the inner (cut out edges) free boundary condition, is used to divide the plate to some subdomains. Because of the two 
symmetrical conditions, only one quarter of the rectangular plate with a central square cutout needs to be considered 
as Fig. 2; therefore, one fourth of the plate is divided to three subdomains.  

 
 

Fig. 2. Illustration of dividing the nanocomposite plate with a cutout to three sub-domains. 
 
After partitioning the nanocomposite plate with a central square cutout, the shape function should be determined. 

The orthogonal polynomials [31] are applied to present the shape function of each subdomain considering the 
geometric boundary conditions. The deflection shape functions for each subdomain can be defined as:  

             1 1 1 1

1 1

M N

mn m n
m n

w x , y A f x g y ,
 

  
(29) 

             2 2 2 2

1 1

M N

mn m n
m n

w x , y A f x g y ,
 

  
(30) 
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             3 3 3 3

1 1

M N

mn m n
m n

w x , y A f x g y ,
 

  
(31) 

where, the superscripts (1), (2), and (3) imply the subdomain 1, 2, and 3, respectively.    1 2 3iw i , ,  are the 

shape functions of the subdomain 1, 2, and 3, respectively.  i
mnA   are the undetermined coefficients of the shape 

functions  iw .    i
mf x  are the polynomial functions which consider the essential boundary conditions along x-

direction, while    i
ng y are the polynomial functions which consider the essential boundary conditions along y-

direction. The orthogonal polynomial functions    i
mf x  and    i

ng y  are made by the Gram–Schmidt process 

[31]. The initial polynomials     1 0f x , g x  which initially satisfy the essential boundary conditions can be 

calculated for different boundary conditions according to Table 1. The process is as [31]: 

      2 0 1 1f x g x A f x ,   (32) 

        1 0 1 2k k k k kf x g x A f x B f x , k      (33) 

where 

     

   
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0
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k k

k
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g x f x f x dx
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f x f x dx




 

 

(34) 

     

   

1

0 1
0

1

1 1
0

k k

k

k k

g x f x f x dx
B .

f x f x dx



 





 

 

(35) 

In order to specify the functions  ng y , the same process of determining  mf x as defined in Eqs. (32-35) 

can be used.  
Therefore, the shape functions of three subdomains were defined hitherto, and the final step to calculate the 

buckling load is to determine the deflection functions of three subdomains in terms of the undetermined coefficients 
of one of the subdomains. Thus, the best way is to apply some spots.  

Table 1. Starting polynomials for sets of the orthogonal polynomials [22]. 
 

Boundary Conditions 
Starting Polynomials, 

 1f x  
Generating Functions, 

 0g x  

Free-Free   

   1 10 0 0f f ,     1.0 x   

   1 11 1 0f f       

Free-Simply supported   

   1 10 0 0f f ,    1 x   2 2x x   

   1 11 1 0f f      

Free-Clamped   

   1 10 0 0f f ,    43 4x x    x  

   1 11 1 0f f      

Symmetric-Free   

   1 10 0 0f f ,    21 x   21 x  

   1 11 1 0f f      

Symmetric- Simply supported   

   1 10 0 0f f ,    2 45 6x x   2x  

   1 11 1 0f f      

Symmetric- Clamped   
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   1 10 0 0f f ,    2 41 2x x    21 x  

   1 11 1 0f f      

Anti-symmetric- Simply supported   

   1 10 0 0f f ,   3 42x x x    2x  

   1 11 1 0f f      
 

 
According to the mathematical derivation, in the interconnecting boundary between the subdomains the 

undetermined coefficients of subdomains 1, 2, and 3 are related together [30-33]. 
 

5.2. Rayleigh-Ritz method 
The Rayleigh-Ritz method is used to calculate the buckling load of the nanocomposite plate with a central square 

cutout. As noted before, because of two symmetrical conditions, only one quarter of the rectangular plate with a 
central square cutout needs to be considered. The total energy of the plate with the cutout is determined as: 
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   1 2 3i i , ,   are the total energy of the subdomains 1, 2, and 3, respectively which are defined with respect to 

Eq. (24) and Fig. 2 as: 
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Therefore, the total energy of the plate with the cutout is specified in terms of the undetermined coefficients of 

the shape function of the subdomain 1. The critical buckling load of the plate with the cutout after applying the 
Rayleigh-Ritz method is determined by putting the coefficient determinant of the equations equal to zero. 
 
 
6. Results 

The results of the buckling analysis associated with the nanoplate and nanocomposite plate with a central square 
cutout surrounded by the Winkler foundation are provided in this section. The goal of this essay is to consider the 
effects of the dimensions of the plate, the length of the square cutout, and the elastic medium on the critical buckling 
load of the plate. Here, the Poly-co-vinylene, referred to as PmPV, and the orthotropic CNTs are selected as the 
matrix and the reinforcement materials, respectively. The material properties of CNTs and PmPV are addressed in 
Table 2 [34]. 
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Table 2. Material properties of the matrix and CNTs [34]. 

 

Matrix CNTs 

  
 2 1mE . GPa    11 5 6466CNTE . TPa   

0 34m .     22 7 08CNTE . TPa  

  12 1 9447CNTG . TPa  

 
12 0 175CNT .   

 

 
Table 3 provides the buckling load for different values of the nonlocal parameter and the aspect ratio of the length 

to the thickness. As can be seen, the present results match closely with those defined by Hashemi and Samaei [4], 
Pradhan and Murmu [35], and Pradhan [2]. 

In this editorial, the buckling load ratio and the dimensionless Winkler modulus are determined as: 

 (  
 

nl

l

Buckling load from nonlocal theory P
Buckling load ratio

Buckling load from local theory P
 ) and ( w

W m

K h
K

E
 ), respectively. 

Fig. 3 shows the effect of CNTs in the plate on the buckling load ratio with respect to the nonlocal parameter. It is 
obvious that the Isotropic type (plate without CNTs) has the minimum effect on the critical buckling load ratio in 
comparison with the Composite type in which CNTs are as amplifier in the plate. However, it can be comprehended 
that CNTs can enhance the mechanical properties of the plate, and as a result, the critical buckling load ratio 
increases. 

Table 3. A comparison between the buckling analysis of SLGS using the theories of the classical plate, the 
higher order shear deformation, and the Mindlin plate. 

a/h e0a 
CPT 

[35] 
higher order plate 

theory [2] 
Mindlin plate 
theory [4] 

present 

100 0.0 9.8791 9.8671 9.8671 9.8790 
 0.5 9.4156 9.4031 9.4029 9.4156 
 1.0 8.9947 8.9807 8.9803 8.9945 
 1.5 8.6073 8.5947 8.5939 8.6073 
 2. 8.2537 8.2405 8.2393 8.2533 
      

20 0.0 9.8177 9.8067 9.8067 9.8172 
 0.5 9.3570 9.3455 9.3455 9.3570 
 1.0 8.9652 8.9528 8.9527 8.9648 
 1.5 8.5546 8.5420 8.5420 8.5546 
 2.0 8.2114 8.1900 8.1898 8.2111 
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Fig. 3. A comparison between the Isotropic and Composite types on the buckling load ratio versus the dimensionless 

nonlocal parameter. 
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Fig. 4. Effect of the length of the plate on the critical buckling load ratio in terms of the dimensionless nonlocal parameter. 

 

Fig. 4 illustrates the effect of the length of the plate on the buckling load ratio by considering the dimensionless 
nonlocal parameter. As can be seen, by increasing the nonlocal parameter, the critical buckling load ratio decreases. 
The figure shows that an increase in the length causes more buckling load ratio, because by increasing the length, the 
stiffness of the system decreases so the critical buckling load decreases, too, but variation of the local buckling load 
is more than the nonlocal buckling load; therefore, the critical buckling load ratio increases. It is apparent that the 
effect of the length on the buckling load ratio is more remarkable in the high value of the nonlocal parameter. 

The variation of the critical buckling load ratio in terms of the nonlocal parameter is analyzed with respect to 
different aspect ratios of the nanocomposite plate with the square cutout in Fig. 5. It is obvious that the effectiveness 
order of the aspect ratio on the buckling load ratio from high to low is as 1a / b  , 1a / b  , and 1a / b  , 

respectively. To understand the reason of this order, it is better to look at Fig. 1 and consider the length and width of 
the plate and the direction of the uniaxial buckling load. Moreover, considering the figure, the buckling load ratio 
decreases by increasing the nonlocal parameter. 

The effect of the elastic medium on the critical buckling ratio is examined in this section. Fig. 7 analyzes the 
variation of the buckling load ratio considering the nonlocal parameter and different magnitude of the Winkler 

modulus parameter ( WK ). It is obvious that the Winkler modulus parameter improves the buckling behavior of the 

plate because the Winkler foundation imposes a normal force on the system; therefore, these foundations increase the 
stiffness of the system and the buckling load ratio. 
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Fig. 5. Effect of the aspect ratio of the plate on the buckling load ratio versus the dimensionless nonlocal parameter. 

Fig. 6 considers the effect of the length of the square cutout in the nanocomposite plate on the buckling load ratio 
in terms of the nonlocal parameter. It is apparent that the existence of a hole in the plate causes a defect in the system 
and weakens the buckling behavior; therefore, by increasing the length of the square cutout in the plate the buckling 
load ratio increases. In addition, the effect of the length of the hole on the critical buckling load ratio is more 
considerable for high dimensionless nonlocal parameter. 
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Fig. 6. Variation of the critical buckling load ratio by considering dimensionless nonlocal parameter for different length of 

the square cutout in the plate. 
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Fig. 7. Buckling load ratio versus dimensionless nonlocal parameter for different values of the Winkler modulus 

parameter. 
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7. Conclusion 
The buckling load ratio of the nanoplate and nanocomposite plate with a square cutout reinforced with CNTs 

which were subjected to uniaxial buckling load was investigated in this article. The plate was surrounded by the 
Winkler foundation, and the Eringen’s nonlocal elasticity theory was used to consider the nanoscale effect. In order 
to define the shape function of the plate with the cutout, the domain decomposition method and the orthogonal 
polynomials were applied. Finally, the Rayleigh-Ritz energy method was used to obtain the critical buckling load of 
the system so that the impacts of the dimensions of the plate, the length of the square cutout, and the elastic medium 
on the critical buckling load of the nanoplate and nanocomposite plate were distinguished. The results indicated that 
applying CNT as amplifier in the plate increased the properties of the system. In addition, by increasing the 
dimensions of the plate, the buckling load ratio of the plate with the square cutout increased as well. Moreover, 
existence of a hole in the plate caused a defect in the system and weakened the buckling behavior; therefore, by 
increasing the length of the square cutout in the plate, the buckling load ratio increased. Furthermore, utilizing the 
Winkler modulus parameter improved the buckling behavior of the plate. 
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