[1] Vahl Davis, G.D. Natural convection of air in a square cavity, a benchmark numerical solution,
Int. J. Numer. Methods Fluids, 3, 1962, pp. 249–264.
[2] Fusegi, T., Hyun, J.M., Kuwahara, K. Farouk, B. A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure,
Int. J. Heat Mass Transfer, 34, 1991, pp. 1543–1557.
[3] Barakos, G. Mitsoulis, E. Natural convection flow in a square cavity revisited: laminar and turbulent models with wall functions,
Int. J. Numer. Methods Fluids, 18, 1994, pp. 695–719.
[4] Choi, U.S. Enhancing thermal conductivity of fluids with nanoparticles,
ASME Fluids Engineering Division, 231, 1995, pp. 99–103.
[5] Xuan, Y., Roetzel, W. Conceptions for heat transfer correlation of nanofluids,
Int. J. Heat Mass Transfer, 43, 2000, pp.3701–3707.
[6] Khanafer, K., Vafai, K. Lightstone, M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,
Int. J. Heat Mass Transfer, 46, 2003, pp. 3639–3653.
[7] Gosselin, L. da Silva, A.K. Combined heat transfer and power dissipation optimization of nanofluid flows,
Appl. Phys. Lett., 85, 2004, pp.4160–4162.
[8] Brinkman, H.C. The viscosity of concentrated suspensions and solutions,
J. Chem. Phys., 20, 1952, pp.571–581.
[9] Polidori, G., Fohanno, S. Nguyen, C.T. A note on heat transfer modeling of Newtonian nanofluids in laminar free convection,
Int. J. Thermal Sciences, 46, 2007, pp. 739–744.
[10] Ho, C.J., Chen, M.W. Li, Z. W. Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity,
Int. J. Heat and Mass Transfer, 51, 2008, pp. 4506–4516.
[11] Maiga, S.E.B., Nguyen, C.T., Galanis, N., Roy, G. Heat transfer behaviors of nanofluids in a uniformly heated tube,
Superlattices and Microstructures, 35, 2004, pp. 543–557.
[12] Aminossadati, S.M. Ghasemi, B. Natural convection of water–CuO nanofluid in a cavity with two pairs of heat source–sink,
Int. Comm. in Heat and Mass Transfer, 38, 2011, pp. 672-678.
[13] Koo, J. Kleinstreuer, C. A new thermal conductivity model for nanofluids,
J. Nanoparticle Research, 6(6), 2004, pp. 577–588.
[14] Koo, J. Kleinstreuer, C. Laminar nanofluid flow in micro heat-sinks,
Int. J. Heat and Mass Transfer, 48(13), 2005, pp. 2652–2661.
[15] Abu-Nada, E., Masoud, Z., Oztop, H.F. Campo, A. Effect of nanofluid variable properties on natural convection in enclosures,
Int. J. Thermal Sciences, 49, 2010, pp. 479–491.
[16] Nnanna, A.G.A., Fistrovich, T., Malinski, K. Choi, S.U.S. Thermal transport phenomena in buoyancy-driven nanofluids,
Proc. ASME Int. Mech. Eng. Congress RDD Expo., IMECE2004-62059, Anaheim, CA, 2004, pp. 1-8.
[17] Nnanna, A.G.A. Routhu, M. Transport phenomena in buoyancy driven nanofluids Part II,
Proc. ASME Summer Heat Transfer Conf., SHTC— 72782, San Francisco, CA, 2005, pp. 1–8.
[18] Putra, N., Roetzel, W. Das, S.K. Natural convection of nanofluids,
Heat Mass Transfer, 39, 2003, pp. 775–784.
[19] Wen, D. Ding, Y. Formulation of nanofluids for natural convective heat transfer applications,
Int. J. Heat and Fluid Flow, 26, 2005, pp. 855–864.
[20] Wen, D. Ding, Y. Natural convection heat transfer of suspensions of titanium dioxide nanoparticles (nanofluids),
IEEE Trans. Nanotechnol., 5(3), 2006, pp. 220–227.
[21] Li, C.H. Peterson, G.P. Experimental studies of natural convection heat transfer of Al2O3/DI water nanoparticle suspensions (nanofluids),
Advances in Mechanical Engineering, 2010, Article ID 742739.
[22] Hu, Y., He, Y., Wang, S., Wang, Q. Schlaberg, H.I. Experimental and numerical investigation on natural convection heat transfer of Tio2–Water nanofluids in a square enclosure,
ASME Journal of Heat Transfer, 136, 2014, Article ID 022502.
[23] Nnanna, A.G.A. Experimental model of temperature-driven nanofluid,
ASME Journal of Heat Transfer, 129, 2007, pp.697–704.
[24] Ho, C.J., Liu, W.K., Chang, Y.S. Lin, C.C. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: An experimental study,
Int. J. Thermal Sciences, 49, 2010, pp.1345–1353.
[25] Corcione, M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls,
Int. J. Thermal Sciences, 49, 2010, pp.1536–1546.
[26] Kestin, J., Sokolov, M. Wakeham, W.A. Viscosity of liquid water in the range -8 °C to 150 °C.,
J. Phys. Ref. Data, 7(3), 1978, pp. 941–948.
[27] Sharqawy, M.H. New correlations for seawater and pure water thermal conductivity at different temperatures and salinities,
Desalination, 313, 2013, pp. 97–104.
[28] Patankar, S.V.
Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Taylor and Francis Group, New York, 1980.
[29] Versteeg, H.K. Malalasekera, W.
An Introduction to Computational Fluid Dynamic: The Finite Volume Method, John Wiley Sons Inc., New York, 1995.
[30] Fusegi, T. Hyun, J.M. Laminar, Transitional natural convection in an enclosure with complex, realistic conditions,
Int. J. Heat Fluid Flow, 15, 1994, pp. 258–268.
[31] Abu-Nada, E. Effects of variable viscosity and thermal conductivity of Al2o3–water nanofluid on heat transfer enhancement in natural convection,
Int. J. Heat and Fluid Flow, 30, 2009, pp. 679–690.
[32] Abu-Nada, E. Chamkha, A.J. Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO-EG-Water nanofluid,
Int. J. Thermal Sciences, 49, 2010, pp. 2339–2352.