Document Type: Research Paper

**Author**

Department of Energy Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Islamic Republic of Iran

**Abstract**

Transient natural convection is numerically investigated in an enclosure using variable thermal conductivity, viscosity, and the thermal expansion coefficient of Al2O3-water nanofluid. The study has been conducted for a wide range of Rayleigh numbers (10^{3}≤ Ra ≤ 10^{6}), concentrations of nanoparticles (0% ≤ ϕ ≤ 7%), the enclosure aspect ratio (AR =1), and temperature differences between the cold and hot walls (∆T= 30). Transient parameters such as development time and time-average Nusselt number along the cold wall are also presented as a non-dimensional form. Increasing the Rayleigh number shortens the non-dimensional time of the initializing stage. By increasing the volume fraction of nanoparticles, the flow development time shows different behaviors for various Rayleigh numbers. The non-dimensional development time decreases by enhancing the concentration of nanoparticles.

**Keywords**

**Main Subjects**

[1] Ghahremani, E., Ghaffari, R., Ghadjari, H., Mokhtari, J., Effect of variable thermal expansion coefficient and nanofluid properties on steady natural convection in an enclosure, *Journal of Applied and Computational Mechanics*, 3(4), 2017, pp. 240-250.

[2] Xuan, Y., Roetzel, W., Conceptions for heat transfer correlation of nanofluids, *International Journal of Heat and Mass Transfer*,43, 2000, pp. 3701–3707.

[3] Khanafer, K., Vafai, K., Lightstone, M., Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, *International Journal of Heat and Mass Transfer*,46, 2003, pp. 3639–3653.

[4] Gosselin, L., da Silva, A. K., Combined heat transfer and power dissipation optimization of nanofluid flows”, *Applied Physics Letters*, 85, 2004, pp. 4160–4162.

[5] Brinkman, H. C., The viscosity of concentrated suspensions and solutions, *Journal of Chemical Physics*, 20, 1952, pp. 571–581.

[6] Polidori, G., Fohanno, S., Nguyen, C. T., A note on heat transfer modeling of Newtonian nanofluids in laminar free convection, *International Journal of Thermal Sciences*,46, 2007, pp. 739–744.

[7] Ho, C. J., Chen, M. W., Li, Z. W., Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity, *International Journal of Heat and Mass Transfer*, 51, 2008, pp. 4506–4516.

[8] Maiga, S. E. B., Nguyen, C. T., Galanis, N., Roy, G., Heat transfer behaviors of nanofluids in a uniformly heated tube, *Superlattices and Microstructures*,35, 2004, pp. 543–557.

[9] Aminossadati, S. M., Ghasemi, B., Natural convection of water–CuO nanofluid in a cavity with two pairs of heat source–sink, *International Communications in Heat and Mass Transfer*,38, 2011, pp. 672–678.

[10] Koo, J., Kleinstreuer, C., A new thermal conductivity model for nanofluids, *Journal of Nanoparticle Research*,6(6), 2004, pp. 577–588.

[11] Koo, J., Kleinstreuer, C., Laminar nanofluid flow in micro heat-sinks, *International Journal of Heat and Mass Transfer*,48(13), 2005, pp. 2652–2661.

[12] Abu-Nada., E., Chamkha, A. J., Effect of nanofluid variable properties on natural convection in enclosures filled with a CuO–EG–water nanofluid, *International Journal of Thermal Sciences*, 49(12), 2010, pp. 2339-2352.

[13] Sheikholeslami, M., Ellahi, R., Hassan, M., Soleimani, S., A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder, *International Journal of Numerical Methods for Heat & Fluid Flow*, 24(8), 2014, pp. 1906-1927.

[14] Leal, M. A., Machado, H. A., Cotta, R. M., Integral transform solutions of transient natural convection in enclosures with variable fluid properties, *International Journal of Heat and Mass Transfer*, 43(21), 2000, pp. 3977-3990.

[15] Yu, Z. -T., Wang, W., Xu, X., Fan, L. -W., Hu, Y. -C., Cen, K. -F., A numerical investigation of transient natural convection heat transfer of aqueous nanofluids in a differentially heated square cavity, *International Communications in Heat and Mass Transfer*, 38, 2011, pp. 585–589.

[16] Yu, Z. -T., Xu, X., Hu, Y. -C., Fan, L. -W., Cen, K. -F., A numerical investigation of transient natural convection heat transfer of aqueous nanofluids in a horizontal concentric annulus, *International Journal of Heat and Mass Transfer*, 55, 2012, pp. 1141–1148.

[17] Rahman, M. M., Oztop, H. F., Mekhilef, S., Saidur, R., Al-Salem, K., Unsteady natural convection in Al2O3–water nanoliquid filled in isosceles triangular enclosure with sinusoidal thermal boundary condition on bottom wall, *Superlattices and Microstructures*, 67, 2014, pp. 181–196.

[18] Alsabery, A. I., Saleh, H., Hashim, I., Siddheshwar, P.G., Nanoliquid-Saturated Porous Oblique Cavity using Thermal Non-Equilibrium Model, *International Journal of Mechanical Sciences*, 114, 2016, pp. 233-245.

[19] Nguyen, M. T., Aly, A. M., Lee, S.-W., Unsteady natural convection heat transfer in a nanofluid-filled square cavity with various heat source conditions, *Advances in Mechanical Engineering*, 8(5), 2016, pp. 1–18.

[20] Patankar, S. V., *Numerical Heat Transfer and Fluid Flow*, Hemisphere Publishing Corporation, Taylor and Francis Group, New York, 1980.

[21] Versteeg, H. K., Malalasekera, W., *An Introduction to Computational Fluid Dynamic: The Finite Volume Method*, John Wiley & Sons Inc., New York, 1995.

Volume 4, Issue 3

Summer 2018

Pages 133-139