[1] Younis, M. I.,
MEMS Linear and nonlinear statics and dynamics, Springer, 2011.
[2] Hu, Y. C., Chang, C. M., Huang, S. C., Some design considerations on the electrostatically actuated microstructures,
Sensors and Actuators A, 112, 2004, pp. 155–161.
[3] Zhang, L. X., Zhao, Y. P., Electromechanical model of RF MEMS switches,
Microsystem Technologies, 9(6-7), 2003, pp. 420-426.
[4] Batmanov, A.,
Design, modeling and fabrication of radio-frequency microelectromechanical switches and coplanar filters, Master’s thesis, Otto-von-Guericke-Universitat Magdeburg, April, 2010.
[5] Sadeghian, H., Rezazadeh, G., Osterberg, P. M., Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches, Journal of Microelectromechanical Systems, 16(6), 2007, pp. 1334–1340.
[6] Zhang, W. M., Yan, H., Peng, Z. K., Meng, G., Electrostatic pull-in instability in MEMS/NEMS: A review,
Sensors and Actuators A, 214, 2014, pp. 187–218.
[7] Joglekar, M. M., Pawaskar, D. N., Shape optimization of electrostatically actuated microbeams for extending static and dynamic operating ranges,
Structural and Multidisciplinary Optimization, 46, 2012, pp. 871–890.
[8] Abdalla, M. M., Reddy, C. K., Faris, Waleed F., Gurdal, Z., Optimal design of an electrostatically actuated microbeam for maximum pull-in voltage,
Computers and Structures, 83, 2005, pp. 1320–1329.
[9] Abdelhakim, L., Numerical model for electro-mechanical analysis based on finite Element method,
PAMM: Proceedings in Applied Mathematics and Mechanics, 13, 2013, pp. 245–246.
[10] Rochus, V., Rixen, D. J., Golinval, J. C., Finite element modeling of electro-mechanical coupling in capacitive micro-systems,
Nano Science and Technology Institute-Nanotech 2005, 3, 2005, pp. 704-707.
[11] Ghazavi, M. R., Rezazadeh, G., Azizi, S., Finite element analysis of static and dynamic pullin instability of a fixed-fixed micro beam considering damping effects,
Sensors Transducers, 103(4), 2009, pp. 132–143.
[12] Zhou, W., Shen, H., Guo, Z., Peng, B., Modeling the pull-in behavior of electrostatically actuated micro beams by an approximate finite element method,
International Journal of Numerical Modelling, 27, 2014, pp. 89–98.
[13] Ghoussoub, N., Guo, Y. J., On the partial differential equations of electrostatic mems devices: stationary case,
SIAM Journal on Mathematical Analysis, 38(5), 2007, pp. 1423–1449.
[14] Fortin, M., Glowinski, R.,
Augmented Lagrangian methods: Applications to the numerical solution of boundary-value problems, 1st Edition, North Holland, 1983.
[15] Timoshenko, S. P.,
Strength of materials: part 1, 2nd Ed. New York: Van Nostrand Company, 1940.
[16] Hjelmstad, K.,
Fundamentals of Structural Mechanics, Second edition, Chapter 7. Springer Inc., 2005.
[17] Antes, H., Fundamental solution and integral equations for Timoshenko beams,
Computers and Structures, 81, 2003, pp. 383–396.
[18] Kahrobaiyan, M. H., Asghari, M., Ahmadian, M. T., Timoshenko beam element based on the modified couple stress theory,
International Journal of Mechanical Sciences, 79, 2014, pp. 75–83.
[19] Zhang, B., He, Y. M, Liu, D. B., Gan, Z. P., Shen, L., Non-classical Timoshenko beam element based on the strain gradient elasticity theory,
Finite Elements in Analysis and Design, 79, 2014, pp. 22–39.
[20] Talebi, S., Uosofvand, H., Ariaei, A., Vibration analysis of a rotating closed section composite Timoshenko beam by using differential transform method,
Journal of Applied and Computational Mechanics, 1(4), 2015, pp. 181-186.
[21] Ai, Z. Y., Cai, J. B., Static interaction analysis between a Timoshenko beam and layered soils by analytical layer element/boundary element method coupling,
Applied Mathematical Modelling, 40, 2016, pp. 9485–9499.