A Comparative Analysis of TLCD-Equipped Shear Buildings under Dynamic Loads

Mario Freitas¹, Lineu Pedroso²

¹ University of Brasília, Department of Civil and Environmental Engineering
Campus Darcy Ribeiro, Brasília-DF, 70919-970, Brazil, mariofreitas.enc@gmail.com,
² University of Brasília, Department of Civil and Environmental Engineering
Campus Darcy Ribeiro, Brasília-DF, 70919-970, Brazil, lineu@unb.br,

Received January 21 2018; Revised March 21 2018; Accepted for publication March 21 2018.
Corresponding author: Mario Freitas, mariofreitas.enc@gmail.com

© 2019 Published by Shahid Chamran University of Ahvaz
& International Research Center for Mathematics & Mechanics of Complex Systems (M&MoCS)

Abstract. This study targets the behavior of shear buildings equipped with tuned liquid column dampers (TLCD) which attenuate dynamic load-induced vibrations. TLCDs are a passive damping system used in tall buildings. This kind of damper has proven to be very efficient, being an excellent alternative to mass dampers. A dynamic analysis of the structure-damper system was made using the software DynaPy, developed in the research process. The software solves the equations of motion through numeric integration using the central differences method. The simulations results obtained with DynaPy showed that the use of TLCD can reduce the dynamic response significantly for both harmonic excitations and random excitations.

Keywords: TLCD, Structure dynamics, DynaPy, Numeric integration.

1. Introduction

Since the 19th century, urbanization, population growth and the increasing land price in big cities have pushed civil engineering towards the construction of tall and slender buildings. However, this fact has also created the necessity of studying new mechanisms for attenuating earthquake- and wind-induced vibrations. Many vibration control systems have been developed since then, including the Tuned Liquid Dampers (TLD).

Tuned Liquid Dampers are built to counterbalance the structure movement, using a liquid mass to transfer inertial forces to the structure. This system has to be tuned to the building’s natural frequency in order to yield satisfactory results. There are two main categories of TLDs: Tuned Sloshing Dampers (TSD) and Tuned Liquid Column Dampers (TLCD). The first uses a big liquid container that produces sloshing movement when excited, which causes some head loss. The second typically has a tube-shaped container and does not produce a significant sloshing movement. In this case, the head loss is caused by the movement of the fluid inside the tube and through valves and other local components.

Tuned Liquid Column Dampers are very versatile and have many different variations. The basic model is a U-shaped tube with both ends open and a valve in the middle of the tube or some other local head loss inducing mechanism. One way to modify its natural frequency is to attach pressurized air tanks to both ends, making it a Pressurized Tuned Liquid Column Damper (PTLCD).

A computer program, named DynaPy, has been developed to model and simulate different structures and dampers under any type of excitation. The theoretical foundation for building the software can be found in many books and papers. The formulations and solutions of the equations of motion can be found in Blevins [1], Chopra [2], Clough [3], French [4], Nadauscher [5], Pedroso [6-8], Tedesco [9]. The TLCD model can be found on Baleandra [10], Freitas [11-12], Gao [13], Kenny [14], Pedroso [15], Pestana [16], and Shum [17].

Published online December 13 2018
The objectives of this research were to model different structures equipped with properly designed TLCDs using the software DynaPy, simulate the dynamic response of this system to base excitation loads, and compare the results with and without the TLCD.

2. Methodology

The system studied in this research is a multi-story shear building with a PTLCD installed on the last story. Each story on the shear building has one horizontal degree of freedom \(x_s \), and the PTLCD has one vertical degree of freedom \(x_f \). The structure parameters are the mass \(m_s \), damping ratio \(\xi_s \), and stiffness \(k_s \) of each story. The PTLCD parameters are the tube diameter \(D \), water height \(h \), tube length \(b \), total fluid length \(L \), gas tank height \(Z \), gas pressure \(P \), tube area \(A \), and valve area \(A_v \). Fig. 1 shows the geometric parameters of the structure-PTLCD system.

Using these parameters, the system equations of motion were deduced and written in the coupled format. Then, the central differences method was used to solve the equation of motions. The entire process of modelling, assembling the matrices, and solving the equations was done through the software DynaPy, which also plotted the results obtained.

3. Equations of Motion

3.1 Structure Modeling

Modeling of the structure was very simple and based on few parameters. The mass \(m_s \) of each story was estimated for each case, while the stiffness was calculated as shown in Eq. (1), in which \(E \) is the elasticity module, \(I \) is the moment of inertia, and \(H \) is the height of the column.

\[
k_s = \frac{24EI}{H^3}
\]

(1)

The story damping was calculated based on the structure natural frequency \(\omega \), it's damping ratio \(\xi_s \), and the story mass \(m_s \), as shown in Eq. (2).

\[
c_s = 2m_s\omega \xi_s
\]

(2)

3.2 PTLCD Modeling

Modeling of the PTLCD was a little more complicated and involved many different variables. The PTLCD mass \(m_f \) could be obtained by multiplying its volume by the fluid specific mass \(\rho_f \), as shown in Eq. (3).

\[
m_f = \frac{\pi D^2}{4} L \rho_f
\]

(3)

The PTLCD stiffness had two parts, as seen in Eq. (4). The first part came from the fluid vibration natural frequency, while the second part came from the compressed air tank stiffness (Freitas, 2017).

\[
k_f = \frac{\pi D^2 \rho_f \rho_g}{2} + 1.4 \frac{P \pi D^2}{z}
\]

(4)
Finally, the PTLCD damping also had two parts, as shown in Eq. (5). The first came from the distributed head loss, which is dependent on the friction factor \(f \), due to the fluid movement inside the tube and the second came from the local head loss due to the fluid passage through the valve [12].

\[
c_f = \left[\frac{\pi LD \rho_c f}{8} \right] + \left[\frac{\rho_f A (A - A_c)}{2 (A_c - 1)} \right]^2
\]

(5)

3.3 Earthquake Modeling

The earthquake does not apply a force directly to the structure. It actually applies an acceleration \(\ddot{x}_q \) to its base, which multiplied by the story mass \(m_s \) equals to an effective force \(f_{eq} \), as shown in Eq. (6).

\[
f_{eq} = \ddot{x}_q m_s
\]

(6)

3.4 Coupled Equation of Motion

The equation of motion can be written in its classic form, shown in Eq. (7), in which the capital letters \(M \), \(C \) and \(K \) represent the mass, damping and stiffness matrices, respectively, while the capital letters \(\dot{X} \), \(\ddot{X} \), \(X \) and \(F \) represent the acceleration, velocity, displacement and force vectors, respectively, which are dependent on the time \(t \). This matrix equation can be separated into two parts, the structure and the PTLCD degrees of freedom, as shown in Eq. (8). The sub-matrices in each of these equations are detailed in Eqs. (9)-(12).

\[
M\dddot{X}(t) + C\ddot{X}(t) + KX(t) = F(t)
\]

(7)

\[
\begin{bmatrix}
M_s & M_{sp} \\
M_{sp} & M_f
\end{bmatrix}
\begin{bmatrix}
\dddot{X}_s(t) \\
\dddot{X}_f(t)
\end{bmatrix}
+ \begin{bmatrix}
0 & C_s \\
C_f & K_f
\end{bmatrix}
\begin{bmatrix}
\dddot{X}_s(t) \\
\dddot{X}_f(t)
\end{bmatrix}
= \begin{bmatrix}
K_s [X_s(t)] \ + \\
K_f [X_f(t)]
\end{bmatrix}
+ \begin{bmatrix}
F_s(t) \\
0
\end{bmatrix}
\]

(8)

\[
[M_s] = \begin{bmatrix}
m_{s1} & 0 & L & 0 \\
0 & m_{s2} & L & 0 \\
M & O & O & 0 \\
0 & 0 & 0 & m_s + m_f
\end{bmatrix}
\]

(9)

\[
[C_s] = \begin{bmatrix}
c_{s1} & 0 & L & 0 \\
0 & c_{s2} & L & 0 \\
M & O & O & 0 \\
0 & 0 & 0 & c_{sn}
\end{bmatrix}
\]

(10)

\[
[K_s] = \begin{bmatrix}
k_{s1} + k_{s2} & -k_{s2} & 0 & L & 0 \\
-k_{s2} & k_{s2} + k_{s3} & -k_{s3} & L & 0 \\
0 & -k_{s3} & O & O & 0 \\
M & O & O & k_{sn-1} + k_{sn} & -k_{sn} \\
0 & 0 & 0 & -k_m & k_m
\end{bmatrix}
\]

(11)

\[
[M_{sp}] = \begin{bmatrix}
0 \\
M \\
0 \\
-\frac{b}{L} m_f
\end{bmatrix}
\]

(12)

4. Method of Solution

4.1 Central Differences Method

During the research process, the software DynaPy was developed. This program is capable of taking the structure, TLCSD and excitation parameters, assembling the mass, stiffness, damping and force matrices and solving the equation of motion. The equation of motion is solved step by step using the central differences method, as shown in Eq. (13) [9]. Using this method, it is possible to calculate the displacement \(X_{i+1} \) one step ahead given that the displacement on the current \(X_i \) and previous
(\(X_{i+1}\)) iterations are known. The distance between two steps is the time \(\Delta t\). After solving the equation, the software post-processes the results and generates the plots.

\[
X_{i+1} = \left(\frac{M}{\Delta t^2} + \frac{C}{2M} \right)^{-1} \left[F - \left(k - \frac{2M}{\Delta t^2} \right) X_i \right] = \left(\frac{M}{\Delta t^2} - \frac{C}{2M} \right) X_{i-1}
\]

(13)

4.2 Nonlinearity Treatment

As seen in Eq. (5), the PTLCD damping coefficient is dependent on the fluid velocity. That makes the damping matrix \(C\) nonlinear and, consequentially, the equation of motion is nonlinear. In order to be able to use the algorithm described in Eq. (13) directly, the damping matrix must be linearized. That was achieved by approximating the instant velocity \(\dot{x}_i\) on the iteration \(i\) by its value on the iteration \(i-2\), which can be calculated numerically at each step using the central differences method. As long as the time step used between iterations is small enough, this linearization method is guaranteed to converge to the exact solution.

5. Method of Solution

DynaPy is a structure dynamics modelling and simulation software that can be used to study simple two-dimensional structures. The software was developed in Python as part of this research process in order to give the researchers the ability to make many simulations in a short time and gather all sorts of results, according to the researcher's need.

In the current version, this software supports shear building structures, TLCDs, PTLCDs, harmonic excitations and generic excitations. The processing was made using central differences methods only, but other methods will be implemented in the future. The post-processing options included displacement vs. time, velocity vs. time, acceleration vs. time, displacement vs. velocity, dynamic amplification factor vs. frequency ratio, and maximum displacement vs. frequency ratio plots. Fig. 2 shows the dynamic response plots screen with the “displacement vs. time” plot option selected.

![Fig. 2. DynaPy dynamic response screen.](image)

6. Results

6.1 Response to Harmonic Excitation

In order to visualize the effect of the TLCD on the building, a 5-story building equipped with a PTLCD was modeled on DynaPy. Each story in the building was 3 m high, had 10 t of mass and columns made of reinforced concrete with a square cross section with 35 cm sides. The building damping ratio was set to 2%. The PTLCD had 30 cm of diameter, 100 cm of water height, 1000 cm of length, 40 cm, of gas height, 3.69 atm of gas pressure and its valve opening was set to 51% of the cross section area. A harmonic excitation with 5 m/s² amplitude and 14.84 rad/s frequency, which corresponds to the building natural frequency, was applied to the base.

Fig. 3 shows the comparison between the dynamic response of the last story with and without the PTLCD. It was found that the use of the damping system reduced the maximum displacement by 45%, while the displacement in the steady state was...
reduced by about 80%. The shape of the response was also changed, reaching the maximum displacement much earlier and reducing the amplitude of displacements to a steady value afterward. The mass of the PTLCD represents only 1.7% of the total mass of the structure, but that is enough to provide a satisfactory damping.

![Displacement Vs. Time](image1)

Fig. 3. Dynamic response of a 5-story building under harmonic excitation with and without PTLCD.

6.2 Response to El Centro Earthquake

A more realistic simulation was done by applying the El Centro earthquake to a 10-story building equipped with a PTLCD. Each story in the building was 3 m high, had 12 t of mass and columns made of reinforced concrete with a square cross section with 35 cm sides. The building damping ratio was set to 2%. The PTLCD had 50 cm of diameter, 200 cm of water height, 1000 cm of length, 100 cm of gas height, 2.375 atm of gas pressure and its valve opening was set to 20% of the cross section area. The natural frequency of the building is 7.04 rad/s.

Fig. 4 shows the comparison between the dynamic response of the last story with and without the PTLCD. Once again, the use of the damping system greatly reduced the amplitude of vibration. The maximum displacement was reduced by 45% and, in most of the time, the response with the PTLCD was significantly smaller than the one without the PTLCD. The mass of the PTLCD, in this case, represents about 2.0% of the total mass of the structure.

![Displacement Vs. Time](image2)

Fig. 4. Dynamic response of a 10-story building under El Centro earthquake with and without PTLCD.

7. Conclusions

The simulations showed that the implementation of TLCDs on shear buildings can be a very effective vibration control system. With less than 2.0% additional mass, it was possible to achieve about 45% reduction in the maximum displacement in...
both cases. In the harmonic excitation case, it can be seen that the PTLCD takes some time to fully activate and work with maximum efficiency. That can be noticed by the fact that the steady state response is much smaller than the maximum response, which happens some seconds before reaching steady state. This happens because the fluid starts with zero displacement and zero velocity and has to reach maximum displacement vibration in order to efficiently counterbalance the structure vibration. On the other hand, the El Centro case showed that this vibration control system is also capable of yielding good results for non-harmonic excitations, like earthquakes. However, it must be noted that the main frequencies of the earthquake spectrum must match the frequency to which the TLCD was tuned in order to achieve good results. Also, the TLCD will be more effective on structures with natural frequency in the range of the main frequencies of the earthquake spectrum.

Conflict of Interest

The authors declare no conflict of interest.

References