[1] M. Pacios Pujadó,
Carbon Nanotubes as Platforms for Biosensors with Electrochemical and Electronic Transduction, Springer Heidelberg, (2012), DOI: 10.1007/978-3-642-31421-6.
[2] F. Liu, R. M. Wagterveld, B. Gebben, M. J. Otto, P. M. Biesheuvel, H. V. M. Hamelers, Carbon nanotube yarns as strong flexible conductive capacitive electrodes,
Colloids and Interface Science Communications, 3 (2014) 9–12.
[3] Ch. B. Parker, S. A. Raut, B. Brown, B. R. Stoner, J. T. Glass, Three-dimensional arrays of graphenated carbon nanotubes,
Journal of Materials Research, 27 (2012) 1046–1053.
[4] S. Iijima, Helical microtubules of graphitic carbon,
Nature, 354 (1991) 56–58.
[5] M.-F.Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load,
Science, 287 (2000) 637–640.
[6] E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Thermal conductance of an individual single-wall carbon nanotube above room temperature,
Nano Letters, 6 (2005) 96–100.
[7] S. Sinha, S. Barjami, G. Iannacchione, A. Schwab, G. Muench, Off-axis thermal properties of carbon nanotube films,
Journal of Nanoparticle Research, 7 (2005) 651–657.
[8] K. K. Koziol, D. Janas, E. Brown, L. Hao, Thermal properties of continuously spun carbon nanotube fibres,
Physica E: Low-dimensional Systems and Nanostructures, 88 (2017) 104–108.
[9] J. W. Mintmire, B. I. Dunlap, C. T. White, Are Fullerene Tubules Metallic?,
Physical Review Letters, 68 (1992) 631–634.
[10] X. Lu, Z. Chen, Curved Pi-Conjugation, Aromaticity, and the Related Chemistry of Small Fullerenes (C60) and Single-Walled Carbon Nanotubes,
Chemical Reviews, 105 (2005) 3643–3696.
[11] T. A. Hilder, J. M. Hill, Modeling the Loading and Unloading of Drugs into Nanotubes,
Small, 5 (2009) 300–308.
[12] G. Pastorin, Crucial Functionalizations of Carbon Nanotubes for Improved Drug Delivery: A Valuable Option?,
Pharmaceutical Research, 26 (2009) 746–769.
[13] A. A. Bhirde, V. Patel, J. Gavard, G. Zhang, A. A. Sousa, A. Masedunskas, R. D. Leapman, R. Weigert, J. S. Gutkind, J. F. Rusling, Targeted Killing of Cancer Cells in Vivo and in Vitro with EGF-Directed Carbon Nanotube-Based Drug Delivery,
ACS Nano, 3 (2009) 307–316.
[14] M. Malikan, M. Jabbarzadeh, Sh. Dastjerdi, Non-linear Static stability of bi-layer carbon nanosheets resting on an elastic matrix under various types of in-plane shearing loads in thermo-elasticity using nonlocal continuum,
Microsystem Technologies, 23 (2017) 2973-2991.
[15] M. Malikan, Buckling analysis of a micro composite plate with nano coating based on the modified couple stress theory,
Journal of Applied and Computational Mechanics, 4 (2018) 1–15.
[16] M. Malikan, Analytical predictions for the buckling of a nanoplate subjected to nonuniform compression based on the four-variable plate theory,
Journal of Applied and Computational Mechanics, 3 (2017) 218–228.
[17] X. Yao, Q. Han, The thermal effect on axially compressed buckling of a double-walled carbon nanotube,
European Journal of Mechanics A/Solids, 26 (2007) 298–312.
[18] R. Ansari , R. Gholami , M. Faghih Shojaei , V. Mohammadi , M.A. Darabi, Coupled longitudinal-transverse-rotational free vibration of post-buckled functionally graded first-order shear deformable micro- and nano-beams based on the Mindlin′s strain gradient theory,
Applied Mathematical Modelling, 40(23–24) (2016) 9872-9891.
[19] H. L. Dai , S. Ceballes , A. Abdelkefi , Y. Z. Hong , L. Wang , Exact modes for post-buckling characteristics of nonlocal nanobeams in a longitudinal magnetic field,
Applied Mathematical Modelling, 55 (2018) 758-775.
[20] B. L. Wang, M. Hoffman, A. B. Yu, Buckling analysis of embedded nanotubes using gradient continuum theory,
Mechanics of Materials, 45 (2012) 52–60.
[21] L. L. Ke, Y. Xiang, J. Yang, S. Kitipornchai, Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory,
Computational Materials Science, 47 (2009) 409–417.
[22] R. Ansari, S. Sahmani, H. Rouhi, Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the Rayleigh–Ritz technique,
Computational Materials Science, 50 (2011) 3050–3055.
[23] R. Ansari, M. Faghih Shojaei, V. Mohammadi, R. Gholami, H. Rouhi, Buckling and postbuckling of single-walled carbon nanotubes based on a nonlocal Timoshenko beam model,
Z. Angew. Math. Mech., 95(9) (2015) 939-951.
[24] R. Ansari, A. Arjangpay, Nanoscale vibration and buckling of single-walled carbon nanotubes using the meshless local Petrov–Galerkin method,
Physica E, 63 (2014) 283–292.
[25] H.-Sh. Shen, X.-Q. He, D.-Q. Yang, Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations,
International Journal of Non-Linear Mechanics, 91 (2017) 69-75.
[26] F. Mehralian, Y. Tadi Beni, M. Karimi Zeverdejani, Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes,
Physica B: Condensed Matter, 514 (2017) 61-69.
[27] Y.-Z. Wang, Y.-S. Wang, L.-L. Ke, Nonlinear vibration of carbon nanotube embedded in viscous elastic matrix under parametric excitation by nonlocal continuum theory,
Physica E: Low-dimensional Systems and Nanostructures, 83 (2016) 195-200.
[28] R. Ansari, R. Gholami, S. Sahmani, Prediction of compressive post-buckling behavior of single-walled carbon nanotubes in thermal environments,
Applied Physics A, 113 (2013) 145-153.
[29] R. Ansari, R. Gholami, S. Ajori, Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations,
Journal of Vibration and Acoustics, 135 (2013) 051016.
[30] R. Ansari, R. Gholami, Dynamic stability analysis of embedded single walled carbon nanotubes including thermal effects,
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 39(M1+) (2015) 153.
[31] R. Ansari, R. Gholami, S. Sahmani, A. Norouzzadeh, M. Bazdid-Vahdati, Dynamic stability analysis of embedded multi-walled carbon nanotubes in thermal environment,
Acta Mechanica Solida Sinica, 28 (2015) 659-667.
[32] R. Ansari, R. Gholami, A. Norouzzadeh, M. A. Darabi, Wave characteristics of nanotubes conveying fluid based on the non-classical Timoshenko beam model incorporating surface energies,
Arabian Journal for Science and Engineering, 41 (2016) 4359-4369.
[33] Z. J. Zhang, Y. S. Liu, H. L. Zhao, W. Liu, Acoustic nanowave absorption through clustered carbon nanotubes conveying fluid,
Acta Mechanica Solida Sinica, 29 (2016) 257–270.
[34] L. Wang, Y. Z. Hong, H. L. Dai, Q. Ni, Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field,
Acta Mechanica Solida Sinica, 29 (2016) 567–576.
[35] R. Ansari, R. Gholami, Dynamic stability analysis of multi-walled carbon nanotubes with arbitrary boundary conditions based on the nonlocal elasticity theory,
Mechanics of Advanced Materials and Structures, 24 (2017) 1180-1188.
[36] Y. W. Zhang, L. Zhou, B. Fang, T. Z. Yang, Quantum effects on thermal vibration of single-walled carbon nanotubes conveying fluid,
Acta Mechanica Solida Sinica, 30 (2017) 550–556.
[37] J. Jiang, L. Wang, Analytical solutions for thermal vibration of nanobeams with elastic boundary conditions,
Acta Mechanica Solida Sinica, 30 (2017) 474-483.
[38] M. Malikan, Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory,
Applied Mathematical Modelling, 48 (2017) 196–207.
[39] R. P. Shimpi, Refined Plate Theory and Its Variants,
AIAA Journal, 40 (2002) 137-146.
[40] M. Malikan, Temperature influences on shear stability a nanosize plate with piezoelectricity effect,
Multidiscipline Modeling in Materials and Structures, 14 (2017) 125-142.
[41] M. Malikan, M. N. Sadraee Far, (2018), Differential quadrature method for dynamic buckling of graphene sheet coupled by a viscoelastic medium using neperian frequency based on nonlocal elasticity theory,
Journal of Applied and Computational Mechanics, 4(3) (2018) 147-160.
[42] M. Malikan, V. B. Nguyen, Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory,
Physica E: Low-dimensional Systems and Nanostructures, 102 (2018) 8-28.
[43] C. M. Wang, Y. Y. Zhang, S. S. Ramesh, S. Kitipornchai, Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory,
Journal of Physics D: Applied Physics, 39 (2006) 3904-3909.
[44] S. C. Pradhan, G. K. Reddy, Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM,
Computational Materials Science, 50 (2011) 1052–1056.
[45] E. Ghavanloo, S.A. Fazelzadeh, Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect,
Applied Mathematical Modelling, 36 (2012) 4988-5000.
[46] D. H. Robertson, D. W. Brenner, J. W. Mintmire, Energetics of nanoscale graphitic tubules,
Physical Review B, 45 (1992) 12592.
[47] A. Benzair, A. Tounsi, A. Besseghier, H. Heireche, N. Moulay, L. Boumia, The thermal effect on vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory,
Journal of Physics D: Applied Physics, 41 (2008) 2254041.
[48] T. Murmu, S. Adhikari, Nonlocal transverse vibration of double-nanobeam-systems,
Journal of Applied Physics, 108 (2010) 083514.
[49] P. Ponnusamy, A. Amuthalakshmi, Influence of thermal and magnetic field on vibration of double walled carbon nanotubes using nonlocal Timoshenko beam theory,
Procedia Materials Science, 10 (2015) 243-253.