Topology Optimization of the Thickness Profile of Bimorph Piezoelectric Energy Harvesting Devices

Document Type: Research Paper


School of Mechanical Engineering, Department of Computational Mechanics, University of Campinas, Cidade Universitria Zeferino Vaz - Barao Geraldo, 13083-970, Campinas, Sao Paulo, Brazil


Due to developments in additive manufacturing, the production of piezoelectric materials with complex geometries is becoming viable and enabling the manufacturing of thicker harvesters. Therefore, in this study a piezoelectric harvesting device is modelled as a bimorph cantilever beam with a series connection and an intermediate metallic substrate using the plain strain hypothesis. On the other hand, the thickness of the harvester’s piezoelectric material is structurally optimized using a discrete topology optimization method. Moreover, different optimization parameters are varied to investigate the algorithm’s convergence. The results of the optimization are presented and analyzed to examine the influence of the harvester's geometry and its different substrate materials on the harvester’s energy conversion efficiency.


Main Subjects

[1] Lippmann, G., Principe de la conservation de l’électricité, ou second principe de la théorie des phénomènes électriques, Journal de Physique Théorique et Appliquée, 10(1) (1881) 381-394.

[2] Erturk, A., Inman, D. J., Piezoelectric Energy Harvesting, John Wiley & Sons, 2011.

[3] Nelli Silva, E. C., Kikuchi, N., Design of piezocomposite materials and piezoelectric transducers using topology optimization-Part III, Archives of Computational Methods in Engineering, 6(4) (1999) 305-329.

[4] Bendsoe, M. P., Sigmund, O., Topology Optimization: Theory, Models, and Aplications, Springer, 2013.

[5] Steven, G. P., Xie, Y. M., Evolutionary Stuctural Optimization, Springer, 2014.

[6] Huang, X., Xie, M., Evolutionary Topology Optimization of Continuum Structures: Methods and Applications, Wiley, 2010.

[7] Vicente, W. M., Picelli, R., Pavanello, R., Xie, Y. M., Topology optimization of frequency responses of fluid-structure interaction systems, Finite Elements in Analysis and Design, 98 (2015) 1-13.

[8] Azevedo, F., Picelli, R., Vicente, W., Pavanello, R., A bi-directional evolutionary topology optimization method applied for acoustic mufflers design, EngOpt 5th International Conference on Engineering Optimization, Iguassu Falls, Brazil, 2016.

[9] Picelli, R., Vicente, W. M., Pavanello, R., Xie, Y. M., Evolutionary topology optimization for natural frequency maximization problems considering acoustic-structure interaction, Finite Elements in Analysis and Design, 106 (2015) 56-64.

[10] Sigmund, O., Torquato, S., Aksay, I. A., On the design of 1-3 piezocomposites using topology optimization, Journal of Materials Research, 13(4) (1998) 1038-1048.

[11] Carlos Emilio Nelli Silva, Ono Fonseca, J. S., de Espinosa, F. Montero, Crumm, A. T., Brady, G. A., Halloran, J. W., Kikuchi, N., Design of piezocomposite materials and piezoelectric transducers using topology optimization-Part I, Archives of Computational Methods in Engineering, 6(2) (1999) 117-182.

[12] Donoso, A., Sigmund, O., Optimization of piezoelectric bimorph actuators with active damping for static and dynamic loads, Structural and Multidisciplinary Optimization, 38(2) (2008) 171-183.

[13] Zheng, B., Chang, C.-J., Gea, H. C., Topology optimization of energy harvesting devices using piezoelectric materials, Structural and Multidisciplinary Optimization, 38(1) (2008) 17-23.

[14] Noh, J. Y., Yoon, G. H., Topology optimization of piezoelectric energy harvesting devices considering static and harmonic dynamic loads, Advances in Engineering Software, 53 (2012) 45-60.

[15] Lin, Z. Q., Gea, H. C., Liu, S. T., Design of piezoelectric energy harvesting devices subjected to broadband random vibrations by applying topology optimization, Acta Mechanica Sinica, 27(5) (2011) 730.

[16] Kiyono, C. Y., Silva, E. C. N., Reddy, J. N., Optimal design of laminated piezocomposite energy harvesting devices considering stress constraints, International Journal for Numerical Methods in Engineering, 105(12) (2016) 883-914.

[17] Chen, Z., Song, X., Lei, L., Chen, X., Fei, C., Chiu, C. T., Qian, X., Ma, T., Yang, Y., Shung, K., Chen, Y., Zhou, Q., 3D printing of piezoelectric element for energy focusing and ultrasonic sensing, Nano Energy, 27 (2016) 78-86.

[18] Kim, K., Zhu, W., Qu, X., Aaronson, C., McCall, W. R., Chen, S., Sirbuly, D. J., 3D Optical Printing of Piezoelectric Nanoparticle-Polymer Composite Materials, ACS Nano, 8(10) (2014) 9799-9806.

[19] Bodkhe, S., Turcot, G., Gosselin, F. P., Therriault, D., One-Step Solvent Evaporation-Assisted 3D Printing of Piezoelectric PVDF Nanocomposite Structures, ACS Applied Materials & Interfaces, 9(24) (2017) 20833-20842.

[20] IEEE Standard on piezoelectricity, ANSI/IEEE Std 176-1987, 1988.

[21] Cook, R. D., Malkus, D. S., Plesha, M. E., Witt, R. J., Concepts and applications of finite element analysis, Wiley, 2001.