[1] L.J. Crane, Flow past a stretching plate,
Z. Angew. Math. Phys. 21 (1970) 645-647.
[2] S. Mukhopadhyay, Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation,
Ain Shams Eng. J. 4 (2013) 485-491.
[3] K. Bhattacharyya, S. Mukhopadhyay, G.C. Layek, I. Pop, Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet
, Int. J. Heat Mass Transf. 55 (2012) 2945-2952.
[4] M. Turkyilmazoglu, Exact solutions for two-dimensional laminar flow over a continuously stretching or shrinking sheet in an electrically conducting quiescent couple stress fluid,
Int. J. Heat Mass Transf. 72 (2014) 1-8.
[5] A. AlsaediL, M. Awais, T. Hayat, Effects of heat generation/absorption on stagnation point flow of nanofluid over a surface with convective boundary conditions,
Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 4210-4223.
[6] T. Hayat, S. Hussain, T. Muhammad, A. Alsaedi, M. Ayub, Radiative flow of Powell-Eyring nanofluid with convective boundary conditions,
Chinese J. Phy. 55(4) (2017) 1523-1538.
[7] K. Parand, M.M. Moayeri, S. Latifi, M. Delkhosh, A numerical investigation of the boundary layer flow of an Eyring-Powell fluid over a stretching sheet via rational Chebyshev functions,
Euro. Phys. J. Plus, 132(7) (2017) 325.
[8] J. Rahimi, D.D. Ganji, M. Khaki, K. Hosseinzadeh, Solution of the boundary layer flow of an Eyring-Powell non-Newtonian fluid over a linear stretching sheet by collocation method,
Alexandria Eng. J. 56(4) (2017) 621-627
[9] M. Jalil, S. Asghar, S.M. Imran, Self similar solutions for the flow and heat transfer of Powell-Eyring fluid over a moving surface in a parallel free stream,
Int. J. Heat Mass Transf. 65 (2013) 73-79.
[10] M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, Investigation of squeezing unsteady nanofluid flow using ADM,
Powder Technol. 239 (2013) 259-265.
[11] M. Sheikholeslami, D.D. Ganji, H.R. Ashorynejad, Houman B. Rokni, Analytical investigation of Jeffery-Hamel flow with high magnetic field and nano particle by Adomian decomposition method,
Appl. Math. Mech. Eng. 33(1) (2012) 1553-1564.
[12] M. Sheikholeslami, D. D. Ganji, Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM,
Comput. Methods Appl. Mech. Eng. 283 (2015) 651-663.
[13] M. Sheikholeslami, M.M. Rashidi, Dhafer M. Al Saad, F. Firouzi, Houman B. Rokni, G. Domairry, Steady nanofluid flow between parallel plates considering thermophoresis and Brownian effects,
J. King Saud Univ. Sci. 28 (4) (2016) 380-389.
[14] M. Sheikholeslami, D.D. Ganji, Heat transfer of Cu-water nanofluid flow between parallel plates,
Powder Technol. 235 (2013) 873-879.
[15] H. Saeedi, F. Samimi, He's homotopy perturbation method for nonlinear Fredholm integro-differential equations of fractional order,
Int. J. Eng. Res. Appl., 2(5) (2012) 52-56.
[16] K. Parand, J.A. Rad, Exp-function method for some nonlinear PDE's and a nonlinear ODE's,
J. King Saud Univ. Sci. 24 (1) (2012) 1-10.
[17] K. Parand, J.A. Rad, Some solitary wave solutions of generalized Pochhammer-Chree equation via Exp-function method,
Int. J. Comput. Math. Sci. 4 (3) (2010) 142-147.
[18] M. Sheikholeslami, M. Hatami, D.D. Ganji, Numerical investigation of nanofluid spraying on an inclined rotating disk for cooling process,
Comput. Method. Appl. Mech. Eng. 283 (2015) 651-663.
[19] M. Sheikholeslami, Effect of uniform suction on nanofluid flow and heat transfer over a cylinder,
J. Braz. Soc. Mech. Sci. Eng. 37 (2015) 1623-1633.
[20] M. Sheikholeslami, D. D. Ganji, Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer,
Energy 75 (2014) 400-410.
[21] M. Sheikholeslami, M.M. Rashidi, D.D. Ganji, Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model,
J. Mol. Liq. 212 (2015) 117-126.
[22] K. Parand, M. Delkhosh, Accurate solution of the Thomas-Fermi equation using the fractional order of rational Chebyshev functions,
J. Comput. Appl. Math. 317 (2017) 624-642.
[23] T. Tajvidi, M. Razzaghi, M. Dehghan, Modified rational Legendre approach to laminar viscous flow over a semi-infinite flat plate,
Chaos, Solitons, Fractals 35(1) (2008) 59-66.
[24] S. YuzbasØ¤±, E. Gok, M. Sezer, Laguerre matrix method with the residual error estimation for solutions of a class of delay differential equations,
Math. Method. Appl. Sci., 37(4) (2014) 453-463 .
[25] K. Parand, P. Mazaheri, M. Delkhosh, A. Ghaderi, New numerical solutions for solving Kidder equation by using the rational Jacobi functions,
SeMA J., 74(4) (2017) 569-583 .
[26] K. Parand, A. Ghaderi, H. Yousefi, M. Delkhosh, A new approach for solving nonlinear Thomas-Fermi equation based on fractional order of rational Bessel functions,
Electronic J. Differential Equ. 2016 (2016) 331, 1-18.
[27] T. Hayat, Z. Iqbal, M. Qasim, S. Obaidat, Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditional,
Int. J. Heat Mass Transf. 55 (2012) 1817-1822.
[28] K. Parand, A. Taghavi, M. Shahini, Comparison between rational Chebyshev and modified generalized Laguerre functions pseudospectral methods for solving Lane-Emden and unsteady gas equations,
Acta Phys. Pol. B, 40(12) (2009) 1749-1763.
[29] K. Parand, A.R. Rezaei, A. Taghavi, Numerical approximations for population growth model by rational Chebyshev and Hermite functions collocation approach: a comparison,
Math. Method. Appl. Sci., 33(17) (2010) 2076-2086.
[30] J.P. Boyd,
Chebyshev and Fourier Spectral Methods, second ed., Dover, Mineola, New York, 2001.
[31] K. Parand, M. Delkhosh, Solving Volterra's population growth model of arbitrary order using the generalized fractional order of the Chebyshev functions,
Ricerche Mat., 65(1) (2016) 307-328.
[32] K. Parand, M. Delkhosh, An effective numerical method for solving the nonlinear singular Lane-Emden type equations of various orders,
Jurnal Teknologi 79 (1) (2017) 25-36.
[33] L. Fox, I.B. Parker,
Chebyshev Polynomials in Numerical Analysis, Oxford university press, London, vol. 29, 1968.
[34] R.E. Bellman, R.E. Kalaba,
Quasilinearization and Nonlinear Boundary-Value Problems, Elsevier Publishing Company, New York, 1965.
[35] R. Kalaba,
On nonlinear differential equations, the maximum operation and monotone convergence, RAND Corporation, 1957.
[36] V.B. Mandelzweig, Quasilinearization method and its verification on exactly solvable models in quantum mechanics,
J. Math. Phys., 40 (1999) 6266-6291.
[37] E.Z. Liverts, R. Krivec, V.B. Mandelzweig, Quasilinearization approach to the resonance calculations: The quartic oscillator,
Phys. Scripta, 77(4) (2008) 045004.
[38] K. Parand, M. Ghasemi, S. Rezazadeh, A. Peiravi, A. Ghorbanpour, A. Tavakoli Golpaygani, Quasilinearization approach for solving Volterra's population model,
Appl. Comput. Math., 9(1) (2010) 95-103.
[39] A. Rezaei, F. Baharifard, K. Parand, Quasilinearization-Barycentric approach for numerical investigation of the boundary value Fin problem,
Int. J. Comp. Elect. Auto. Cont. Info. Eng., 5(2) (2011) 194-201.
[40] K. Parand, H. Yousefi, M. Delkhosh, A. Ghaderi, A novel numerical technique to obtain an accurate solution to the Thomas-Fermi equation,
Euro. Phys. J. Plus, 131(7) (2016) 228, 1-16
[41] V.B. Mandelzweig, F. Tabakin, Quasilinearization approach to nonlinear problems in physics with application to nonlinear ODEs,
Comput. Phys. Comm., 141 (2001) 268-281.
[42] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang,
Spectral Methods in Fluid Dynamic, Springer-Verlag, New York, 1987.
[43] K. Parand, Y. Lotfi, J. A Rad, An accurate numerical analysis of the laminar two-dimensional of an incompressible Eyring-Powell fluid over a linear stretching sheet,
Euro. Phys. J. Plus, 132(9) (2017) 397.