Scale-Dependent Dynamic Behavior of Nanowire-Based Sensor in Accelerating Field

Alireza Yekrangisendi¹, Mojtaba Yaghobi¹, Mehran Riazian², Ali Koochi³

¹ Mechanical Engineering Group, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
² Mechanical Engineering Group, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
³ Department of Mechanical Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran

Abstract. The accelerating fields (e.g. centrifugal acceleration and constant acceleration) can change the physical performance of nano-sensors significantly. Herein, a new size-dependent model is developed to investigate the scale-dependent dynamic behavior of nanowire-fabricated sensor operated in an accelerating field. The scale-dependent equation of motion is developed by employing a consolidation of the strain gradient elasticity (SGE) and the Gurtin–Murdoch theory (GMT). A semi-analytical solution is extracted for calculating the stability parameters. Effects of different phenomena including centrifugal force, microstructure dependency, surface layer, length-scale-parameter, dispersion forces, squeezed film damping on the dynamic stability parameters are demonstrated.

Keywords: Nanowire, Accelerating field, Strain gradient elasticity, Dynamic instability, Surface energies

1. Introduction

With the novel manufacturing methods for producing ultra-small structures, the applications of nanowires and carbon nanotubes have extended rapidly in the various branch of nanotechnology [1-5]. A typical nanowire-fabricated sensor is manufactured from a deformable nanowire parallel to a solid plate. Nano-sensors have wide applications in modern measurement devices. These systems can be employed in satellites [6], automotive sensors [7], centrifugal separators [8], fault detection of roller bearing [9], CNC high-speed spindle errors detector [10], balancing power plant rotating equipment [11] and turbo-machinery angular speed detectors [12]. In these applications, the sensor operated in an accelerating field which can significantly alter the behaviour of the sensors.

The size effect (i.e. surface energies and microstructural dependency) can significantly change the mechanical performance of nano-sensors [13-16]. Various continuum theories have been presented for modelling the scale dependency of solids. An efficient theory for modelling the impacts of the surface layer on the mechanical behaviour of solids is Gurtin-Murdoch theory (GMT) [17]. For simulating the microstructural dependency the higher-order theories such as strain gradient elasticity (SGE) [15], nonlocal theory [18], couple-stress theory [19] and modified couple stress theory [20] can be employed. Among this theories, the SGE is more general and proposes some additional high order stress component in comparison with simple size-dependent models such as couple stress and modified couple stress theory. SGE can be degenerated to simplified models by neglecting this higher additional higher-order stress factors. Fu and Zhang employed GMT to study the instability of clamped-clamped nano-actuator. The pull-in behaviour of nano-actuators by considering the surface layer is investigated in Ref. [21]. Koochi et al. investigate the influence of surface energies on the electrostatic instability of NEMS operated in the Casimir regime [22]. Wang and Wang introduced a finite element simulation for incorporating the surface layer on the vibration and bending of nano-plate [23]. Shaat and Mohamed proposed a nonlinear model in the framework of the GMT and the modified couple stress theory to simulate both microstructure dependency and surface effect [24]. In Ref. [25] the pull-in of nanowire-
based NEMS has been simulated using the couple stress theory and GMT. Fang et al. [26] theoretically investigate the impacts of the surface layer on the free-vibration of piezoelectric double-shell. The effect of surface energies on the vibration behaviour of the orthotropic cylindrical nano-shell is studied in Ref. [27].

In this paper, the SGE is incorporated with the GMT to extract a new model to investigate the size dependent dynamic stability of nanowire-fabricated sensor subjected to the centrifugal and constant acceleration. The influence of dispersion force and squeezed film damping are incorporated in the simulation. The dynamic instability parameters are determined using the Rayleigh-Ritz method.

2. Theory

Figure 1a depicts a typical nanowire-fabricated sensor mounted on a rotating device while Fig. 1b illustrates the two dimensional free body diagram of the sensor. The length, radius and initial gap of nano-sensor are considered to be L, R, and g, respectively. The nanowire can be assumed as a cantilever Euler beam. The displacement vector of an Euler beam can explain as [28]:

$$
\mathbf{u} = -Z \frac{\partial W(X,t)}{\partial X} \mathbf{i} + W(X,t) \mathbf{k}.
$$

where W is the bending of neutral axes in the Z direction.

![Diagram of nanowire-fabricated sensor](image)

Fig. 1. a) Nano-sensor under in the centrifugal field b) A typical nanowire-fabricated sensor

2.1. Scale dependent strain energy

The scale dependent strain energy of the system (U) can be expressed as the summation of the body energy (U_B) and the surface layer energy (U_S).

$$
U = U_B + U_S
$$

By incorporating the SGE and GMT the scale-dependent strain energy is obtained as:

$$
U = \frac{1}{2} \int_{A} \int_{0}^{L} \tau_{ij} v_{ij} ds dX + \frac{1}{2} \int_{S} \left(\sigma_{ij} v_{ij} + p r_{ij} + \tau_{ij}^{(s)} \eta_{ij}^{(s)} + m_{ij}^{(s)} \chi_{ij}^{(s)} \right) dS
$$

The parameters of Eq. (3) can be expressed as [15, 17]:

$$
U = \frac{1}{2} \int_{A} \int_{0}^{L} \tau_{ij} v_{ij} ds dX + \frac{1}{2} \int_{S} \left(\sigma_{ij} v_{ij} + p r_{ij} + \tau_{ij}^{(s)} \eta_{ij}^{(s)} + m_{ij}^{(s)} \chi_{ij}^{(s)} \right) dS.
$$
\[v_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}) \]
(4)

\[\gamma_i = \epsilon_{mn,i} \]
(5)

\[\eta_{ijkl}^{(n)} = \frac{1}{3} (\epsilon_{ik,j} + \epsilon_{ij,k} + \epsilon_{kl,i}) - \frac{1}{15} \left[\delta_{ij} \left(\epsilon_{mn,i} + 2 \epsilon_{m,n,j} \right) + \delta_{i,j} \left(\epsilon_{mn,i} + 2 \epsilon_{m,n,i} \right) \right] - \frac{1}{15} \delta_{ij} \left(\epsilon_{mn,i} + 2 \epsilon_{m,n,i} \right) \]
(6)

\[\chi_{ij} = \frac{1}{2} \epsilon_{ik,j} u_{i,ki} \]
(7)

\[\sigma_y = 2 \mu \left(\epsilon_y + \frac{\nu}{1-2\nu} \epsilon_{mm} \right) \]
(8)

\[p_i = 2 \mu \lambda_i \gamma_i \]
(9)

\[\tau_{ij}^{(1)} = 2 \mu \lambda_i \eta_{ij}^{(1)} \]
(10)

\[m_{ij} = 2 \mu \lambda_i \chi_{ij} \]
(11)

\[\tau_{xx} = \tau_0 + E_0 \left(-Z \frac{\partial^2 w}{\partial x^2} \right) \]
(12)

\[\tau_{xx} = \tau_0 + \frac{\partial u_y}{\partial x} \]
(13)

where \(\mu \), \(\nu \), \(E_0 \) and \(\tau_0 \) are the shear modulus, the Poisson’s ratio, the surface modulus, and the surface residual stress, respectively. Furthermore, \(l_2 \), \(l_1 \), and \(l_0 \) are additional material parameters which are added to simulate the microstructure dependency. These material parameters can be evaluated experimentally [29, 30] or using molecular dynamic [31]. Zhang and Zhao employed the shifts of resonant frequencies to determine the length scale parameter [32]. The experimental observation of Al-Rub and Voiyiadjis demonstrated that the length scale parameter for metals is in the between 0.2 \(\mu m \) to 20 \(\mu m \) [29]. Wang et al. measured the material length scale of Cu and Ni to be 4\(\mu m \) and 5\(\mu m \) experimentally in their work [30].

Using Eqs. (1) and (3) in combinations with Eqs. (4-13), one obtains:

\[U = \frac{1}{2} \int_0^L A \left[\left(EZ \right)^2 \left(\frac{\partial^2 W}{\partial X^2} \right)^2 + 2 \mu_1 Z^2 \left(\frac{\partial^2 W}{\partial X^2} \right)^2 + 2 \mu_2 Z^2 \left(\frac{\partial^2 W}{\partial X^2} \right)^2 + 4 \left(\frac{\partial^2 W}{\partial X^2} \right)^2 - 4 \left(\frac{\partial^2 W}{\partial X^2} \right)^2 \right] dA dX \]
(14)

where \(I \) is the 2\(\text{nd} \) area moment and \(A \) is the cross section area.

2.2. The work of external forces

The work of external forces can evaluate by using the following equation:

\[W_{ext} = \int_0^L \int_0^W F_{ext}(X,t) \, dW \, dX \]
(15)

Here, \(F_{ext} \) is the summation of all external forces act on the sensor as follows:

\[F_{ext} = F_{elec} + F_{vdw} + F_{Cas} \]
(16)

where \(F_{elec} \) is the electrical force, \(F_{vdw} \) is the force due to van der Waals (vdW) attraction, \(F_{Cas} \) is the Casimir force and \(F_a \) is the force caused by accelerating field.
The external electrical potential results in a lateral force on the nanowire. This force can be evaluated by differentiating the electrical stored energy in the capacitor created by nanowire and fixed plane [25]:

$$F_{elec} = \frac{\pi \varepsilon V^2}{(g - W) \ln^2 \left(2 \frac{g - W}{R}\right)}$$

(17)

where \(\varepsilon\) is the permittivity and \(V\) is the applied voltage. When the separation between the moveable wire and ground is smaller than the retardation length the vdW force, it should be considered which one is affected by the material properties. However, for long separation (i.e. the separation longer than the retardation length) the Casimir force is dominant which is not affected by the material properties [33]. For small separation, the vdW force of a wire parallel to a plate can be explained as [34]:

$$F_{vdw} = \frac{\mathcal{A} R^2}{(g - W)^4}$$

(18)

where \(\mathcal{A}\) is the Hamaker constant. In large separations, the Casimir force is dominant and is defined as [35]:

$$F_{cas} = \frac{hc}{8\pi \ln \left(\frac{g - W}{R}\right)} + \frac{hc}{16\pi \ln^2 \left(\frac{g - W}{R}\right)}$$

(19)

where \(h = 1.055 \times 10^{-34}\) Js is the Planck constant \(c = 2.998 \times 10^8\) m/s is the speed of light. The acceleration force per unit length \((F_a)\) is the summation of centrifugal force and the force caused by constant accelerating field:

$$F_a = \rho A a \pm \rho A (r + g + w) \omega^2$$

(20)

where \(r\) is the rotating machine radius, \(\omega\) is the angular velocity of the rotary machine, and \(a\) is the constant acceleration. For the case of \(g = r\), Eq. (20) reduces to:

$$F_a = \pi \rho R^2 (a \pm r \omega^2)$$

(21)

It is worth to mention that the sign of centrifugal force depends on the sensor installation position. For the sensor fixed in the inner side of the machine, the centrifugal force is positive, while for the sensor mounted in the outer side of the machine the centrifugal force is negative.

2.3 The squeezed film damping and kinetic energy

The nano-sensors are frequently affected by the pressure of the gas squeezed between the nanowire and the fixed plate. The work performed by squeezed film damping can be presented as:

$$W_d = \int_0^1 \int_0^W c_f \frac{\partial W (X, t)}{\partial t} dW dX$$

(22)

where \(c_f\) is the damping coefficients. The deflection of nano-sensor leads to an air flow over the nano-wire. The squeezed film effect between two parallel plates can be estimated through the conventional or modified Reynolds equation [36]. However, in this study, squeezed film damping coefficient is calculated by evaluating the drag force of the flow around a deflected cylinder. As the behavior of air flow changes by increasing the Stokes numbers \((St)\), the damping coefficient is determined for low and high Stokes numbers as [37].

$$c_f = \begin{cases} 4\pi \mu f \left(\frac{St}{2}\right)^2 & \text{For high Stokes numbers} \\ 4\pi \mu f \left(\log(4/ St^* - 0.0572 + 1.8K_n) & \text{For low Stokes numbers} \end{cases}$$

(23)

where \(\mu f\) is the viscosity, \(St^* = \frac{R}{\upsilon} \frac{\partial W}{\partial t}\), \(\upsilon\) is the momentum diffusivity and \(K_n\) is the Knudsen number. The nano-wire kinetic energy can be explained as:

$$T = \frac{1}{2} \int_0^1 \int_0^W \rho \left(\frac{\partial W (X, t)}{\partial t}\right)^2 dW dX$$

(24)

2.4. Non-dimensional energy

The total energy can evaluate by using Eqs. (14, 19, 22, 24) as:
The Rayleigh-Ritz method (RRM) is an efficient approach for solving the nonlinear governing equation of mechanical systems. In this method, the nanowire deflection is separated into time dependent and time independent parts as:

\[\Pi = \frac{1}{2} \int_0^L \left(\frac{\partial W}{\partial t} \right)^2 dx - \int_0^L \left(c_i + c_j \right) \dot{W} \dot{W} dx - \frac{1}{2} \int_0^L \left[-\tau + \frac{\partial W}{\partial x} \frac{\partial W}{\partial x} + \tau_0^2 \frac{\partial W}{\partial x} \right] dx + \int_0^L f_{ext}(X,t) \dot{W} dx \]

(25)

By using Eqs. (17, 18, 19, 21) and considering \(w = W/g \) and \(x = X/L \) the dimensionless total energy is achieved as:

\[\Pi = \frac{1}{2} \int_0^L \left(\frac{\partial w}{\partial t} \right)^2 dx - \frac{1}{2} \int_0^L \left(\frac{\partial w}{\partial x} \right)^2 dx + \frac{1}{2} \int_0^L \left[1 + e_o + \frac{2}{15(1+\nu)} \left(30 \left(\frac{L}{R} \right)^2 + 8 \left(\frac{L}{R} \right)^2 + 15 \left(\frac{L}{R} \right)^2 \right) \right] \left(\frac{\partial w}{\partial x} \right)^2 dx \]

(26)

where:

\[k = \frac{g}{R}, \quad \tau = \sqrt{\frac{E}{\rho} R^2 t}, \quad \eta = \frac{4e_o \nu^2 L^4}{ER^4 g}, \quad \gamma_c = \frac{hcl^4}{E^4 R^4 g}, \quad \gamma_{dw} = \frac{4AL^4}{g^2 \pi^2 R^2 E} \]

(27)

3. Solution

The Rayleigh-Ritz method (RRM) is an efficient approach for solving the nonlinear governing equation of mechanical systems. In this method, the nanowire deflection is separated into time dependent and time independent parts as:

\[w(x) = \sum_{i=1}^{N} q_i(t) \phi_i(x) \]

(28)

The time independent terms in the RRM should satisfy the nanowire essential boundary conditions. Therefore the mode shapes of the classical fixed-free beam are used for this purpose.

\[\phi_i(x) = \begin{cases} \cosh(\omega_i x) - \cos(\omega_i x), & \quad \text{vdW regime} \\ \cosh(\omega_i x) - \cos(\omega_i x), & \quad \text{Casimir regime} \end{cases} \]

(29)

To find the solution, the total energy is minimized:

\[\frac{\partial \Pi}{\partial q_i} = 0 \quad i = 0, 1, ..., N \]

(30)

Equation (30) leads to the following system of ordinary differential equations:

\[\mathbf{L} \dot{\mathbf{q}} + \mathbf{C} \ddot{\mathbf{q}} = \begin{cases} 1 + e_o + \frac{2}{15(1+\nu)} \left(30 \left(\frac{L}{R} \right)^2 + 8 \left(\frac{L}{R} \right)^2 + 15 \left(\frac{L}{R} \right)^2 \right) \right] \end{cases} \]

\[\mathbf{q} \frac{d^2 \mathbf{q}}{dx^2} \]

\[\begin{align*}
&\quad - \frac{1}{15(1+\nu)(L/\hbar)} \left[5 \left(\frac{L}{R} \right)^2 + 2 \left(\frac{L}{R} \right)^2 \right] \frac{\partial^3}{\partial x^3} \left[\sum_{j=1}^{N} q_j \phi_j \right] - \int_0^{L/\hbar} \frac{1}{\hbar} f_{ext}(x,t) \frac{d^2 \phi_i}{dx^2} dx \\
&\quad \frac{1}{15(1+\nu)(L/\hbar)} \left[5 \left(\frac{L}{R} \right)^2 + 2 \left(\frac{L}{R} \right)^2 \right] \frac{\partial^3}{\partial x^3} \left[\sum_{j=1}^{N} q_j \phi_j \right] \frac{d^2 \phi_i}{dx^2} \quad i = 1, 2, ..., N
\end{align*} \]

(31)
where

\[
F_{ex} = \delta \pm \Theta \omega^2 \frac{\eta^2}{(1 - \sum_{j=1}^{N} q_j \phi_j)^2 \ln^2 (2k (1 - \sum_{j=1}^{N} q_j \phi_j))} + \left\{ \frac{\gamma_{vdW}}{(1 - \sum_{j=1}^{N} q_j \phi_j)^4 \ln^2 (2k (1 - \sum_{j=1}^{N} q_j \phi_j))} \right\} \quad (32)
\]

The system of differential equations is solved using the Maple software and the instability parameters are determined.

4. Results and discussion

The electromechanical instability of carbon-fabricated probe was examined experimentally by Ke et al. [38]. The gap, length, and radius of the probe are 3 μm, 6.8 μm, and 23.5 nm, respectively [38]. Figure 2 shows the distance between the free end of the moveable wire and the fixed plate for different external voltages. This figure demonstrates that the analytical size dependent nano-wire deflection is very close to the experimental data.

![Fig. 2](image)

Fig. 2. The gap between the moveable electrode and the fixed plate for different voltage [38]

![Fig. 3](image)

Fig. 3. Time dependent deflection of nano-sensor (neglecting squeezed film damping) a) vdW regime b) Casimir regime

The dynamic behavior of nano-structures can be captured using the phase diagram [39-41]. Hence, in this paper, the dime
dependent deflections and phase diagrams of nano-switch are plotted by considering different phenomena. Figure 3 illustrates the non-dimensional deflection of nano-sensor at its free end \(w(x=1)\) as a function of dimensionless time parameter \(\tau\). The deflection is plotted for different external voltage up to the pull-in value. This figure shows that the maximum displacement of nano-sensor raises by enhancing the voltage. When the external potential reaches the pull-in voltage, the nano-sensor tip displacement increases rapidly. The phase plane of nano-sensor damping is demonstrated in Fig. 4 neglecting the squeezed film. It is clear from this figure that the nano-sensor has an unstable saddle node and stable center point.

![Fig. 4. Phase plane of the nano-sensor by neglecting the squeezed film damping a) vdW regime b) Casimir regime](image1)

The impacts of the squeezed film damping on the non-dimensional deflection of nano-sensor at its free end \(w(x=1)\) is demonstrated in Fig. 5 as a function of dimensionless time parameter. The deflection is plotted for different external voltage up to the pull-in value. This figure reveals that similar to the undamped sensor, if the the squeezed film damping is considered, the maximum displacement of nano-sensor raises by enhancing the voltage. When the external potential reaches the pull-in value the nano-sensor tip displacement enhances rapidly. Figure 6 illustrates the effect of squeezed film damping on the phase plane of nano-sensor. It is clear from this figure that when the squeezed film damping is taken into account the stable center node converts to a stable focus one. Another fixed point is an unstable saddle node. When the applied voltage is less than the pull-in voltage the path converges to the stable focus which is due to squeezed film damping. In contrast, when the external potential is greater than the pull-in voltage the paths separate and the instability emerges.

![Fig. 5. Effect of squeezed film damping on the time dependent deflection of nano-sensor a) vdW regime b) Casimir regime](image2)
To investigate the impact of surface atoms on the instability parameters, the non-dimensional instability voltage of nanosensor is depicted as a function of surface elasticity (e_0) and surface residual stress (t_0) in Figs. 7 and 8, respectively. These
figures demonstrate the pull-in voltage of nano-sensor enhances by increasing the surface residual stress or surface elasticity. In addition, Figs. 7 and 8 show that the instability voltage of nano-sensor in the Casimir regime is greater than its instability voltage in the vdW regime.

The impact of microstructure on the instability voltage of nano-sensor is shown in Fig. 9. To this end, all length scale parameters are considered to be equal (i.e. $l_0=l_1=l_2=l$) and the non-dimensional instability voltage is determined for different l/R value. Figure 9 illustrates that the instability voltage enhances by increasing the length scale parameter.

When the nano-sensor is attached to a rotating device, the angular velocity of the shaft can change the dynamic behavior of the sensor, significantly. Figures 10 and 11 show the time dependent deflection and phase plane of the nano-sensor for different values of angular velocities when the external voltage is equal to the pull-in value. It should be noted that the results of Fig. 10 are related to a sensor mounted inside the rotary wile Fig. 11 shows the dynamic behavior of a sensor fixed outside the rotary. In figure 10a the time history of nano-sensor at pull-in voltage is plotted while Fig. 10b demonstrates the phase diagram of nano-sensor at pull-in voltage. Figure 10a illustrates the rapid increase of the tip deflection of nano-sensor at the pull-in voltage. Moreover, it is clear from Fig. 10b that at pull-in voltage the stable center point of nano-switch becomes an unstable saddle point. This figure reveals that at pull-in point the tip velocity increases rapidly as well as tip deflection. Figure 10 shows when the nano-sensor is fixed inside the rotary, an increase in the angular velocity enhances the pull-in deflection of the nano-sensor and reduces its pull-in voltage. In contrast, when the nano-sensor is fixed outside the rotary, the pull-in time of the nano-sensor is raised by increasing the angular velocity and the pull-in phenomenon occurred at higher values of the applied potential.
5. Conclusions

In this research paper, the size dependent dynamic instability of nano-wire fabricated sensor operated in an accelerating field was studied. To extract the governing equation of system, the SGE is incorporated with GMT. A semi-analytical solution method is developed using RRM and minimum energy principle. The impacts of accelerating field, squeezed film damping, the surface layer, the dispersion forces and the microstructure dependency on the dynamic instability parameters of the nano-sensor were investigated. The obtained results revealed that when the nano-sensor is fixed inside the rotary, the pull-in voltage of nano-sensor is reduced by increasing the angular velocity, however, when the nano-sensor is mounted outside the rotary the pull-in voltage of nano-sensor rises by increasing the angular velocity. Both surface energies and microstructure dependency enhance the pull-in voltage. Studing the impact of squeezed film damping reveals that by considering this phenomenon, the stable center point of the nano sensor becomes a stable focus one.

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

The author(s) received no financial support for the research, authorship and publication of this article.

References

[40] Lin, W.H., Zhao Y.P., Nonlinear behavior for nanoscales electrostatic actuators with Casimir force, Chaos, Solitons & Fractals, 23, 2005, 1777–1785

© 2019 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).