An Analytical and Semi-analytical Study of the Oscillating Flow of Generalized Burgers’ Fluid through a Circular Porous Medium

Abdul Rauf

Department of Computer Science & Engineering, Air University, Abdali Road, Khan Center, Multan, 60000, Pakistan, abdul.rauf@aumc.edu.pk

Received November 26 2018; Revised February 21 2019; Accepted for publication February 26 2019.

Corresponding author: Abdul Rauf, abdul.rauf@aumc.edu.pk

© 2019 Published by Shahid Chamran University of Ahvaz & International Research Center for Mathematics & Mechanics of Complex Systems (M&MoCS)

Abstract. Unsteady oscillatory flow of generalized Burgers’ fluid in a circular channel tube in the porous medium is investigated under the influence of time-dependent trapezoidal pressure gradient given by an infinite Fourier series. An exact analytical expression for the solution for the fluid velocity and the shear stress are recovered by using the similarity arguments together with the integral transforms. The solution is verified with a semi-analytical solution obtained by employing the Stehfest's method. Using the software Mathcad, numerical calculations have been carried out, and results are presented in graphical illustrations in order to analyze the effects of various fluid parameters on the fluid motion. As expected, with the increase in the permeability of the porous medium, the drag force decreases, which results in an increase in the velocity profile for all kinds of fluid models (a generalized Burgers’ fluid, a Burgers’ fluid, a Maxwell fluid, and an Oldroyd-B fluid). Moreover, it has been observed that the material constants of the generalized Burgers’ fluid, as well as the Burgers’ fluid, are other important factors that enhance the flow velocity performance of the fluid. The velocity-time variation for the generalized Burgers’ fluid, the Oldroyd-B fluid, and the Newtonian fluid is similar to the trapezoidal waveform, whereas it is different for the Burgers’ and Maxwell fluid.

Keywords: Oscillating motion, Porous medium, Trapezoidal pressure gradient, Generalized Burgers’ fluid, Analytical and semi-analytical solution.

1. Introduction

In the modern era, viscoelastic fluids have wide research interest due to their many useful applications. For example, viscoelastic fluids occur in the exotic lubricants, extrusion of polymer fluids, cooling of a metallic plate in a bath, colloidal and suspension solutions and artificial and natural gels. Such flows become more important in porous media due to their applications in engineering. Typical applications include paper and textile coating, enhanced oil recovery, and composite manufacturing processes. A good amount of work in the theory of viscoelastic flows with a fractional calculus approach [1-6] is done in the literature. This is natural for the description of complex dynamical systems such as polymeric materials. The complexity and unpredictability in the configurational dynamics of such polymeric materials are a result of polymer chain configurations. This is reflected in the discontinuity in the chain segment movements and in the propensity for the particles to the group and in this way move collectively.

The investigation of the flow through a permeable porous medium is of major significance in industry, bio and geomechanics, e.g. liquids filtration and flow of water from mountains and stones. The solid matrix having bores in it forms the porous medium. Permeability and porosity are the two main characters of porous media. Prior investigations reveal that it can be described by Darcy's law. The study of fluid flow through a porous medium is an important and hot topic due to its several applications. For example, this study helps in the suction of unrefined petroleum from the pores of the stones. In [7],
Jyothi et al. considered the cylindrical surface with inside having porous medium linings and contemplated the pulsatile flow of Jeffrey fluid. The unsteady non-Newtonian fluid flow due to rectified sinusoidal pulses is studied in [8]. In [9], Elshehawey et al. examined the peristaltic transport in a porous medium through an asymmetric channel.

Numerous scientists and researchers have contemplated the unsteady non-Newtonian fluids flow under the influence of the oscillating pressure gradient [10-16]. For instance, in [17] Manos et al. presented the exact analytical solution for the Jeffrey fluid flows in the curved duct caused by an oscillating circumferential pressure gradient. The results are verified numerically with the finite difference method. Exact analytical solutions for the motion of fraction Burgers' fluid driven by infinite plan oscillation as well as by the application of oscillating pressure gradient is investigated by the Khan et al. [18]. They used an integral transform (Laplace and Fourier transform) methods to solve the partial differential equations governing the problem. In [19], authors studied the generalized Maxwell fluid rotating flow in annulus region between two circular cylinders. The flow is caused by the time-dependent oscillating and rotating pressure gradient applied to the inner cylinder. The integral transforms, Laplace and Hankel are used for the solution.

Above discussion shows that a lot of work has been done to investigate the flow with a sinusoidal waveform effect on an oscillating flow but the study of oscillating flow with trapezoidal pressure waveform is a lack in literature. In [20], Ruckmongathan has observed that the triangular and trapezoidal waveforms are helpful to minimize the power consumption in liquid crystal displays in electronics. This provides a motivation to study the unanswered problems corresponding to fluid flow caused by the trapezoidal pressure waveforms.

To the best of my knowledge, an oscillating flow under the effect of trapezoidal pressure waveform for generalized Burgers’ fluid in a porous medium is yet to be investigated. We considered this problem in this paper and obtained analytical and semi-analytical solutions for velocity distribution profile. We used finite Hankel transform and similarity arguments to recover analytical solution. The solution is verified numerically with Stehfests' algorithm used for numerical inversion of Laplace transform.

2. Mathematical Modeling of the Problem

The constitutive equations for generalized Burgers' fluids are given by [21]

$$ T = S - pI, \lambda_2 \frac{\delta^2 S}{\delta t^2} + \lambda_1 \frac{\delta S}{\delta t} + S = \mu \left[\lambda_4 \frac{\delta^2 A}{\delta t^2} + \lambda_3 \frac{\delta A}{\delta t} + A \right] \tag{1} $$

where T is the Cauchy stress tensor $-pI$ is the indeterminate spherical stress, S is the extra stress tensor, $A = L^T + L$, $L = \nabla v$, μ is the dynamic viscosity of the fluid, λ_1, λ_2, λ_3 are the relaxation time and retardation time respectively, λ_4 are the material parameters heaving the dimension $[s^2]$ and $\delta / \delta t$ denotes the upper convected derivative defined as

$$ \frac{\delta^2 S}{\delta t^2} = \frac{\delta}{\delta t} \left(\frac{\delta S}{\delta t} \right) = \frac{\delta}{\delta t} \left((\frac{d}{dt} - L)S - SL \right). \tag{2} $$

The generalized Burgers’ model given by Eq. (1) reduces at Burgers’ fluid for $\lambda_4 = 0$, Oldroyd-B fluid for $\lambda_4 = \lambda_3 = 0$, Maxwell fluid for $\lambda_2 = \lambda_1 = \lambda_4 = 0$ and the Newtonian fluid for $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$. Assume a capillary tube of radius R with an axis of rotation along the z-axis. The capillary tube is filled with an incompressible, homogeneous, laminar and viscoelastic Burgers’ fluid (Fig. 1). The capillary tube is driven by the applied pressure gradient in the axial direction that varies with trapezoidal pressure form, that is

$$ -\nabla p = P_0 (8 + f(t))e_z, P_0 \neq 0, \tag{3} $$

where

$$ f(t) = \frac{P_0}{P_0} \sum_{l=1}^{\infty} g_{op}(t-2l\pi) = \frac{P_0}{P_0} \sum_{l=1}^{\infty} a_l \sin(kt), \tag{4} $$

$$ g_{op}(t) = \begin{cases} -4 - \frac{4t}{\pi}, & -\pi \leq t \leq -\frac{3\pi}{4} \\ -1, & -\frac{3\pi}{4} \leq t \leq -\frac{\pi}{4} \\ \frac{4t}{\pi}, & -\frac{\pi}{4} \leq t \leq \frac{\pi}{4} \\ 1, & \frac{\pi}{4} \leq t \leq \frac{3\pi}{4} \\ 4 - \frac{4t}{\pi}, & \frac{3\pi}{4} \leq t \leq \pi \end{cases} \tag{5} $$

An analytical study of the oscillating flow of generalized Burgers’ fluid

Fig. 1. Geometry of the problem

\[a_z = \frac{8}{\pi k^2} \left[\sin \left(\frac{3\pi k}{4} \right) + \sin \left(\frac{k\pi}{4} \right) \right], \]

in which \(e_z \) is the unit vector in the \(z \)-direction parallel to the direction of the flow and \(P_0, P_1 \) are the amplitudes for the steady and pulsating part of the pressure gradient in the axial direction. We assume that the fluid velocity \(v \) and the extra stress tensor \(\tau \) are of the form

\[v = \nu(r,t) = v(r,t) e_z, \quad \tau = \tau(r,t) e_z. \]

Introducing Eqs. (7) and \(\tau(0,0) = 0 \) in (1), we get [22]

\[\tau = \lambda_1 \frac{\partial \tau}{\partial t} + \lambda_2 \frac{\partial^2 \tau}{\partial t^2} = \mu \left(\lambda_1 \frac{\partial^2}{\partial r^2} + \lambda_2 \frac{\partial}{\partial r} \right) v, \]

where \(\tau = \tau(0,t) \) is one of the nonzero component of the extra stress tensor. The continuity equation and the balance of linear momentum in the absence of body force for the incompressible porous medium are

\[\nabla \cdot v = 0, \]

\[\rho (\nabla \cdot v + \frac{\partial \tau}{\partial t}) = -\nabla p + \nabla \cdot \tau + \mathcal{R}_d, \]

where \(\rho \) is density, \(p \) is pressure and \(\mathcal{R}_d \) is Darcy’s resistance of porous medium. The Darcy’s resistance for generalized Burgers’ fluid is given by the following equation [23]

\[\mathcal{R}_d = \frac{2 \mu \nu}{k_0} \left(\lambda_1 \frac{\partial}{\partial r} + \lambda_2 \frac{\partial^2}{\partial r^2} \right) v, \]

where \(\mathcal{R}_d = \kappa e_z, k_0 \) is the permeability constant of the medium and \(\nu \) is the porosity of the medium. In the presence of pressure gradient (3), the balance of linear momentum Eq. (10) takes the form

\[\rho \left(1 + \lambda_1 \frac{\partial}{\partial t} + \lambda_2 \frac{\partial^2}{\partial t^2} \right) \frac{\partial v}{\partial t} = \rho p_0 (8 + f(t)) + \frac{1}{r} \frac{\partial}{\partial r} (\tau r \nu) + \mathcal{R}, \]

where \(\tau \) is shear stress in the axial direction. Applying the operator \(1 + \lambda_1 \left(\frac{\partial}{\partial t} + \lambda_2 \frac{\partial^2}{\partial t^2} \right) \) to Eq. (12) and using Eqs. (3), (8) and (11) we get

\[\rho \left(1 + \lambda_1 \frac{\partial}{\partial t} + \lambda_2 \frac{\partial^2}{\partial t^2} \right) \frac{\partial v}{\partial t} = p_0 \left(1 + \lambda_1 \frac{\partial}{\partial t} + \lambda_2 \frac{\partial^2}{\partial t^2} \right) (8 + f(t)) \]

\[= \mu \left(\lambda_1 \frac{\partial^2}{\partial r^2} + \lambda_2 \frac{\partial}{\partial r} + 1 \right) \frac{1}{r} \frac{\partial}{\partial r} (r \nu) - \frac{\partial \tau}{\partial \tau} \left(1 + \lambda_1 \frac{\partial}{\partial t} + \lambda_2 \frac{\partial^2}{\partial t^2} \right) v. \]

The appropriate boundary conditions for velocity are

\[v(R,t) = 0, \quad \frac{\partial v(r,0)}{\partial r} = 0. \]

We introduce the following dimensionless parameters in Eqs. (13) and (14),

\[v^* = \frac{v}{v_\infty}, \quad t^* = \frac{t}{t_0}, \quad v_\infty = \frac{P_0 R^2}{\mu}, \quad r^* = \frac{r}{R}, \quad \omega = \frac{R^3}{v}, \quad \lambda_1^* = \frac{\lambda_1}{\omega}, \quad \lambda_2^* = \frac{\lambda_2}{\omega}, \quad \lambda_3^* = \frac{\lambda_3}{\omega}, \quad \lambda_4^* = \frac{\lambda_4}{\omega}, \quad f^*(t^*) = f(\omega t^*), \quad \frac{1}{K_0} = \frac{\psi R^3}{\kappa_0}. \]

where K_o is the permeability parameter of the porous medium. Dropping the "*" notations, the governing Eq. (13) in non-dimensional form

$$
\left(\lambda_2 \frac{\partial^2 v}{\partial t^2} + \lambda_1 \frac{\partial v}{\partial t} + 1 \right) \frac{\partial^2 v}{\partial t} = \left(\lambda_2 \frac{\partial^2 v}{\partial t^2} + \lambda_1 \frac{\partial v}{\partial t} + 1 \right) (8 + f(t)) = \left(\lambda_4 \frac{\partial^2 v}{\partial t^2} + \lambda_3 \frac{\partial v}{\partial t} + 1 \right) \frac{\partial^2 v}{\partial r^2} + \lambda_2 \frac{\partial v}{\partial r} + \lambda_2 \frac{\partial^2 v}{\partial t^2} v,
$$

(16)

along with the boundary conditions (14)

$$
v(1, t) = 0, \left. \frac{\partial v(r, t)}{\partial r} \right|_{r=0} = 0.
$$

(17)

The trapezoidal harmonics is

$$
f(t) = P \sum_{k=1} a_k \sin(k \omega t),
$$

(18)

where $P = P_i / P_o$.

3. Solution of the Problem

3.1 Steady state solution

We assume that the solution of Eq. (16) is of the form

$$
v(r, t) = v_s(r) + v_t(r, t)
$$

(19)

where $v_s(r)$ is the steady state solution and $v_t(r, t)$ is the transient part of the solution. The property of this solution is that when $t \to \infty$, we recover the steady part of the solution. Substituting the Eq. (19) in Eq. (16), we obtain

$$
\frac{\partial^2 v_s}{\partial r^2} + 1 \frac{\partial v_s}{\partial r} - \frac{v_s}{K_o} = -8,
$$

(20)

$$
\left(\lambda_2 \frac{\partial^2 v_t}{\partial t^2} + \lambda_1 \frac{\partial v_t}{\partial t} + 1 \right) \frac{\partial^2 v_t}{\partial t} = \left(\lambda_2 \frac{\partial^2 v_t}{\partial t^2} + \lambda_1 \frac{\partial v_t}{\partial t} + 1 \right) f(t) = \left(\lambda_4 \frac{\partial^2 v_t}{\partial t^2} + \lambda_3 \frac{\partial v_t}{\partial t} + 1 \right) \frac{\partial^2 v_t}{\partial r^2} + \lambda_2 \frac{\partial v_t}{\partial r} + \lambda_2 \frac{\partial^2 v_t}{\partial t^2} \cdot v_t.
$$

(21)

The general solution for non-homogeneous Eq. (20) can be found as the sum of a solution for homogeneous part with a particular solution. The homogeneous part of Eq. (20) is

$$
x^2 \frac{\partial^2 v_s}{\partial x^2} + x \frac{\partial v_s}{\partial x} + x^2 v_s = 0,
$$

(22)

where we substituted $x = r \sqrt{K_o}$ and $t = \sqrt{t}$. Eq. (22) is the Bessel differential equation of order zero with the solution

$$
v_{so}(r) = c_i I_0 \left(r \sqrt{K_o} \right) + c_2 Y_0 \left(-r \sqrt{K_o} \right),
$$

(23)

where we replaced back $x = r \sqrt{K_o}$, I_0 is the modified Bessel function of the first kind of order zero, Y_0 is the Bessel function of the second kind of order zero. It is trivial to see that the particular solution of Eq. (20) is

$$
v_{sp} = 8 K_o.
$$

(24)

The general solution for nonhomogeneous Eq. (20) is

$$
v_t(r) = c_i I_0 \left(r \sqrt{K_o} \right) + c_2 Y_0 \left(-r \sqrt{K_o} \right) + 8 K_o.
$$

(25)

With the help of boundary conditions (17), we find that $c_i = -8 K_o / \left(I_0 \left(\sqrt{K_o} \right) \right)$, $c_2 = 0$, thus the steady state solution for the velocity is

$$
v_s(r) = \frac{8 K_o}{I_0 \left(\sqrt{K_o} \right)} \left(r \sqrt{K_o} \right) + 8 K_o.
$$

(26)
3.2 Transient solution

In order to find the transient velocity of the fluid we apply the finite Hankel transform to Eq. (21)

\[
\left(\lambda_2 \frac{\partial^2}{\partial t^2} + \lambda_1 \frac{\partial}{\partial t} + 1 \right) \frac{\partial v}{\partial t} (r, t) = \frac{J_i(r_0)}{r_e} \left(\lambda_2 \frac{\partial^2}{\partial t^2} + \lambda_1 \frac{\partial}{\partial t} + 1 \right) f(t)
\]

\[
= \left(\lambda_4 \frac{\partial^2}{\partial t^2} + \lambda_3 \frac{\partial}{\partial t} + 1 \right) \left(-r_e^2 v_i (r_e, t) \right) - \frac{1}{K_0} \left(\lambda_4 \frac{\partial^2}{\partial t^2} + \lambda_3 \frac{\partial}{\partial t} + 1 \right) v_i (r_e, t),
\]

where \(v_i (r_e, t) = \int_0^1 v_i (r, t) J_0 (r_e r) dr \), \(J_0 \) is the zeroth order Bessel function of first kind and \(J_0 (r_e) = 0 \) for all \(n \). Consider that the solution of Eq. (27) is in the series form

\[
v_i (r_e, t) = \sum_{k=1}^{\infty} \left[a_{nk} \cos(k \omega t) + b_{nk} \sin(k \omega t) \right].
\]

where \(a_{nk} \), \(b_{nk} \) are coefficients to be determined. Substituting Eqs. (18) and (28) in Eq. (27) and comparing the coefficients of \(\sin(k \omega t) \) and \(\cos(k \omega t) \) respectively, we have the following system of equations,

\[
\alpha_{nk} a_{nk} - \beta_{nk} b_{nk} = P \alpha_k \left(-1 + \lambda_2 (k \omega)^2 \right) \frac{J_i(r_0)}{r_e}, \quad n, k = 1, 2, 3, \ldots
\]

\[
\beta_{nk} a_{nk} + \alpha_{nk} b_{nk} = P \lambda k \omega a_k \frac{J_i(r_0)}{r_e}, \quad n, k = 1, 2, 3, \ldots
\]

where

\[
\alpha_{nk} = -\lambda_2 (k \omega)^2 (1 + r_e^2 \lambda_3 + \frac{\lambda_4}{K_0}) k \omega, \quad n, k = 1, 2, 3, \ldots
\]

\[
\beta_{nk} = r_e^2 + \frac{1}{K_0} - (\lambda_3 + \lambda_4 r_e^2 + \frac{\lambda_5}{K_0}) (k \omega)^2, \quad n, k = 1, 2, 3, \ldots
\]

Solving the system of Eqs. (29) and (30) we get

\[
a_{nk} = P \alpha_k e_{nk} \frac{J_i(r_0)}{r_e}, \quad n, k = 1, 2, 3, \ldots
\]

\[
b_{nk} = P \alpha_k \delta_{nk} \frac{J_i(r_0)}{r_e}, \quad n, k = 1, 2, 3, \ldots
\]

where

\[
e_{nk} = \frac{[\lambda_2 (k \omega)^2 - 1] \alpha_{nk} + \lambda_4 k \omega \beta_{nk}}{\alpha_{nk}^2 + \beta_{nk}^2},
\]

\[
\delta_{nk} = \frac{\lambda_3 k \omega}{} \frac{\alpha_{nk} - [\lambda_2 (k \omega)^2 - 1] \beta_{nk}}{\alpha_{nk}^2 + \beta_{nk}^2}.
\]

With the help of Eqs (33)-(36), the solution of differential equation (27) in the series form takes the form,

\[
v_i (r_e, t) = P \sum_{i=1}^{\infty} a_i \left[e_{nk} \cos(k \omega t) + \delta_{nk} \sin(k \omega t) \right].
\]

If \(v(r, t), \quad r \in [0, 1] \) has the Hankel transform \(v(r_e, t) \), the inverse Hankel is

\[
v(r, t) = 2 \sum_{n=1}^{\infty} \frac{J_n(r_0)}{n} v(r_e, t).
\]

The transient part of the velocity can be obtained by applying the inverse Hankel transform to Eq. (37)
\[v_j(r,t) = 2p \sum_{n=1}^{\infty} \left\{ \frac{J_n(r r_j)}{r J_1(r_j)} \sum_{k=1}^{\infty} a_k \left[e^{i n \omega t} \cos(k \omega t) + \delta_{nk} \sin(k \omega t) \right] \right\}. \]

(39)

The solution for velocity field can be obtained by inserting Eqs. (26), (39) in Eq. (19),

\[v(r,t) = \frac{-8K_0}{I_0(\sqrt{K_0^2+1})} + 8K_0 + 2p \sum_{n=1}^{\infty} \left\{ \frac{J_n(r r) \sum_{k=1}^{\infty} a_k \left[e^{i n \omega t} \cos(k \omega t) + \delta_{nk} \sin(k \omega t) \right]}{r J_1(r)} \right\}. \]

(40)

3.3 Semi-analytical Solution

In this section, we determine a new form of solutions to the problem given by Eqs. (16) and using the Laplace transform coupled with the classical method for the ordinary differential equations. For a comparative study of solutions, we used the following initial conditions to solve Eq. (27),

\[v(r,0) = g_0(r), \quad \frac{\partial v(r,0)}{\partial t} = g_1(r), \quad \frac{\partial^2 v(r,0)}{\partial t^2} = g_2(r). \]

(41)

where \(g_0, g_1 \) and \(g_2 \) are piece-wise continuous functions. The finite Hankel transform \(\mathcal{H}_n \) form of initial conditions in Eq. (41) is

\[\mathcal{H}_n [v_j(r,0)] = \mathcal{H}_n [g_0(r)] = \gamma_{j0}, \quad \mathcal{H}_n [\frac{\partial v_j(r,0)}{\partial t}] = \gamma_{j1}, \quad \mathcal{H}_n [\frac{\partial^2 v_j(r,0)}{\partial t^2}] = \gamma_{j2}. \]

(42)

Applying the Laplace transform to Eq. (27) along with the initial conditions (42) we get the transformed transient velocity in the form

\[\mathcal{V}_j(r_n,q) = A(r_n,q) + B(r_n,q) \frac{J_n(r_n)}{r_n}, \]

(43)

where

\[A(r_n,q) = \frac{-\gamma_{10} + \lambda_1 (r_n^2 + K_0^{-1}) + \lambda_2 (r_n^2 + K_0^{-1})^2}{\lambda_1 (r_n^2 + K_0^{-1}) + \lambda_2 (r_n^2 + K_0^{-1})^2} \]

(44)

\[B(r_n,q) = \sum_{i=1}^{\infty} a_i \frac{k \omega q + \lambda_1 (r_n^2 + K_0^{-1})}{q^2 + [1 + \lambda_1 (r_n^2 + K_0^{-1})]q + \lambda_2 (r_n^2 + K_0^{-1})}. \]

(45)

Here we have used \(\mathcal{F}(q) = P \sum_{i=1}^{\infty} a_i \frac{k \omega q}{q^2 + k \omega^2}, \quad f'(0) = P \sum_{i=1}^{\infty} a_i k \omega, \) and \(\mathcal{V}_j(r_n,q) = \int_0^\infty v_j(r_n,t)e^{-q^2}dt \) is the Laplace transform of \(v_j(r_n,q) \). By applying the inverse Hankel transform to Eq. (43)

\[\mathcal{V}(r,q) = 2 \sum_{n=1}^{\infty} J_n(r_n) A(r_n,q) + 2 \sum_{n=1}^{\infty} J_n(r_n) B(r_n,q). \]

(46)

In order to obtain the inverse Laplace transform, we use an accuracy numerical algorithm, namely the Stehfest's algorithm [24, 25] for numerical Laplace transform inversion

\[v_j(r,t) = \frac{\ln 2}{t} \sum_{i=1}^{M/2} L_i \mathcal{V}_j \left(r_n, \frac{\ln 2}{t} \right) \]

(48)

where a free integral parameter \(M \) represents the number of terms used in the summation of Eq. (47).
3.4 Derivations of the shear stress

Applying the differential operator $\mu(\lambda_r\partial^2 / \partial t^2 + \lambda_r\partial / \partial t + 1)\times \partial / \partial r$ to Eq. (40) and using Eq. (8), we get

$$\tau_n + \lambda_r^2 \tau_{nn} + \lambda_r^2 \tau_{rr} = -2\mu P \sum_{k=1}^{\infty} \left[\frac{J_1(\lambda_k r_t)}{J_1(\lambda_k)} \sum_{n=1}^{\infty} a_k \alpha_{nk} \cos(k\omega t) + \beta_{nk} \sin(k\omega t) \right],$$

where $\alpha_{nk} = -\lambda_r k^2 \omega^2 \epsilon_{nk} + \lambda_r k \omega \delta_{nk} + e_{nk}$, $\beta_{nk} = -\lambda_r k^2 \omega^2 \delta_{nk} - \lambda_r k \omega \epsilon_{nk} + \delta_{nk}$. Applying the Laplace transform along with the initial conditions $\tau_n(r, 0) = \partial \tau_n(r, t) / \partial t |_{t=0} = 0$, we can write

$$\bar{\tau}_n(r, q) = -2\mu P \sum_{k=1}^{\infty} \left[\frac{J_1(\lambda_k r_t)}{J_1(\lambda_k)} \sum_{n=1}^{\infty} a_k \left(\alpha_{nk} q + \frac{k \omega \beta_{nk}}{q^2 + k^2 \omega^2} \right) \right].$$

Applying the inverse Laplace transform to Eq. (50), we recover the shear stress $\tau_n(r, t)$,

$$\tau_n(r, t) = -2\mu P \sum_{k=1}^{\infty} \left[\frac{J_1(\lambda_k r_t)}{J_1(\lambda_k)} \sum_{n=1}^{\infty} a_k \left(\alpha_{nk} F_{nk}(t) + \beta_{nk} F_{nk}(t) \right) \right].$$

where

$$F_{nk}(t) = \frac{(-\lambda_r \lambda_k \omega^2 \epsilon_{nk} + \lambda_r \lambda_k k \omega \delta_{nk} + e_{nk})}{2\lambda_k} \left(-\lambda_r^2 (1 + \lambda_r k^2 \omega^2) (-1 + e^{-\frac{4\lambda_k \lambda_r \omega^2}{\lambda_k}}) + \sqrt{-4\lambda_r^2 + \lambda_k^2} \left((-1 + \lambda_r k^2 \omega^2) \cos(k \omega t) - \lambda_r k \omega \sin(k \omega t) \right) \right)$$

$$2\sqrt{-4\lambda_r^2 + \lambda_k^2} \left(1 + k^2 \omega^2 \left(\lambda_k^2 + \lambda_r^2 (-2 + \lambda_r k^2 \omega^2) \right) \right)$$

$$\frac{(-\lambda_r \lambda_k \omega^2 \epsilon_{nk} + \lambda_r \lambda_k k \omega \delta_{nk} + e_{nk})}{2\lambda_k} \left((\frac{\lambda_r}{\lambda_k} + \frac{\lambda_k}{\lambda_r}) \omega^2 + 2 \sin(k \omega t) - 2 k \omega (\lambda_r \cos(k \omega t) + \lambda_k \omega \sin(k \omega t)) \right)$$

$$2(1 + k^2 \omega^2 \left(\lambda_k^2 + \lambda_r^2 (-2 + \lambda_r k^2 \omega^2) \right))$$

$$\frac{(-\lambda_r \lambda_k \omega^2 \epsilon_{nk} + \lambda_r \lambda_k k \omega \delta_{nk} + e_{nk})}{2\lambda_k} \left(\frac{\lambda_r}{\lambda_k} + \frac{\lambda_k}{\lambda_r} \omega^2 + 2 \sin(k \omega t) - 2 k \omega (\lambda_r \cos(k \omega t) + \lambda_k \omega \sin(k \omega t)) \right)$$

$$2\sqrt{-4\lambda_r^2 + \lambda_k^2} \left(1 + k^2 \omega^2 \left(\lambda_k^2 + \lambda_r^2 (-2 + \lambda_r k^2 \omega^2) \right) \right)$$

$$\frac{(-\lambda_r \lambda_k \omega^2 \epsilon_{nk} + \lambda_r \lambda_k k \omega \delta_{nk} + e_{nk})}{2\lambda_k} \left(\frac{\lambda_r}{\lambda_k} + \frac{\lambda_k}{\lambda_r} \omega^2 + 2 \sin(k \omega t) - 2 k \omega (\lambda_r \cos(k \omega t) + \lambda_k \omega \sin(k \omega t)) \right)$$

$$2\sqrt{-4\lambda_r^2 + \lambda_k^2} \left(1 + k^2 \omega^2 \left(\lambda_k^2 + \lambda_r^2 (-2 + \lambda_r k^2 \omega^2) \right) \right)$$

4. Numerical Results and Discussions

In the sections 3, analytical and semi-analytical results for the flow problem of a generalized Burgers’ fluid model are recovered. The motion of fluids is generated by the channel tube, which is moving with the time-dependent velocities, and by the time-dependent trapezoidal gradient in the flow direction.

Closed form for the fluid velocity has been determined by coupling the finite Hankel transform with the series solution. The obtained results have a general character; therefore, many particular cases such as Burgers’ fluid, Oldroyd-B fluid, Maxwell fluid, and Newtonian fluid can be obtained.

4.1 Stehfest’s inverse Laplace transform

We prepared the Figs. 3-6 to demonstrate the influence of permeability of porous medium K_0 on the fluid velocity for various types of fluid models. These include a generalized Burgers’ fluids for which $\lambda_4 = 1.5, \lambda_1 = 0.76, \lambda_3 = 5, \lambda_9 = 9$, a Burgers’ fluid for which $\lambda_4 = 0, \lambda_1 = 0.76, \lambda_3 = 5, \lambda_9 = 9$, an Oldroyd-B fluid for which $\lambda_4 = 0, \lambda_3 = 0.76, \lambda_1 = 0, \lambda_9 = 9$, and a Maxwell fluid for which $\lambda_4 = 0, \lambda_3 = 0, \lambda_1 = 0, \lambda_9 = 9$. The flow velocity $v_r(t)$ is up to order 10^{-8} and therefore is negligible.
Fig. 2. Comparison of the numerical and analytical transient velocity $v_r(t,r)$ for $t = 0.5, \omega = 0.26, K_0 = 0.1, \lambda_1 = 0.37, \lambda_2 = 0.43, \lambda_3 = 0.59$.

Fig. 3. Velocity profile $v_r(t,r)$ versus r for Maxwell fluid for $t = 1, \omega = \pi / 4$ and for different values of K_0.

Fig. 4. Velocity profile $v_r(t,r)$ versus r for Oldroyd-B fluid for $t = 1, \omega = \pi / 4$ and for different values of K_0.

Fig. 5. Velocity profile $v_r(t,r)$ versus r for Burgers’ fluid for $t = 1, \omega = \pi / 4$ and for different values of K_0.

Table 1. Absolute error in the numerical and analytical transient velocity $v_r(t,r)$ for $t = 0.5, \omega = 0.26, K_0 = 0.1, \lambda_1 = 0.37, \lambda_2 = 0.43, \lambda_3 = 0.59$, and $\lambda_4 = 0.72$.

<table>
<thead>
<tr>
<th>r</th>
<th>Analytical transient velocity $v_r(t,r)$</th>
<th>Numerical transient velocity $v_r(t,r)$</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.121207×10^{-3}</td>
<td>2.121231×10^{-3}</td>
<td>7.514652 $\times 10^{-5}$</td>
</tr>
<tr>
<td>0.05</td>
<td>2.209121×10^{-3}</td>
<td>2.209464×10^{-3}</td>
<td>7.470467 $\times 10^{-5}$</td>
</tr>
<tr>
<td>0.1</td>
<td>2.203586×10^{-3}</td>
<td>2.203509×10^{-3}</td>
<td>7.706446 $\times 10^{-5}$</td>
</tr>
<tr>
<td>0.15</td>
<td>2.19315×10^{-3}</td>
<td>2.19307×10^{-3}</td>
<td>7.967605 $\times 10^{-5}$</td>
</tr>
<tr>
<td>0.2</td>
<td>2.178049×10^{-3}</td>
<td>2.177965×10^{-3}</td>
<td>8.368017 $\times 10^{-5}$</td>
</tr>
<tr>
<td>0.25</td>
<td>2.158271×10^{-3}</td>
<td>2.158183×10^{-3}</td>
<td>8.800341 $\times 10^{-5}$</td>
</tr>
<tr>
<td>0.3</td>
<td>2.132081×10^{-3}</td>
<td>2.131987×10^{-3}</td>
<td>9.394519 $\times 10^{-5}$</td>
</tr>
<tr>
<td>0.35</td>
<td>2.099396×10^{-3}</td>
<td>2.099297×10^{-3}</td>
<td>9.952013 $\times 10^{-5}$</td>
</tr>
<tr>
<td>0.4</td>
<td>2.058958×10^{-3}</td>
<td>2.058851×10^{-3}</td>
<td>1.067637 $\times 10^{-4}$</td>
</tr>
<tr>
<td>0.45</td>
<td>2.008768×10^{-3}</td>
<td>2.008654×10^{-3}</td>
<td>1.139441 $\times 10^{-4}$</td>
</tr>
<tr>
<td>0.5</td>
<td>1.948042×10^{-3}</td>
<td>1.94792×10^{-3}</td>
<td>1.216925 $\times 10^{-4}$</td>
</tr>
<tr>
<td>0.55</td>
<td>1.8741×10^{-3}</td>
<td>1.873971×10^{-3}</td>
<td>1.282115 $\times 10^{-4}$</td>
</tr>
<tr>
<td>0.6</td>
<td>1.784366×10^{-3}</td>
<td>1.784232×10^{-3}</td>
<td>1.341235 $\times 10^{-4}$</td>
</tr>
<tr>
<td>0.65</td>
<td>1.676686×10^{-3}</td>
<td>1.676549×10^{-3}</td>
<td>1.377357 $\times 10^{-5}$</td>
</tr>
<tr>
<td>0.7</td>
<td>1.54648×10^{-3}</td>
<td>1.546339×10^{-3}</td>
<td>1.402362 $\times 10^{-7}$</td>
</tr>
<tr>
<td>0.75</td>
<td>1.390039×10^{-3}</td>
<td>1.389901×10^{-3}</td>
<td>1.381931 $\times 10^{-7}$</td>
</tr>
<tr>
<td>0.8</td>
<td>1.202816×10^{-3}</td>
<td>1.202685×10^{-3}</td>
<td>1.308526 $\times 10^{-7}$</td>
</tr>
<tr>
<td>0.85</td>
<td>9.77348×10^{-4}</td>
<td>9.772318×10^{-4}</td>
<td>1.162107 $\times 10^{-7}$</td>
</tr>
<tr>
<td>0.9</td>
<td>7.079592×10^{-4}</td>
<td>7.078676×10^{-4}</td>
<td>9.15698 $\times 10^{-8}$</td>
</tr>
<tr>
<td>0.95</td>
<td>3.863463×10^{-4}</td>
<td>3.862918×10^{-4}</td>
<td>5.451691 $\times 10^{-9}$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
As anticipated, the drag force falls as the permeability of porous medium rises and this increases the velocity profile for all kinds of fluids. This is resemblance with the fact that the velocity profile reduces with permeability. Moreover, an examination and comparison of different types of fluids demonstrate a notable difference through Figs. 3-6. These graphs reveal that velocity profile is higher for a Burgers’ fluid than those of a generalized Burgers’ and an Oldroyd-B fluid, whereas the velocity profile for the Maxwell fluid is maximum. It has been seen that for the Burgers’ fluid the velocity profile is monotonically increasing with respect to the parameter λ_2. However, we cannot generalize this result for selected values of λ_2, since λ_2 does not behave monotonically. Furthermore, it is observed that the velocity profile for the generalized Burgers’ fluid is monotonically decreasing function of the rheological parameter λ_4. These results graphically resemble with the results found by T. Hayat, M. Khan and S. Asgar in [26] in the absence of magnetic effects.

Fig. 7 represents the trapezoidal pressure waveform influence on the fluid velocity for various fluid models. These include a generalized Burgers’ fluids for which $\lambda_4 = 0.41, \lambda_3 = 0.76, \lambda_2 = 0.39, \lambda_1 = 0.2$, a Burgers’ fluid for which $\lambda_4 = 0, \lambda_3 = 0.76, \lambda_2 = 0.39, \lambda_1 = 0.2$, an Oldroyd-B fluid for which $\lambda_4 = 0, \lambda_3 = 0, \lambda_2 = 0, \lambda_1 = 0.2$, a Maxwell fluid for which $\lambda_4 = 0, \lambda_3 = 0, \lambda_2 = 0, \lambda_1 = 0.2$ and a Newtonian fluid $\lambda_4 = 0, \lambda_3 = 0, \lambda_2 = 0, \lambda_1 = 0$. It can be seen that the Newtonian fluid and Maxwell fluid’s velocity variation is trapezoidal and the time variation in the velocity for the Oldroyd-B fluid, the Burgers’ fluid and the Generalized Burgers’ fluid is close to the trapezoidal waveform.

Figs. 8-11 demonstrate the effects of material parameters $\lambda_j, j = 1, ..., 4$ on the generalized Burgers’ fluid velocity. It can be seen from the graphs that the role of λ_1 and λ_2 on the fluid velocity is similar as well as the role of λ_3 and λ_4 is similar. The fluid velocity increases with the increase in the retardation time λ_4 whereas an opposite effect on the velocity profile of generalized Burgers’ fluid is observed with the increase in the relaxation time λ_1. Moreover, the fluid velocity increases with the increase in the material parameter λ_4 and decreases with the increase in the material parameter λ_2.

![Fig. 6. Velocity profile $v(r,t)$ versus r for Maxwell fluid for $t = 1$, $\omega = \pi / 4$ and for different values of K_a.](image)

![Fig. 7. Trapezoidal pressure waveform effect on velocity profile $v(r,t)$ versus t for $r = 0.56$, $\omega = \pi / 12$, $K_a = 0.25$ and different fluids.](image)
Fig. 8. Velocity profile \(v(r,t) \) versus \(r \) for \(t = 10, \omega = \pi / 3, K_0 = 0.25, \lambda_2 = 1.9, \lambda_3 = 0.81, \lambda_4 = 0.66 \), for different val. of \(\lambda_i \).

Fig. 9. Velocity profile \(v(r,t) \) versus \(r \) for \(t = 10, \omega = \pi / 3, K_0 = 0.25, \lambda_2 = 2.6, \lambda_3 = 1.9, \lambda_4 = 0.66 \) and for different values of \(\lambda_i \).

Fig. 10. Velocity profile \(v(r,t) \) versus \(r \) for \(t = 10, \omega = \pi / 3, K_0 = 0.25, \lambda_2 = 1.63, \lambda_3 = 0.81, \lambda_4 = 0.66 \) and for different values of \(\lambda_i \).

Fig. 11. Velocity profile \(v(r,t) \) versus \(r \) for \(t = 10, \omega = \pi / 3, K_0 = 0.25, \lambda_2 = 1.63, \lambda_3 = 0.72, \lambda_4 = 0.81 \) and for different values of \(\lambda_i \).

Fig. 12. Trapezoidal pressure waveform effect on velocity profile \(\tau_\omega(r,t) \) versus \(t \) for \(r = 0.56, \omega = \pi / 12, K_0 = 0.25, \mu = 0.3 \) and different fluids.
Fig. 12 represents the trapezoidal pressure waveform influence on the fluid shear stress for various fluid models. These include a generalized Burgers’ fluids for which \(\lambda_4 = 0.97, \lambda_3 = 0.76, \lambda_2 = 0.1, \lambda_1 = 0.6 \), a Burgers’ fluid for which \(\lambda_4 = 0, \lambda_3 = 0.76, \lambda_2 = 0.1, \lambda_1 = 0.6 \), an Oldroyd-B fluid for which \(\lambda_4 = 0, \lambda_3 = 0.76, \lambda_2 = 0, \lambda_1 = 0.6 \) a Maxwell fluid for which \(\lambda_4 = 0, \lambda_3 = 0, \lambda_2 = 0, \lambda_1 = 0.6 \) and a Newtonian fluid \(\lambda_4 = 0, \lambda_3 = 0, \lambda_2 = 0, \lambda_1 = 0 \). The shear stress is linear for the Newtonian fluid, the Maxwell fluid and the Oldroyd-B fluid is linear and is curvilinear for the Generalized Burgers’ fluid and the Burgers’ fluid. The shear stress profile for the Generalized Burgers’ fluid and the Burgers’ fluid is close each other and is higher as compare to the Oldroyd-B fluid, the Maxwell fluid and the Newtonian fluid. Fig. 13 represents the effect of dynamic viscosity \(\mu \) on shear stress \(\tau_r \) for generalized Burgers’ fluid for which \(\lambda_4 = 0.96, \lambda_3 = 0.81, \lambda_2 = 0.76, \lambda_1 = 0.66 \). It has been seen that shear stress decreases with the increase in the dynamic viscosity.

![Shear Stress vs. \(\mu \)](image)

Fig. 13. Velocity profile \(v(r,t) \) versus \(r \) for generalized Burgers’ fluid for \(t = 10, \omega = \pi / 4, K_0 = 0.3 \) and for different values of \(\mu \).

5. Conclusions

The exact analytical solution for the Generalized Burgers’ fluid flow through a cylindrical microchannel in the presence of the trapezoidal pressure waveform is derived for velocity profiles with the help of similarity arguments and finite Hankel transforms. A Semi-analytic solution for motion is developed with the help of Stehfest’s method to verify the validity of the obtained solution. The following is a summary of the main findings in the paper.
- As anticipated, the drag force falls as the permeability of porous medium rises and this increases the velocity profile for all kinds of fluids (a generalized Burgers’ fluids, a Burgers’ fluid, a Maxwell fluid and an Oldroyd-B fluid). This is resemblance with the fact that the velocity profile reduces with permeability.
- The velocity time variation of the Newtonian fluid is trapezoidal, which is close to the Generalized Burgers’ fluid and the Oldroyd-B fluid, whereas the velocity time variation behavior for the Burgers’ and the Maxwell fluid is different.
- The material constants \(\lambda_i, i = 1, \ldots, 4 \) have significant effects on the fluid velocity.

Conflict of Interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

The author(s) received no financial support for the research, authorship and publication of this article.

References

Appendix

Derivation of Stehfest’s Algorithm

The method originates from Graver [28], where he considered sampling a function $f(t)$ with respect to the family of probability density functions

$$
\chi_m(c,t) = \frac{(2m)!}{m!(m-1)!} \left[1 - \exp(-ct)\right]^m \exp(-mct) \quad c > 0.
$$

(A1)

These functions are used to define the expectation of the function $f(t)$ as
An analytical study of the oscillating flow of generalized Burgers’ fluid

\[\tilde{f}_m = \int_0^\infty f(t) \chi_m(c,t) dt \]

(A2)

Using binomial expansion for \([1 - \exp(-ct)]^K \) and Eqs. (A1), (A2) we can write \(\tilde{f}_m \) in equivalent form

\[\tilde{f}_m = \frac{c(2m)!}{m!(m-1)!} \sum_{i=0}^{m} (-1)^i \binom{m}{i} \tilde{f}((m+i)c) \]

(A3)

where \(\tilde{f}(q) = \int_0^\infty f(t)e^{-q} dt \). Graver [28] also proved the asymptotic expansion

\[\tilde{f}_m \approx f\left(\frac{\ln 2}{c}\right) + \frac{\beta_1}{m} + \frac{\beta_2}{m^2} + \cdots \]

(A4)

which illustrates the convergence nature of \(\tilde{f}_m \) to the Laplace inverse function value \(f(\ln 2/c) \) as \(m \to \infty \). Later Stehfest [25] improved the Graver work for the approximation to \(f(\ln 2/c) \) as

\[f\left(\frac{\ln 2}{c}\right) = \sum_{n=1}^{M} a_n \tilde{f}_n + O\left(1/M^{M/2}\right) \]

(A5)

where coefficients \(a_n \) satisfy

\[\sum_{n=1}^{M} a_n \frac{1}{(1+M/2-m)^j} = \delta_{j0}, \quad j = 0, 1, \ldots, M/2-1 \]

(A6)

and is given by

\[a_n = \frac{(-1)^{n-1} m(1+M/2-m)^{M/2-1}}{(M/2)!} \left(\frac{M/2}{m} \right) \]

(A7)

Finally, the inversion formula (47) and (48) can be recovered by substituting these results in (A5) and replacing \(f(t) = v_r(r,t) \) and \(\tilde{f}(t) = \tilde{v}_r(r,t) \). Further details on the derivation can be seen in [25, 28, 29].

© 2019 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).