[1] Ahmadi, G., Self-similar solution of incompressible micropolar boundary layer flow over a semi-infinite plate,
International Journal of Engineering Science, 14(7), 1976, 639-646.
[2] Fang, T., A note on the unsteady boundary layers over a flat plate,
International Journal of Non-Linear Mechanics, 43(9), 2008, 1007-1011.
[3] Aziz, A., A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition,
Communications in Nonlinear Science Numerical Simulation, 14(4), 2009, 1064-1068.
[4] Li, Y., Rao, Y., Wang, D., Zhang, P. and Wu, X., Heat transfer and pressure loss of turbulent flow in channels with miniature structured ribs on one wall,
International Journal of Heat and Mass Transfer, 131, 2019, 584-593.
[5] Ushida, A., Shuichi Ogawa, S., Narumi, T., Sato, T. and Hasegawa T., Pseudo-laminarization effect of dilute and ultra-dilute polymer solutions on flows in narrow pipes,
Experimental Thermal Fluid Science, 99, 2018, 233-241.
[6] Najafi, E., Numerical quasilinearization scheme for the integral equation form of the Blasius equation,
Computational Methods for Differential Equations, 6(2), 2018, 141-156.
[7] Sewell, G.,
The numerical solution of ordinary and partial differential equations, John Wiley & Sons, New York, 2005.
[8] Parand, K., Dehghan, M. and Pirkhedri, A., Sinc-collocation method for solving the Blasius equation,
Physics Letters A, 373(44), 2009, 4060-4065.
[9] Iacono, R. and Boyd, J. P., Simple analytic approximations for the Blasius problem,
Physica D: Nonlinear Phenomena, 310, 2015, 72-78.
[10] Cortell, R., Numerical solutions of the classical Blasius flat-plate problem,
Applied Mathematics and Computation, 170(1), 2005, 706-710.
[11] Chavaraddi, K. B. and Page, M. H., Solution of Blasius equation by adomian decomposition Mmethod and differential transform method,
International Journal of Mathematics and its Applications, 55, 2018, 219–1226
[12] Jafarimoghaddam, A. and Aberoumand, S., Exact approximations for skin friction coefficient and convective heat transfer coefficient for a class of power law fluids flow over a semi-infinite plate: Results from similarity solutions,
Engineering Science and Technology, An International Journal, 20(3), 2017, 1115-1121.
[13] Benlahsen, M., Guedda, M. and Kersner, R., The generalized Blasius equation revisited,
Mathematical and Computer Modelling, 47(9-10), 2008, 1063-1076.
[14] Wang, L., A new algorithm for solving classical Blasius equation,
Applied Mathematics and Computation, 157(1), 2004, 1-9.
[15] Munson, B. R., Okiishi, T. H., Huebsch, I. W. W., Rothmayer, A. P.,
Fundamentals of fluid mechanics, Wiley Singapore, 2013.
[16] White, F. M.,
Fluid mechanics, McGraw-hill, 1986.
[17] Brugnano, L. and Magherini, C., Blended implementation of block implicit methods for ODEs,
Applied Numerical Mathematics, 42(1-3), 2002, 29-45.
[18] Ibáñez, J. J., Hernández, V., Ruiz, P. A. and Arias, E., A piecewise-linearized algorithm based on the Krylov subspace for solving stiff ODEs,
Journal of Computational Applied Mathematics, 235(7), 2011, 1798-1804.
[19] Brugnano, L., Magherini, C. and Mugnai, F., Blended implicit methods for the numerical solution of DAE problems,
Journal of Computational Applied Mathematics, 189(1-2), 2006, 34-50.
[20] Fazio, R., A novel approach to the numerical solution of boundary value problems on infinite intervals,
SIAM Journal on Numerical Analysis, 33(4), 1996, 1473-1483.
[21] Fang, T., Guo, F. and Chia-fon, F. L., A note on the extended Blasius equation,
Applied Mathematics Letters, 19(7), 2006, 613-617.
[22] Catal, S., Some of semi analytical methods for Blasius problem,
Applied Mathematics, 3(7), 2012, 724-728.
[23] Rahmanzadeh, M., Cai, L., and White, R. E., A new method for solving initial value problems,
Computers and Chemical Engineering, 58, 2013, 33-39.
[24] Nelder, J. A. and Mead, R., A simplex method for function minimization,
The Computer Journal, 7(4), 1965, 308-313.
[25] Bock, H. G., Diehl, M. M., Leineweber, D. B., Schlöder, J. P.,
Nonlinear Model Predictive Control, Birkhiiuser Verlag Basel, Switzerland, 2000.
[26] Rahmanzadeh, M. and Barfeie, M., An explicit time-stepping method based on error minimization for solving stiff system of ordinary differential equations,
Malaysian Journal of Mathematical Sciences, 12(2), 2018, 267-283.
[27] Ahmad, F. and Al-Barakati, W. H., An approximate analytic solution of the Blasius problem,
Communications in Nonlinear Science Numerical Simulation, 14(4), 2009, 1021-1024.