Viscoelastic Micropolar Convection Flows from an Inclined Plane with Nonlinear Temperature: A Numerical Study

S. Abdul Gaffar, P. Ramesh Reddy, V. Ramachandra Prasad, A. Subba Rao, B. Md. Hidayathulla Khan

1 Department of Information Technology, Mathematics Section, Salalah College of Technology
Salalah -211, Oman, Email: sa.gaffar@sct.edu.om
2 Department of Mathematics, Madanapalle Institute of Technology & Science
Madanapalle - 517325, India, Email: prreddy.mits@gmail.com
3 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology
Vellore – 632014, India, Email: rcpmaths@gmail.com
4 Department of Mathematics, Madanapalle Institute of Technology & Science
Madanapalle - 517325, India, Email: prreddy.mits@gmail.com
5 Department of Mathematics, Sir Vishveshwaraiah Institute of Science and Technology
Madanapalle – 517325, India, Email: bmdhkh@gmail.com

Received February 21 2019; Revised May 05 2019; Accepted for publication May 12 2019.
Corresponding author: S. Abdul Gaffar (sa.gaffar@sct.edu.om)
© 2020 Published by Shahid Chamran University of Ahvaz
& International Research Center for Mathematics & Mechanics of Complex Systems (M&MoCS)

Abstract. An analytical model is developed to study the viscoelastic micropolar fluid convection from an inclined plate as a simulation of electro-conductive polymer materials processing with nonlinear temperature. Jeffery's viscoelastic model is deployed to describe the non-Newtonian characteristics of the fluid and provides a good approximation for polymers. Micro-structural is one of the characteristics of non-Newtonian fluid that represents certain polymers, which constitutes a novelty of the present work. The normalized nonlinear boundary value problem is solved computationally with the Keller-Box implicit finite-difference technique. Extensive solutions for velocity, surface temperature, angular velocity, skin friction, heat transfer rate and wall couple stress are visualized numerically and graphically for various thermophysical parameters. Validation is conducted with earlier published work for the case of a vertical plate in the absence of viscous dissipation, chemical reaction and non-Newtonian effects. This particle study finds applications in different industries like reliable equipment design, nuclear plants, paint spray, thermal fabrication, water-based gel solvents, polymeric manufacturing process, gas turbines and different propulsion devices.

Keywords: Viscoelastic fluid, Micropolar Fluid, Nonlinear Temperature, Retardation time, Vorticity.

1. Introduction

The transport phenomena along an inclined surface arise in many applications in industry such as fuel combustion [1], condensation systems [2], magnetic thin film deposition [3], geophysical debris flows [4], thermal coating [5] and geothermal heat transfer from oblique faults [6]. In materials processing systems, the use of an inclined plane allows the thermal buoyancy force to easily modify as it is proportional to the inclination angle. Materials manufacturing operations (e.g. plastic coating dynamics [7], gel and thin film systems [8]) also feature non-Newtonian fluids. Rheology of the involved fluids significantly modifies momentum and heat transfer characteristics in such flows. In the context of
thermoplastic sheet processing, viscoelastic fluid flows may become unstable due to fluid elasticity which is controlled by the Weissenberg number [9]. Many rheological models have subsequently been deployed in recent years to study thermal and momentum boundary-layer flows from inclined surfaces. These studies have also utilized many advanced numerical methods which are required to accommodate the nonlinearity of such flows. Ilias and Rawi [10] used the incompressible ferrofluid model and Keller-Box method to investigate the MHD convection boundary layer flow from an inclined plate. They observed that the temperature enhances with an increase in the inclination angle. Kandasamy et al. [11] numerically investigated the effects of particle shape of radiative MHD water-based nanofluid past a nonlinear inclined surface. Khan et al. [12] analyzed the MHD mixed convection boundary layer flows past an inclined surface using homotopy analysis method. They observed a significant increase in heat and mass transfer boundary layer with an increase in the Lewis number. Prasad et al. [13] presented the radiative MHD mixed convection flow of Casson fluid past an infinite inclined plate with thermal diffusion using finite element method. They observed that the Casson fluid, magnetic and inclination angle parameters decelerate the boundary layer flow. Shamshuddin et al. [14] used the Casson fluid and Galerkin finite element method to investigate the chemically radiative MHD convection flows from an inclined porous plate. They observed a decrease in flow with a decrease in the inclination angle and an increase in thermal boundary layer flow. Few recent studies include, power-law fluid flows [15], nanofluid flows [16], third grade fluid flows [17], Williamson fluid flows [18], Maxwell fluid flows [19], Powell-Eyring Magneto-Nanofluid flows [20], Upper-Convected Maxwell Fluid fluids [21], Eyring Powell Nanofluid flows with chemical reaction [22], Williamson nanofluid flows over a Riga plate with chemical reaction [23] and micropolar fluid flows [24]. Among the many viscoelastic fluids available, Jeffrey model [25] has emerged as a good approximation for polymer dynamics. This model features three constants, namely the zero shear-rate viscosity, ratio of relaxation and retardation time and the retardation time. It is appropriate for nonlinear viscoelastic effects for which the simpler inelastic models cannot be used. Jeffrey’s model is obtained by adding a time derivative of the shear rate to the conventional Maxwell linear model. The convected Jeffrey model (Oldroyd model) also allows several other special cases to be obtained. When retardation time is neglected the original Maxwell model is retrieved. When the relaxation time is neglected then the case of a second order differential fluid is obtained for which the normal stress coefficient is zero. Finally, when both relaxation and retardation times are equivalent, then the Newtonian fluid case is obtained. Jeffrey’s model was used by Prasad et al. [26] to study steady-state thermal polymer coating flow of a plate in porous media. Gaffar et al. [27] investigated the non-isothermal and non-isolatul transport phenomena from a porous conical body using Jeffrey’s model. These studies all showed how significant modifications are computed in heat, flow and species diffusion fields due to viscoelastic material behavior. Ahmad and Ishak [28] studied the steady magnetohydrodynamic flow of Jeffrey fluid from a stretching vertical surface using an implicit finite difference method. They showed that increasing Jeffrey fluid parameters (relaxation and retardation parameters) reduce skin friction whereas the contrary effect is induced with a stronger magnetic field.

The micro-structural features of the fluid have been neglected in the rheology’s discusses above. Numerous polymers involve complex suspensions of a mind boggling nature which cannot be dissected adequately precisely with viscoelastic models. To suit this disparity in non-Newtonian models, Eringen [29], in the 1960s, developed the microcontinuum fluid mechanics that presents the thermodynamics of micro-structure that have different applications in industry and nature such as gyroratory motions, spin, couple stresses, etc. A simple version of micro-morphic fluid termed as microfluid have been developed by Eringen [30]. The micropolar fluid exhibits microscopic effects due to local structure and micro-motions of fluid elements. Eringen [31] further developed the thermo-microfluidic theory. Mishra et al. [32] studied the influence of radiative flow on micropolar fluid in transient magnetized flow with heat source from a semi-infinite horizontal plate using shooting technique. I고 and Marko [33] made an extensive investigation on micropolar fluid flows through a thin pipe with a constant circular cross-section. Naezer et al. [34] investigated the effects of magnetohydrodynamic parameter on the natural convection boundary layer flow of micropolar fluid in a porous container using finite element technique. Koriko et al. [35] showed that thermal stratification reduces temperatures and reduces micro-rotation profiles in magnetic micropolar fluid flow along a vertical surface with binary chemical reaction. Rashid et al. [36] observed that micro-rotation profiles increase with Hartman number in micropolar fluid flow of two horizontal parallel plates in a rotating system using optimal homotopy analysis method. Ramzan et al. [37] numerically investigated the flows of micropolar nanofluid over a rotating disk with slip and magnetic field effects. They observed that increasing magnetic field effects decelerates velocity and microrotation whereas accelerates both temperature and concentration profiles. Ramzan et al. [38] developed a mathematical model to examine the magnetohydrodynamic micropolar nanofluid flow in the presence of nonlinear radiation, dual stratification, and chemical reaction.

In recent years new sophisticated polymers have emerged which provide enhanced performance in many industrial sectors including aerospace, manufacturing, energy and medical engineering. These include magnetoelectric nanocomposites [39] and soft magnetic polymer gels [40]. These materials are frequently synthesized at high temperature. The current study therefore aims to simulate the transport phenomena in the flow of such materials along an inclined surface within micropolar fluid regime with nonlinear temperature. Jeffrey’s rheological model is deployed for non-Newtonian behavior. The emerging non-dimensional nonlinear boundary value problem is solved with the Keller box implicit finite difference method [41 – 44]. Verification of the computations is included via comparison with earlier studies. Extensive visualizations, graphs of the influence of key parameters (Deborah viscoelastic parameter, the ratio of relaxation to retardation parameter, Micropolar parameter, micro-inertia density parameter, inclination angle, mixed convection parameter, nonlinear temperature parameter, etc.) on velocity, temperature, skin friction, heat and mass transfer rate characteristics is included. The present problem to the authors’ knowledge has not been considered in the scientific
literature and constitutes a novel effort in thermodynamic analysis of magnetic non-Newtonian materials processing operations.

2. Micropolar Constitutive Model

This section presents the viscoelastic properties of the polymer of the rheological model considered in the present study. Actually, polymers are suspensionable and can be rotated and also get deformed. A micro-continuum model is necessary to mimic the micro-structural properties. The Eringen’s micropolar model [29] is a versatile and compatible polymeric flow model and is the simplified form of the more general micro fluid model [30]. The micropolar fluid behaves and exhibits properties of the microelements which possess local inertia. Micropolar fluids contain non-deformable rigid particles called volume elements and are defined by a micro-rotation vector. In micropolar fluid mechanics, the classical continuum laws are augmented with additional equations which account for the conservation of micro-inertia moments and the balance of first stress moments which arise due to the micro-structure in the fluid. Thereby the kinematic variables (gyration tensor, micro-inertia moment tensor) and the concepts of body moments, stress moments and microstresses are combined with classical continuum fluid dynamics theory. The momentum field equations for micropolar fluid in generalized form are as follows [45 – 46]:

Linear Momentum:

\[
(\lambda_2 + 2\mu + k) \nabla \nabla \cdot \mathbf{V} - (\mu + k) \nabla \times \nabla \times \mathbf{V} + k \nabla \times \mathbf{G} - \nabla P + \rho \mathbf{f} = \rho \mathbf{V} \quad \text{(i)}
\]

Angular Momentum:

\[
(\alpha^* + \beta^* + \gamma^*) \nabla \nabla \cdot \mathbf{G} - \gamma \nabla \times \nabla \times \mathbf{G} + k \nabla \times \mathbf{V} - 2k \mathbf{G} + \rho \mathbf{l} = \rho \mathbf{G} \quad \text{(ii)}
\]

where \(\rho \) is mass density of the micropolar fluid, \(\mathbf{V} \) is the translational velocity vector, \(\mathbf{G} \) is angular velocity vector, \(j \) is microinertial density, \(\mathbf{f} \) is the body force per unit mass vector. Also, \(\mathbf{l} \) is the body couple per unit mass vector, \(p \) is the thermodynamic pressure, \(\mu \) is the Newtonian dynamic viscosity, \(\lambda_2 \) is the Eringen second order viscosity coefficient, \(k \) is the vortex viscosity coefficient and \(\alpha^*, \beta^* \) and \(\gamma \) are spin gradient viscosity coefficients for micropolar fluids. In micropolar model we are confined to only two independent kinematical vector fields, viz., the velocity vector field and the axial vector field which simulates the spin or the micro-rotations of the micropolar fluid particles, which are assumed to be rigid. In the theory of micropolar fluid for unsteady flows, no external forces exist and for steady flows, the conservation equations are simplified.

3. Mathematical Model

Natural convection in laminar, two-dimensional, time-independent incompressible Jeffrey viscoelastic polymer flow from an inclined rigid sheet in micropolar fluid regime with nonlinear temperature is considered, as illustrated in Fig. 1. The sheet is inclined at an angle, \(\Omega \), to the horizontal. The polymer is assumed to be an optically dense, absorbing but non-scattering fluent medium. In this model, with the exception of the density variation in the buoyancy terms (Boussinesq approximation) all other properties are assumed to be constant. To simulate non-Newtonian characteristics of Jeffery’s elastic-viscous fluid model, the Cauchy stress tensor is required which is defined as:

![Fig. 1. Physical model for inclined plane flow](image-url)
\[T = -pI + S, \quad S = \frac{\mu}{1 + \lambda} \left(\gamma + \lambda \dot{\gamma} \right) \]

(1)

\[\dot{\gamma} = \nabla V + (\nabla V)^T \]

(2)

\[\gamma = \frac{d}{dt} \left\{ \dot{\gamma} \right\} \]

(3)

Here, \(p, I, S, \mu, \lambda, \lambda_1 \) and \(\dot{\gamma} \), denote pressure, identity tensor, Cauchy stress tensor for Jeyff fluid, viscosity, ratio of relaxation to retardation time, retardation time and shear rate, respectively. Jeffery’s model therefore features three constants i.e. viscosity at zero shear rate and two time-related material parameter constants. In line with [25-21, 45] (for Jeffrey’s fluid) and Beg et al. [46 – 47] (for micropolar fluid) and incorporating the appropriate terms under the boundary-layer approximation, the following conservation equations emerge for mass, momentum, energy (heat) and concentration:

\[\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0 \]

(4)

\[\rho \left(\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \frac{\mu + k}{1 + \lambda} \frac{\partial^2 u}{\partial y^2} + \frac{\mu \lambda}{1 + \lambda} \left(\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y \partial x} \right) + \frac{\partial^2 u}{\partial x \partial y} + v \frac{\partial^2 u}{\partial y^2} + k \frac{\partial N}{\partial y} + \rho \gamma \left(\beta_0 (T - T_\infty) + \beta_1 (T - T_\infty)^2 \right) \cos \Omega \]

(5)

\[\rho j \left(\frac{\partial N}{\partial x} + v \frac{\partial N}{\partial y} \right) = \gamma \frac{\partial^2 N}{\partial y^2} + k \left[2N + \frac{\partial u}{\partial y} \right] \]

(6)

\[\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k}{\rho c_p} \frac{\partial^2 T}{\partial y^2} \]

(7)

where \(u \) and \(v \) are the velocity components in the \(x \) and \(y \) directions, respectively, \(\gamma = \left(\mu + [k/2] \right) j \) is the gyro-viscosity (shear spin) of micropolar fluid and all the other terms are defined in the nomenclature. The relevant boundary conditions imposed at the plate surface and in the free stream are as:

\[\text{at} \quad y = 0, \quad u = 0, \quad v = 0, \quad N = -\frac{1}{2} \frac{\partial u}{\partial y}, \quad T = T_u \]

when \(y \to \infty, \quad u \to u_\infty, \quad v \to 0, \quad N \to 0, \quad T \to T_\infty \)

(8)

The nonlinearity of the conservation equations in primitive variables makes even a numerical solution difficult. It is judicious therefore to reduce the number of independent variables and to this end the following group of variables is invoked:

\[\xi = \frac{x}{L}, \quad \eta = \sqrt{\frac{u \left(u_\infty \right)^{1/2}}{\nu_\infty}}, \quad \psi = (nu_\infty x)^{1/2} f, \quad \theta(\xi, \eta) = \frac{T - T_\infty}{T_u - T_\infty}, \quad g = LN \left(\frac{\xi}{Re} \right)^{1/2} \]

(9)

Introducing the stream function \(\psi \) defined as \(u = \partial \psi / \partial y \) and \(v = -\partial \psi / \partial x \). Incorporating Eqn. (9) into Eqns. (4) - (7), the continuity equation (4) is automatically satisfied and the emerging non-dimensional momentum and thermal boundary layer equations emerge as:

\[\frac{1 + K}{1 + \lambda} f'''' + \frac{1}{2} f''' + R \theta(1 + \alpha \theta) \cos \Omega + K g'' - \frac{\text{De}}{1 + \lambda} \left(\frac{1}{2} f''' + f'' m'' + \frac{1}{2} f'''' \right) \]

\[= \xi \left(f' \frac{\partial \theta}{\partial \xi} - f'' \frac{\partial \theta}{\partial \xi} \right) \frac{\text{De}}{1 + \lambda} \left(f' \frac{\partial m''}{\partial \xi} - f'' \frac{\partial m''}{\partial \xi} + f'''' \frac{\partial m''}{\partial \xi} - f'''' \frac{\partial f''}{\partial \xi} \right) \]

\[+ \left(1 + K \right) g'' + \frac{1}{2} g' + \frac{1}{2} f' g - BK \xi [2g + f'''] = \xi \left(f' \frac{\partial g}{\partial \xi} - g' \frac{\partial f}{\partial \xi} \right) \]

(10)

\[\left(1 + K \right) g'' + \frac{1}{2} f' g - BK \xi [2g + f'''] = \xi \left(f' \frac{\partial g}{\partial \xi} - g' \frac{\partial f}{\partial \xi} \right) \]

(11)
\[
\frac{\theta''}{\Pr} + \frac{1}{2} f \theta' = \xi \left(f \frac{\partial \theta}{\partial \xi} - \theta \frac{\partial f}{\partial \xi} \right)
\]
(12)

The transformed dimensionless wall and free stream boundary conditions assume the form:

\[
\text{at } \eta = 0, \quad f = 0, \quad f' = 0, \quad g = -\frac{1}{2} \frac{\partial^2 f}{\partial y^2}, \quad \theta = 1
\]

\[
\text{when } \eta \to \infty, \quad f' \to 1, \quad f'' \to 0, \quad g \to 0, \quad \theta \to 0
\]

(13)

where

\[
De = \frac{\lambda \nu \Re_x}{x}, \quad Re_x = \frac{u_{\infty} x}{\nu}, \quad Re = \frac{u_{\infty} L}{\nu}, \quad Gr = \frac{g \beta (T_u - T_\infty) L^4}{\nu^2}
\]

\[
Ri = \frac{Gr}{Re^3}, \quad Pr = \frac{\nu \rho c_p}{k}, \quad B = \frac{L^2}{f Re}, \quad K = \frac{k}{\mu}, \quad \alpha_i = \frac{\beta_i (T_u - T_\infty)}{\beta_0}
\]

(14)

Additionally, the dimensionless expressions for the physical quantities at the plate surface can be written as:

\[
\sqrt{Re_x} C_f = \frac{1 + K}{1 + A} f''(\xi, 0) - \frac{De}{2(1 + A)} \left[f''(\xi, 0) f''(\xi, 0) + f^{(\xi, 0)} f''(\xi, 0) \right]
\]

(15)

\[
M_v = g'(\xi, 0)
\]

(16)

\[
\frac{Nu}{\sqrt{Re_x}} = -\theta'(\xi, 0)
\]

(17)

Here the expressions \(\sqrt{Re_x} C_f, M_v \) and \(Sh/\sqrt{Re_x} \) denote skin friction coefficient (wall shear stress function), wall couple stress and local Nusselt number (wall heat transfer rate), respectively.

4. Numerical Finite Difference Solution

The boundary value problem to be solved comprises Eqs. (10) - (12) under boundary conditions (13). The Keller box method is selected to obtain numerical solutions. This method is well-documented in many studies [48 – 51] and details are therefore omitted here. This technique has remained extremely popular and maintained comparable efficiency to other numerical methods. The Keller-Box technique has second-order accuracy with arbitrary spacing and attractive extrapolation features. This numerical technique is very stable and exceptional accuracy is achieved. The Keller-Box method converges quickly and provides stable numerical meshing features. This method provides an improvement in accuracy on explicit or semi-implicit schemes and utilizes customizable stepping in a fully implicit approach. The Keller-Box discretization is fully coupled at each step which reflects the physics of parabolic systems. The discrete calculus of the Keller-Box technique is fundamentally different from all other numerical techniques. The Keller-Box technique comprises of four stages:

1. Decomposition of the \(N^\text{th} \) order partial differential equation system to \(N \) first-order equations.
2. Finite difference discretization
4. Block-tridiagonal elimination.

Step 1: Decomposition of the \(N^\text{th} \) order partial differential equation system to \(N \) first order equations

The following new variables are introduced in Eqs. (10) – (13), to render the boundary value problem as a multiple system of first order equations.

\[
u(x, y) = f', \quad v(x, y) = f'', \quad q(x, y) = f''', \quad g(x, y) = f''''
\]

\[
\phi(x, y) = p, \quad s(x, y) = \theta, \quad t(x, y) = \theta'
\]

(18)

\[
f' = u
\]

(19)

\[
u' = v
\]

(20)

\[
u'' = q
\]

(21)
\[g' = p \] (22)

\[s' = t \] (23)

\[
\frac{1+K}{1+\lambda} v' + \frac{1}{2} f v + R \xi s (1 + \alpha s) \cos \Omega + K p - \frac{De}{1+\lambda} \left(\frac{1}{2} v^2 + uq + \frac{1}{2} f v' \right) = \xi \left(u \frac{\partial u}{\partial \xi} - v \frac{\partial f}{\partial \xi} - \frac{De}{1+\lambda} \left(u \frac{\partial q}{\partial \xi} - q \frac{\partial u}{\partial \xi} + v \frac{\partial v}{\partial \xi} - v' \frac{\partial f}{\partial \xi} \right) \right) \] (24)

\[
\left(1 + \frac{K}{2} \right) p' + \frac{1}{2} f p + \frac{1}{2} u g - BK \xi [2 g + v] = \xi \left(u \frac{\partial g}{\partial \xi} - p \frac{\partial f}{\partial \xi} \right) \] (25)

\[
\frac{t'}{Pr} + \frac{1}{2} f t = \xi \left(u \frac{\partial t}{\partial \xi} - \frac{\partial f}{\partial \xi} \right) \] (26)

Here primes indicate differentiation w.r.t. \(\eta \). Hence, the boundary conditions are:

at \(\eta = 0 \), \(f = 0 \), \(u = 0 \), \(g = -\frac{1}{2} v \), \(s = 1 \)

when \(\eta \to \infty \), \(u \to 1 \), \(v \to 0 \), \(g \to 0 \), \(s \to 0 \) (27)

Step 2: Finite Difference Discretization

A 2-D computational grid is imposed on the \(\xi-\eta \) plane as shown in Fig. 2. The stepping process is as given below:

\[
\eta_0 = 0, \quad \eta_j = \eta_{j-1} + h_j, \quad j = 1, 2, \ldots, J, \quad \eta_J = \eta_\infty \\
\xi^0 = 0, \quad \xi^n = \xi^{n-1} + k_n, \quad n = 1, 2, \ldots, N
\] (28)

where \(k_n \) is the \(\Delta \xi \) - spacing and \(h_j \) is the \(\Delta \eta \) - spacing.

If \(g_{n}^{\xi} \) denotes the value of any variable at \((\eta_j, \xi^n) \), then the variables and derivatives of Equations (19) – (26) at \((\eta_{j-1/2}, \xi^{n-1/2}) \) are replaced by:

\[g_{j-1/2}^{n-1/2} = \frac{1}{4} (g_j^n + g_j^{n-1} + g_j^{-1} + g_j^{-1}) \] (29)
$$\left(\frac{\partial g}{\partial \eta} \right)_{j-1/2}^{n+1/2} = \frac{1}{2h_j}(g_j^n - g_{j-1}^{n+1} + g_{j+1}^{n+1} - g_{j,1}^{n+1})$$ (30) $$\left(\frac{\partial g}{\partial \xi} \right)_{j-1/2}^{n+1/2} = \frac{1}{2k}\left(g_j^n - g_{j-1}^{n+1} + g_{j+1}^{n+1} - g_{j,1}^{n+1} \right)$$ (31)

The resulting finite-difference approximation of equations (19) – (26) for the mid-point $(\eta_{j-1/2}, \xi^*)$, are:

$$h_j^{-1}(f_j^n - f_{j-1}^n) = u_j^{n+1/2}$$ (32) $$h_j^{-1}(u_j^n - u_{j-1}^n) = v_j^{n+1/2}$$ (33) $$h_j^{-1}(v_j^n - v_{j-1}^n) = q_j^{n+1/2}$$ (34) $$h_j^{-1}(g_j^n - g_{j-1}^n) = p_j^{n+1/2}$$ (35) $$h_j^{-1}(s_j^n - s_{j-1}^n) = t_j^{n+1/2}$$ (36)

$$\frac{1+K}{1+\alpha}(v_j^n - v_{j-1}^n) + \left(\frac{1}{2} + \alpha \right) \frac{h_j}{4}(f_j^n - f_{j-1}^n)(v_j^n + v_{j-1}^n) - \frac{De}{1+\alpha} \frac{h_j}{4}(u_j^n + u_{j-1}^n)(q_j^n + q_{j-1}^n)$$

$$- \frac{De}{1+\alpha} \left(\frac{1}{2} - \alpha \right) \frac{h_j}{4}(v_j^n + v_{j-1}^n)^2 - \frac{1}{2} \left(f_j^n - f_{j-1}^n \right)(q_j^n - q_{j-1}^n) + R \frac{h_j}{2}(s_j + s_{j-1}) \text{cos} \Omega$$

$$+ R \frac{h_j}{2}(s_j + s_{j-1})^2 \alpha \text{cos} \Omega + \frac{K}{2}\left(p_j^n + p_{j-1}^n \right) - \frac{h_j}{4}(u_j^n + u_{j-1}^n)^2 - \alpha \frac{h_j}{2}f_j^{n+1/2}(v_j^n + v_{j-1}^n)$$

$$+ \alpha \frac{h_j}{2}v_j^{n+1/2}(f_j^n + f_{j-1}^n) + \alpha \frac{De}{1+\alpha} h_j^* u_j^{n+1/2}(q_j^n + q_{j-1}^n) - \alpha \frac{De}{1+\alpha} h_j^* q_j^{n+1/2}(u_j^n + u_{j-1}^n)$$

$$+ \alpha \frac{De}{1+\alpha} f_j^{n+1/2}(q_j^n - q_{j-1}^n) - \alpha \frac{De}{1+\alpha} h_j^* (q_j^n - q_{j-1}^n) = \left[R_{1,j-1/2} \right]^{n+1/2}$$ (37)
The boundary conditions are:

\[f_0^n = u_0^n = 0, \quad s_0^n = 1, \quad g_0^n = 1, \quad u_j^n = 0, \quad v_j^n = 0, \quad s_j^n = 0, \quad g_j^n = 0 \]

(43)

Stage 3: Quasi-linearization of Non-Linear Keller Algebraic Equations

If we assume \(f_j^{x-1}, u_j^{x-1}, v_j^{x-1}, q_j^{x-1}, g_j^{x-1}, p_j^{x-1}, s_j^{x-1}, t_j^{x-1} \) to be known for \(0 \leq j \leq J \), this leads to a system of 8J+8 equations for the solution of 8J+8 unknowns \(f_j, u_j, v_j, q_j, g_j, p_j, s_j, t_j \), \(j = 0, 1, 2, ..., J \). This non-linear system of algebraic equations is linearized by means of Newton's method.

<table>
<thead>
<tr>
<th>(Ri)</th>
<th>(Pr = 0.72)</th>
<th>(Pr = 10)</th>
<th>(Pr = 100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lloyd and Sparrow [52]</td>
<td>Present</td>
<td>Lloyd and Sparrow [52]</td>
<td>Present</td>
</tr>
<tr>
<td>0.0</td>
<td>0.2956</td>
<td>0.2958</td>
<td>0.7281</td>
</tr>
<tr>
<td>0.01</td>
<td>0.2979</td>
<td>0.2980</td>
<td>0.7313</td>
</tr>
<tr>
<td>0.04</td>
<td>0.3044</td>
<td>0.3046</td>
<td>0.7404</td>
</tr>
<tr>
<td>0.1</td>
<td>0.3158</td>
<td>0.3160</td>
<td>0.7574</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3561</td>
<td>0.3563</td>
<td>0.8259</td>
</tr>
<tr>
<td>1.0</td>
<td>0.4058</td>
<td>0.4060</td>
<td>0.9212</td>
</tr>
</tbody>
</table>

Table 1. Comparison of \(Nu \) for different values of \(Ri \) and \(Pr \).

<table>
<thead>
<tr>
<th>(De)</th>
<th>(\lambda)</th>
<th>(K)</th>
<th>(Pr)</th>
<th>(C_s)</th>
<th>(Nu)</th>
<th>(Wcs)</th>
<th>(C_s)</th>
<th>(Nu)</th>
<th>(Wcs)</th>
<th>(C_s)</th>
<th>(Nu)</th>
<th>(Wcs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>3.0</td>
<td>1.0</td>
<td>0.25</td>
<td>0.75</td>
<td>0.5</td>
<td>0.1</td>
<td>0.25</td>
<td>0.75</td>
<td>0.5</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td>1.3132</td>
<td>0.7549</td>
<td>-0.960</td>
<td>1.9195</td>
<td>0.8499</td>
<td>-0.4761</td>
<td>2.4558</td>
<td>0.9174</td>
<td>-1.2411</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.3032</td>
<td>0.7562</td>
<td>-0.979</td>
<td>1.9050</td>
<td>0.8502</td>
<td>-0.4793</td>
<td>2.4420</td>
<td>0.9187</td>
<td>-1.2429</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.2985</td>
<td>0.7577</td>
<td>-0.998</td>
<td>1.9013</td>
<td>0.8504</td>
<td>-0.4828</td>
<td>2.4409</td>
<td>0.9187</td>
<td>-1.2453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>1.2886</td>
<td>0.7628</td>
<td>-0.1075</td>
<td>1.8950</td>
<td>0.8515</td>
<td>-0.4996</td>
<td>2.4424</td>
<td>0.9195</td>
<td>-1.2639</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>1.2807</td>
<td>0.7690</td>
<td>-0.1158</td>
<td>1.8881</td>
<td>0.8549</td>
<td>-0.5207</td>
<td>2.4399</td>
<td>0.9202</td>
<td>-1.2937</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>1.2595</td>
<td>0.7915</td>
<td>-0.1387</td>
<td>1.8631</td>
<td>0.8715</td>
<td>-0.5857</td>
<td>2.4186</td>
<td>0.9306</td>
<td>-1.4015</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Values of \(C_s \), \(Nu \) and \(Wcs \) for various values of \(De \), \(\lambda \), \(K \) and \(\xi (\xi = 0.5, B = 0.5, \omega = 5.0, \Omega = \pi/6) \).

Stage 4: Block-tridiagonal Elimination

The linearized system is solved by the block-elimination method since it possesses a block-tridiagonal structure. The block-tridiagonal structure generated consists of block matrices. The complete linearized system is formulated as a block matrix system, where each element in the coefficient matrix is a matrix itself, and this system is solved using the efficient Keller-box method. The numerical results are strongly influenced by the number of mesh points in both directions. After some trials in the \(\eta \)-direction (radial coordinate), a larger number of mesh points are selected whereas in the \(\xi \)-direction (tangential coordinate) significantly less mesh points are utilized. \(\eta_{max} \) has been set at 12 and this defines an adequately

large value at which the prescribed boundary conditions are satisfied. ξ_{max} is set to 3.0 for this flow domain. Mesh independence is achieved in the present computations. The numerical algorithm is executed in MATLAB on a PC. The method demonstrates excellent stability, convergence and consistency, as elaborated by Keller [57].

To validate the Keller box numerical code employed, comparison with earlier Newtonian solutions presented by Lloyd and Sparrow [52] is conducted and shown in Table 1. Very close correlation is achieved for the Nusselt number (Nu) for different values of the mixed convection parameter (R) and three different values of Prandtl number (Pr) i.e. 0.72 (air), 10, 100 (polymers). Confidence in the present solutions is therefore very high.

5. Results and Discussion

Table 2 presents the numerical results of dimensionless skin friction (C_f), heat transfer rate (Nu) and wall couple stress (Wcs) for different values of Deborah number, De, ratio of retardation to relaxation times, λ, Prandtl number, Pr and vertex viscosity, K along with variations in stream-wise coordinate, ξ. An increasing De is observed to reduce C_f and Wcs whereas it increases Nu. Furthermore, an increase in λ reduces the skin friction wall couple stress but enhances heat transfer rate. Also, an increase in K is seen to reduce heat transfer rate and wall couple stress, but increases skin friction. Further, an increase in Pr reduces skin friction whereas it enhances heat transfer rate and wall couple stress.

Table 3 document results for the influence of micro-inertia density parameter (B), angle of inclination (Ω), nonlinear temperature parameter (α_t) and mixed convection parameter (R_i) on dimensionless skin friction, heat transfer rate and wall couple stress along with a variation in the traverse coordinate (ξ). Skin friction and wall couple stress is reduced with increasing B values however heat transfer rate is enhanced. Furthermore, the increasing values of Ω are seen to reduce skin friction and heat transfer rate whereas wall couple stress increases. Increasing R_i is seen to enhance skin friction, heat transfer rate but decreases wall couple stress. An increasing α_t depresses the wall couple stress whereas elevates skin friction and heat transfer rate.

| Table 3. Values of C_f, Nu and Wcs for various values of B, Ω, α_t, R_i and ξ ($Pr = 7$, $De = 0.1$, $\lambda = 0.2$, $K = 3.0$) |
|---|---|---|---|---|---|---|---|---|---|---|
| B | Ω | α_t | R_i | $\xi = 1$ | $\xi = 2$ | $\xi = 3$ |
| C_f | Nu | Wcs | C_f | Nu | Wcs | C_f | Nu | Wcs |
| 0 | 1.3638 | 0.7586 | 0.0151 | 1.9811 | 0.8474 | 0.0308 | 2.5298 | 0.9130 | 0.0467 |
| 1 | 1.2972 | 0.7578 | -0.1684 | 1.8962 | 0.8555 | -0.8352 | 2.4242 | 0.9275 | -2.1724 |
| 2 | 1.2849 | 0.7629 | -0.2853 | 1.8757 | 0.8636 | -1.4213 | 2.3948 | 0.9376 | -3.6797 |
| 5 | 1.2700 | 0.7729 | -0.5474 | 1.8468 | 0.8773 | -2.7339 | 2.3536 | 0.9538 | -7.0217 |
| 10 | 1.2632 | 0.7828 | -0.8617 | 1.8269 | 0.8888 | -4.3173 | 2.3246 | 0.9667 | -11.0417 |
| 0 | 1.4135 | 0.7715 | -0.1035 | 2.0901 | 0.8724 | -0.5159 | 2.6883 | 0.9475 | -1.3475 |
| $\pi/6$ | 1.3106 | 0.7551 | -0.0964 | 1.9144 | 0.8498 | -0.4766 | 2.4496 | 0.9200 | -1.2415 |
| $\pi/4$ | 1.1842 | 0.7338 | -0.0873 | 1.6976 | 0.8201 | -0.4263 | 2.1548 | 0.8851 | -1.1056 |
| $\pi/3$ | 0.5 | 1.0105 | 0.7024 | -0.0743 | 1.3976 | 0.7750 | -0.3526 | 1.7460 | 0.8314 | -0.9057 |
| $4\pi/9$ | 0.7074 | 0.6395 | -0.0793 | 0.8615 | 0.6775 | -0.2052 | 1.0077 | 0.7104 | -0.4990 |
| $\pi/2$ | 0.5217 | 0.5935 | -0.0322 | 0.5119 | 0.5931 | -0.0920 | 0.5082 | 0.5937 | -0.1663 |
| 0 | 0.7362 | 0.6539 | -0.0557 | 0.9107 | 0.7013 | -0.2433 | 1.0738 | 0.7412 | -0.6033 |
| 1 | 0.8627 | 0.6789 | -0.0684 | 1.1364 | 0.7402 | -0.301 | 1.3861 | 0.7894 | -0.7633 |
| 0.5 | 1.0958 | 0.7206 | -0.0821 | 1.5442 | 0.8014 | -0.3968 | 1.9449 | 0.8631 | -1.0252 |
| 5 | 1.3106 | 0.7551 | -0.0964 | 1.9144 | 0.8498 | -0.4766 | 2.4496 | 0.9200 | -1.2415 |
| 7 | 1.5122 | 0.7848 | -0.109 | 2.2594 | 0.8903 | -0.5464 | 2.9188 | 0.9673 | -1.4298 |
| 10 | 1.7962 | 0.8231 | -0.1258 | 2.7431 | 0.9416 | -0.6381 | 3.5757 | 1.0265 | -1.6769 |
| 0 | 0.5217 | 0.5935 | -0.0322 | 0.5119 | 0.5931 | -0.0920 | 0.5082 | 0.5937 | -0.1663 |
| 0.35 | 1.1100 | 0.7191 | -0.0812 | 1.5542 | 0.7992 | -0.3917 | 1.9596 | 0.8603 | -1.0120 |
| 5.0 | 0.7 | 1.5707 | 0.7954 | -0.1140 | 2.3578 | 0.9047 | -0.5736 | 3.0516 | 0.9841 | -1.5026 |
| 1.05 | 1.9899 | 0.8529 | -0.1401 | 3.0669 | 0.9808 | -0.7154 | 4.0129 | 1.0716 | -1.8839 |
| 1.4 | 2.3744 | 0.8998 | -0.1623 | 3.7185 | 1.0416 | -0.8351 | 4.8961 | 1.1410 | -2.2055 |
| 2 | 2.9835 | 0.9655 | -0.1947 | 4.7472 | 1.1254 | -1.0085 | 6.2911 | 1.2358 | -2.6721 |

Figs 3 - 26 illustrate graphical solutions for the influence of selected parameters on the velocity, temperature and angular velocity characteristics. Figs. 3 - 5 depict the influence of Deborah number, De (viscoelastic parameter) on velocity, temperature and angular velocity (f^*, θ and g). In all graphs, plate inclination is set at $\Omega = \pi/6$. Asymptotically smooth distributions are generally achieved in the freestream for all graphs indicating that a sufficiently large infinity boundary condition is specified in the Keller box numerical code. Fig. 3 shows the influence of De on f^* and clearly increasing De (which corresponds to greater elastic effects to viscous effects) results in flow acceleration. De embodies the ratio of relaxation time it takes for the fluid to adjust to applied stresses or deformations and the characteristic time scale. Momentum boundary layer thickness is therefore reduced with increasing Deborah number. The fluid (polymer) behaves...
more like a viscous fluid at lower Deborah number whereas at higher Deborah numbers, the behavior is more influenced by elasticity. Fig. 4 demonstrates that increasing De values results in a decrease in temperature i.e. reduction in thermal boundary layer thickness. The effect of De on the angular velocity is shown in Fig. 5 and a significant reduction is observed i.e. it inhibits motion in micro-element rotary.

Figs. 6 – 8 show the response of fluid velocity (f'), temperature (θ) and angular velocity (g) with the ratio of relaxation to retardation times (λ). A significant elevation in velocity accompanies an increase in λ as observed in Fig. 5. Conversely, there is a strong reduction in temperature with increasing λ values (Fig. 7). Fig. 8 shows that angular velocity is reduced with increasing values λ, the micro-elements spin is encouraged. Effectively the rheology of Jeffery fluid has a marked influence on thermal and hydrodynamic characteristics. For the case of a Newtonian fluid ($\lambda = 1$), the results are noticeably different from the Jeffery case ($\lambda \neq 1$). When $\lambda_1 < 1$, the retardation time exceeds the relaxation time. This implies that the polymeric Jeffrey fluid responds faster with the removal of stress and returns quicker to its unperturbed state. The opposite behavior is the case when $\lambda_1 > 1$.
Figs. 9 - 11 show the variations for velocity (f'), temperature (θ) and angular velocity (g) with different values of micropolar parameter (K). Fig. 9 indicates that an increase in K significantly reduces the boundary layer flow. And this trend is sustained throughout the boundary layer regime. The reverse spin is exhibited near the plate surface due to the microelements. Away from the wall, the micro-elements spin overwhelmingly accelerates the boundary layer flow. Hence, the linear momentum diffusion enhances [53]. In Fig. 10, we observe that the temperature profiles significantly elevated for greater values of K. Hence, the thermal boundary layer thickness is increased. The increase in K strengthens the thermal diffusion and acts as an agitator. Thereby, the efficiency of thermal convection inside the fluid body is increased from microscopic to macroscopic scale and the heat is transported effectively with larger intensity from the surface of the plate into the fluid regime. Fig. 9 indicates that an increase in K significantly reduces the boundary layer flow. And this trend is sustained throughout the boundary layer regime. The reverse spin is exhibited near the plate surface due to the microelements. Away from the wall, the micro-elements spin overwhelmingly accelerates the boundary layer flow. Hence, the linear momentum diffusion enhances [53]. In Fig. 10, we observe that the temperature profiles significantly elevated for greater values of K. Hence, the thermal boundary layer thickness is increased. The increase in K strengthens the thermal diffusion and acts as an agitator. Thereby, the efficiency of thermal convection inside the fluid body is increased from microscopic to macroscopic scale and the heat is transported effectively with larger intensity from the surface of the plate into the fluid regime. In Fig. 11 a significant reduction in micro rotation is observed with an increase in K values. With increasing K values there is a progressive displacement in the peak for each micro rotation profile further away from the surface, this attributes to the greater facility for micro elements to rotate with greater space available. Hence, the micropolar fluids exhibit greater drag reducing properties compared to Newtonian fluids effectively. Generally, the heat transfer is also enhanced. The similar results were observed in the work of Gorla and Takhar [54] and Gorla et al. [55].

For $K = 1$ the micropolar and Newtonian dynamic viscosity are the same. And for $K = 0$, the micropolarity is ignored and the equations reduce to the Newtonian case. The parameter K has a prominent influence on all the flow variables.

Figs. 12 – 14 present the influence of the micro-inertia density parameter (B) on velocity (f'), temperature (θ) and angular velocity (g). Fig. 12 indicates that an increase in B significantly increases the fluid velocity and is sustained throughout the boundary layer regime. Hence, the larger micro inertial density of the viscoelastic micropolar fluid enhances the flow. In Fig. 10, it is seen that the temperature profiles slightly decrease for greater values of B. In Fig. 11 a significant reduction in micro rotation is observed with greater B values. This is due to the larger micro inertial density associated with greater B values. The impact of this parameter on real flows has been elaborated by Eringen [29]. The similar results were observed in the work of Gorla and Takhar [54] and Gorla et al. [55].
Figs. 15 – 17 depict the evolution in fluid velocity (v'), Jeffery fluid temperature (θ) and angular velocity (ω) with a modification in stream-wise coordinate (ζ). Fig. 15 shows that increasing ζ raises the velocity magnitudes. The velocity is minimum at $\zeta = 0$. The parameter ζ exerts a great impact on the momentum development. Conversely, temperature and angular velocity (Figs. 16 & 17) are significantly decelerated with increasing ζ. A monotonic deceleration in temperature and angular velocity is observed with a rise in ζ. Hence, the fluid is cooled and thermal boundary layer thickness decreases. The angular velocity is also seen to decelerate significantly for large values of ζ. The micro-rotation is stifled near the leading edge where the boundary layer begins to grow. The spatial capacity for gyratory motions is very restricted here and this induces reverse spin.
Fig. 20. Influence of Ω on angular velocity profiles

Figs. 18 – 20 show the distributions for velocity (f'), fluid temperature (θ) and angular velocity (g) with angle of inclination, Ω varying between 0° – 90°. Fig. 18 indicates that a significant deceleration in the boundary layer flow is associated with Ω which is due to the reduction in the thermal buoyancy effect in Eq. (5). From Fig. 19 we also observe for $\Omega = 0^\circ$ (vertical plate) the temperature attains maximum buoyancy force. Increasing angle of inclination parameter (Ω) is observed in Fig. 19 to elevate the fluid temperature (θ) and enhances thermal boundary layer thickness. For vertical surface, it is observed that the temperature distributions are small but for horizontal surface they are large. Fig. 20 shows that angular velocity profiles decelerate with increasing inclination parameter i.e. as the plate position changes from vertical to horizontal, the angular velocity increases near the plate and a reverse trend is observed far away from the plate.

Figs. 21 – 23 visualize the response in fluid velocity (f'), Jeffery fluid temperature (θ) and angular velocity (g) to a variation in mixed convection parameter (Ri). Larger values of Ri correspond to stronger natural (free) convection i.e. greater Grashof numbers. A significant elevation in velocity is induced throughout the boundary layer transverse to the plate surface with increasing mixed convection parameter, Ri, as seen in Fig. 21. Momentum boundary layer thickness is therefore decreased. Temperatures are considerably depleted (Fig. 22) with greater Ri values i.e. thermal boundary layer thickness is reduced. In both Figs. 21 and 22 the trends are sustained throughout the boundary layer. Fig. 23 shows that in close proximity to the plate surface there is a significant increase in angular velocity with a rise in mixed convection parameter.

Fig. 21. Influence of Ri on velocity profiles

Fig. 22. Influence of Ri on temperature profiles

Fig. 23. Influence of Ri on angular velocity profiles

Figs. 24 – 26 show the distributions for velocity (f'), fluid temperature (θ) and angular velocity (g) with different values of nonlinear temperature (α_1). Fig. 24 indicates that a weak acceleration in the boundary layer flow is associated with a large rise in α_1. Increasing α_1 is observed in Fig. 25 to strongly decelerate the fluid temperature and thermal boundary layer thickness also reduced. Fig. 26 shows that angular velocity rises slightly.
6. Conclusions

A mathematical model has been developed to simulate the steady-state natural convection boundary layer flow of an electrically-conducting viscoelastic fluid (polymer) from an inclined plate in Eringen micropolar fluid regime with nonlinear temperature. The governing conservation equations and associated wall and free stream boundary conditions have been transformed into a nonlinear dimensionless boundary value problem. The Jeffery elastic-viscous model has been used. The model has been developed to simulate non-Newtonian materials processing. An implicit finite difference scheme (Keller box method) has been implemented to solve the partial differential boundary value problem computationally. The main conclusions from the present study may be summarized as follows:

- Velocity is enhanced with increasing Deborah number, relaxation to retardation ratio, microinertia density parameter, stream-wise coordinate, mixed convection parameter and nonlinear temperature parameter whereas it is decreased with increasing angle of inclination and vortex viscosity parameter.
- Temperature is reduced with increasing Deborah number, relaxation to retardation ratio, mixed convection parameter, microinertia density parameter, stream-wise coordinate and nonlinear temperature whereas it is elevated with increasing vortex viscosity parameter and angle of inclination.
- Angular velocity is decreased with increasing Deborah number, relaxation to retardation ratio, vortex viscosity parameter, stream-wise coordinate, microinertia density parameter and angle of inclination whereas it is increased with increasing mixed convection parameter and nonlinear temperature.

The present study has ignored transient effects. These will be considered in the future in addition to alternative rheological models e.g. Oldroyd-B fluid model [56], which is also relevant to thermal polymer processing.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Micropolar inertia density parameter</td>
<td>x</td>
<td>Stream wise coordinate</td>
</tr>
<tr>
<td>C_f</td>
<td>Skin Friction Coefficient</td>
<td>y</td>
<td>Transverse coordinate</td>
</tr>
<tr>
<td>c_r</td>
<td>Specific heat</td>
<td>C_s</td>
<td>γ Spin gradient viscosity</td>
</tr>
<tr>
<td>De</td>
<td>Deborah Number</td>
<td>α</td>
<td>Thermal diffusivity</td>
</tr>
<tr>
<td>f</td>
<td>Dimensionless stream function</td>
<td>β</td>
<td>Coefficient of thermal expansion</td>
</tr>
<tr>
<td>g</td>
<td>Dimensionless microrotation function</td>
<td>λ</td>
<td>Ratio of relaxation to retardation times</td>
</tr>
<tr>
<td>g_0</td>
<td>Gravitational acceleration</td>
<td>Gr</td>
<td>Thermal Grashof number</td>
</tr>
<tr>
<td>Gr</td>
<td>Microrotation function</td>
<td>λ_1</td>
<td>Retardation time</td>
</tr>
<tr>
<td>j</td>
<td>Vortex viscosity parameter</td>
<td>η</td>
<td>Non-dimensional transverse coordinate</td>
</tr>
<tr>
<td>k</td>
<td>Thermal conductivity</td>
<td>σ</td>
<td>Electric conductivity of the fluid</td>
</tr>
<tr>
<td>L</td>
<td>Characteristic length</td>
<td>Ω</td>
<td>Angle of inclination</td>
</tr>
<tr>
<td>M_w</td>
<td>Dimensionless wall couple stress</td>
<td>μ</td>
<td>Dynamic viscosity</td>
</tr>
<tr>
<td>ξ</td>
<td>Non-dimensional tangential coordinate</td>
<td>ξ</td>
<td>Non-dimensional tangential coordinate</td>
</tr>
</tbody>
</table>

Fig. 24. Influence of α on velocity profiles

Fig. 25. Influence of α on temperature profiles

Fig. 26. Influence of α on angular velocity profiles
Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

The authors received no financial support for the research, authorship and publication of this article.

References

[21] M. Ramzan, M. Bilal, J.D. Chung, Soret and Dufour effects on three dimensional Upper-Convected Maxwell fluid

[37] M. Ramzan, J.D. Chung, N. Ullah,Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rottating disk – A numerical approach, Results in Physics, 7 (2017) 3557-3566.

[38] M. Ramzan, N. Ullah, J.D. Chung, D. Lu, U. Farooq, Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction, Scientific Reports, 7 (2017) 12901.

ORCID iD

S. Abdul Gaffar http://orcid.org/0000-0002-7368-1658

P. Ramesh Reddy http://orcid.org/0000-0002-6666-7444

V. Ramachandra Pradesh http://orcid.org/0000-0002-9168-3825

A. Subba Rao http://orcid.org/0000-0001-8740-3862

B. Md. Hidayathulla Khan http://orcid.org/0000-0002-0310-8020

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).