Three Dimensional Non-linear Radiative Nanofluid Flow over a Riga Plate

A.K. Abdul Hakeem1, P. Ragupathi1, S. Saranya1, B. Ganga2

1 Department of Mathematics, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore - 641 020, India
2 Department of Mathematics, Providence College for Women, Coonoor - 643 104, India

Received June 27 2019; Revised September 13 2019; Accepted for publication September 15 2019.
Corresponding author: A.K. Abdul Hakeem (abdulhakeem6@gmail.com)
© 2020 Published by Shahid Chamran University of Ahvaz & International Research Center for Mathematics & Mechanics of Complex Systems (M&MoCS)

Abstract. Numerous techniques in designing zones happen at high temperature and functions under high temperature are in a way that involves non-linear radiation. In weakly conducting fluids, however, the currents induced by an external magnetic field alone are too small, and an external electric field must be applied to achieve an efficient flow control. Gailitis and Lielausis, devised Riga plate to generate a crossed electric and magnetic fields which can produce a wall parallel Lorentz force in order to control the fluid flow. It acts as an efficient agent to reduce the skin friction. So, in this paper, we start the numerical investigation on the three-dimensional flow of nanofluids with the inclusion of non-linear radiation past a Riga plate. To this end, the numerical investigation is conducted on the three-dimensional flow of nanofluids with the inclusion of non-linear radiation past a Riga plate. Water (H\textsubscript{2}O) and Sodium Alginate (NaC\textsubscript{6}H\textsubscript{9}O\textsubscript{7}) are the base fluids, whereas Magnetite (Fe\textsubscript{3}O\textsubscript{4}) and Aluminium oxide (Al\textsubscript{2}O\textsubscript{3}) are the nanoparticles. The mathematical formulation for Sodium Alginate base fluid is separated through the Casson model. Suitable transformations on governing partial differential equations yield strong non-linear ordinary differential equations. Numerical solutions for the renewed system are constructed by fourth-order Runge-Kutta method with shooting technique. Various deductions for flow and heat transfer attributes are sketched and discussed for various physical parameters. Furthermore, the similarities with existing results were found for the physical quantities of interest. It was discovered, that the temperature ratio parameter and the radiation parameter enhance the rate of heat transport. Moreover, the NaC\textsubscript{6}H\textsubscript{9}O\textsubscript{7} - Al\textsubscript{2}O\textsubscript{3} nanofluid improves the heat transfer rate. Likewise, H\textsubscript{2}O-Fe\textsubscript{3}O\textsubscript{4} nanofluid stimulates the local skin friction coefficients.

Keywords: Non-linear radiation; Riga plate; Three-dimensional flow; Nanofluid; Nanoparticles.

1. Introduction

Today, the collaboration of thermal radiation with forced convection assumes a central part in numerous realistic applications. Specifically, applications like power plants using nuclear energy, aircraft, self-propelled nuclear explosives, the processes that involve fast moving flow of the gas over a wheel for producing continuous power, the pushing devices in the space vehicles, and so on, depending upon the radiative heat transfer. Thus, the thermal radiation influenced many researchers to participate in establishing its effectiveness under various conditions. Ghadikolaei et al. \cite{1} analyzed the natural convection MHD flow due to MoS\textsubscript{2} – Ag nanoparticles suspended in C\textsubscript{2}H\textsubscript{6}O\textsubscript{2} – H\textsubscript{2}O hybrid base fluid with thermal radiation. Also, he investigated the terrific effect of H\textsubscript{2} on 3D free convection MHD flow of C\textsubscript{2}H\textsubscript{6}O\textsubscript{2} – H\textsubscript{2}O hybrid base fluid to dissolve Cu nanoparticles in a porous space considering the thermal radiation and nanoparticle shape effects \cite{2}. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in the
presence of thermal radiation was examined by Sheikholeslami and Rokni [3]. More interesting discussion on thermal radiation can be found from [4-7]. In order to replicate the physiological effects of radiation, Rosseland approximation was put into use. Moreover, they took the smallest temperature variations in the flow of radiation incident on an area in a given time, however, during the time that the dissimilarity across the space beginning from the sheet to the surrounding temperature is high, evoked the importance of non-linear radiation. Factories that function under high temperature are closely connected with non-linear radiation. Therefore, for which showcased their interest. Quite a lot of advances targeting MHD serve as the basis for the examinations [8-19].

Being dispersed throughout in various base fluids, the nanoparticles can revise the characteristics of the normal heat transfer fluids. This creative composition was given a particular name, nanofluids by Choi [20]. The potency of metal as measured by the amount was three times the measure of strength needed to produce thermal conductivities by a normal fluid. This new context of microscopic metallic particles with the base fluids presented an incredible upgrade in the liquids thermophysical condition. All the way, nanofluids in different modern procedures involving nano-tech, for example, avoiding electronic gadgets to become hot, controlling vehicle warm up, atomic reactor and numerous others. At that point, a numerical model was broken down by Buongiorno [21] for the stream of nanofluids which were to predict the attributes of thermophoresis and erratic random movement of microscopic particles. Sheikholeslami [22] carried out a numerical inquiry on the water-based Al$_2$O$_3$ nanofluid flow inside a permeable medium employing an innovative computer method. The information about the nanofluid streams is currently very largish. Be that as it may, the couple of late examinations toward this path can be seen through the works [23-37]. An act of assessing non-Newtonian liquids has been the latest progress in fluid mechanics, playing an essential part in a few modern applications. The possibility of heat transfer improvement in diverse progressions was assessed with the conduct of non-Newtonian liquid. In perspective of the miscellaneous peculiarity of non-Newtonian liquids in the environment, analysts [38-42] looked over a selection of non-Newtonian liquids showing signs of unlike nature. A model of 3D was adopted for a Casson nanofluid of which it is assumed to move steadily above a porous linearly extending sheet introducing convection typically near the surface was subjected to examination by Mahanta and Shaw [43]. Butt et al. [44] studied the same formulation for an unsteady stretching sheet. With that Shehzad et al. [45] added his work for heat generation effects. As a part of this collection, comprising the works of Nadeem et al. [46], Yousif et al. [47] and Gireesha et al. [48].

In contrast, an association between the electrodes and magnets that are alternately arranged into their appropriate relative positions above a completely flat surface, acknowledged being the Riga plate can be useful in diminishing drag by putting a stop to boundary layer separation. Owing to these purposes theoretical plus experimental survey has been done by various specialists on Riga plate. For instance, Hayat et al. [49], Ahmad et al. [50], Abbas et al. [51], Hayat et al. [52], Ahmad et al. [53] and Mahanthesh et al. [54].

Recently, Ganesh Kumar et al. [57] studied the flow behavior of Prandtl liquid over a flat plat. Motivated from this path uncovers that, so far no one has considered to build up a mathematical model for comparing the effects of non-linear radiation in the three-dimensional flow of $H_2O / NaC_{x}H_{2}O_{y}$ base fluids with $FeO_{x} / Al_{2}O_{3}$ nanoparticles over a Riga plate. Consequently, from the gathered information the present study incorporates some new aspects, which happens to be the novelties of this study and are listed below.

- Nanofluid in 3D flow was introduced.
- FeO_{x} and $Al_{2}O_{3}$ nanoparticles was suspended within Water and Sodium Alginate base fluids.
- Non-linear radiation was taken into account.
- Riga plate was implemented, which induces the flow.
- Results in the absence of nanoparticles when compared with Ganesh Kumar et al. [57], Wang [56], and Hayat et al. [53] was in good agreement.

Also, the important observations of investigation are the temperature ratio parameter and the radiation parameter enhance the rate of heat transport, the $NaC_{x}H_{2}O_{y} - Al_{2}O_{3}$ nanofluid improves the heat transfer rate. Likewise, $H_2O - FeO_{x}$ nanofluid stimulates the local skin friction coefficients.

2. Mathematical Formulation

We consider a steady, three-dimensional flow of incompressible $H_2O / NaC_{x}H_{2}O_{y}$ base fluids with $FeO_{x} / Al_{2}O_{3}$ nanoparticles. The Riga plate is employed at $z = 0$ to induce the flow. The plate kept at the $xv -$ plane where $z = 0$ and the flow is assumed to occur in the $z > 0$ domain. Let $u = U_w (x) = ax$ and $v = V_w (y) = by$ be the stretching velocities of the Riga plate along $x -$ and $y -$ directions respectively. Also, we assume that the rheological state for an incompressible Casson fluid can be written be written as : (for more details see [29])

<table>
<thead>
<tr>
<th>Table 1. Thermophysical properties of H_2O and $NaC_{x}H_{2}O_{y}$ base fluids and FeO_{x} and $Al_{2}O_{3}$ nanoparticles [23]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ (Kg m$^{-3}$)</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Sodium Alginate</td>
</tr>
<tr>
<td>Magnetcite</td>
</tr>
<tr>
<td>Aluminium Oxide</td>
</tr>
</tbody>
</table>
Non-linear radiation in the three-dimensional flow and heat transfer of Fe$_3$O$_4$/Al$_2$O$_3$ nanoparticles

The governing boundary layer equations of momentum and energy for three-dimensional flow can be written as: [11, 57].

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0
\]

\[
u \left(\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \nu_{nf} \left[1 + \frac{1}{\beta} \frac{\partial^2 u}{\partial z^2} + \frac{\pi j_0 M_{nf}}{8 \rho_{nf}} e^{\frac{-x}{\alpha}} \right] \right)
\]

\[
u \left(\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \nu_{nf} \left[1 + \frac{1}{\beta} \frac{\partial^2 v}{\partial z^2} \right] \right)
\]

\[
u \left(\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \alpha_{nf} \frac{\partial^2 T}{\partial z^2} - \frac{1}{\rho C_{nf}^p} \frac{\partial q_r}{\partial z} \right)
\]

where u, v and w are the x, y and z components of velocity, β is the Casson parameter. ν_{nf} is the kinematic viscosity of the nanofluid, ρ_{nf} is the density of the nanofluid, (C_{nf}^p) is the specific heat capacity of the nanofluid, j_0 is the current density applied to the electrodes, M_0 is the magnetic property of the permanent magnets that are organized on top of the plate surface, a_i denotes the diameter of the magnets positioned in the interval separating the electrodes and ϕ is the particle of volume fraction. The radiative heat flux terms are simplified by using Rosseland diffusion approximation (Saranya et al. [11]) and accordingly:

\[
q_r = \frac{-16 \sigma^* T^3}{3k^*} \frac{\partial T}{\partial z}
\]

where σ^* is the Stefan-Boltzmann and k^* is the mean absorption coefficient. In view to Eq. (7), energy Eq. (6) will take the form:
\[
\frac{u \partial T}{\partial x} + \frac{v \partial T}{\partial y} + \frac{w \partial T}{\partial z} = \frac{\partial}{\partial z} \left[\alpha_{nf} + \frac{16\sigma' T^3}{3k' (\rho C_p)_{nf}} \right] \frac{\partial T}{\partial z}
\]

(8)

The boundary conditions for the present flow analysis are:

\[
u = U_\infty(x), v = V_\infty(y), w = 0, T = T_\infty, \text{ at } z = 0
\]

\[
u = 0, v = 0, T \rightarrow T_\infty \text{ as } z \rightarrow \infty
\]

(9)

where the fluid temperature of the wall is \(T_\infty \).

The similarity transformations stated in Eq. (10) automatically satisfies Eq. (3) and Eqs. (4), (5) and (8) becomes:

\[
(\beta^{-1}(\beta+1))A_1f'''' + (f + g) f'' - f'g' + QA_1 e^{\gamma z} = 0
\]

(11)

\[
(\beta^{-1}(\beta+1))A_2g'''' + (f + g) g'' - g'g' = 0
\]

(12)

\[
A_4 + Rd (1 + (\theta - 1)\theta) \theta'''' + Pr A_1(f + g)\theta'' = 0
\]

(13)

The transformed boundary conditions are:

\[
f = 0, g = 0, f' = 1, g = \alpha, \theta = 1 \text{ at } \eta = 0
\]

\[
f' \rightarrow 0, g' \rightarrow 0, \theta \rightarrow 0 \text{ as } \eta \rightarrow \infty
\]

(14)

where, \(A_1 = 1/[(1-\phi)^2](1-\phi+\phi(\rho_f/\rho_s)), A_2 = 1/(1-\phi+\phi(\rho_f/\rho_s)), A_3 = (1-\phi+\phi(\rho C_p_s/\rho C_p_f)), A_4 = k_{nf}/k_f, \alpha = b/a \) is the stretching ratio parameter, \(Pr = \mu_f/(\rho C_p_f) \) is the Prandtl number, \(Q = \pi M_s x / 8 \rho_f U_\infty^2 \) is the modified Hartmann number and \(A = \pi / a(a/\nu)^{1/2} \) is the dimensionless parameter, \(\theta = (T - T_\infty)/T_{nf} \) is temperature ratio parameter, \(Rd = 16\sigma' T^3_{nf}/3k'k_f \) is the radiation parameter.

If \(C_{nf} R e_{x,0.5} \) and \(C_{sf} R e_{y,0.5} \) are the local skin-friction coefficients and \(N u_{nf} R e_{x,0.5} \) is the local Nusselt number, then we have (see Ghadikolaei et al. [30])

\[
C_{nf} Re_{x,0.5} = -\frac{\tau_x}{\rho_f \mu_u}, C_{sf} Re_{y,0.5} = -\frac{\tau_y}{\rho_s \mu_u}, N u_{nf} Re_{x,0.5} = \frac{x q_{nf}}{k_f (T_{nf} - T_\infty)}
\]

(15)

Table 2. Applied formulation of nanofluids properties ([42])

<table>
<thead>
<tr>
<th>Nanofluid properties</th>
<th>Applied model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>(\rho_{nf} = (1-\phi)\rho_f + \rho_s)</td>
</tr>
<tr>
<td>Thermal diffusivity</td>
<td>(\alpha_{nf} = \frac{k_{nf}}{[\rho C_p]_{nf}})</td>
</tr>
<tr>
<td>Heat capacitance</td>
<td>([\rho C_p]_{nf} = (1-\phi)\rho C_p_f + \rho C_p_s)</td>
</tr>
<tr>
<td>Kinematic viscosity</td>
<td>(\nu_{nf} = \frac{\mu_{nf}}{\rho_{nf}})</td>
</tr>
<tr>
<td>Dynamic viscosity</td>
<td>(\mu_{nf} = \frac{\mu_f}{(1-\phi)^{1/2}})</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>(k_{nf} = k_f + 2k_f - 2\phi(k_f - k_s))</td>
</tr>
</tbody>
</table>

\[k_f = k_f + 2k_f + \phi(k_f - k_s) \]
where \(\tau_w \) and \(q_w \) are the wall shear stress and the wall heat flux, respectively. The above equation in dimensionless form can be written as:

\[
Re^{0.5} \phi = (1 - \phi)^{-2.5} (\beta^{-1}(\beta + 1)) f''(0),
\]

\[
Re^{0.5} \phi = \alpha^{-3/2} (1 - \phi)^{-2.5} (\beta^{-1}(\beta + 1)) g''(0)
\]

\[
Re^{0.5} Nu = -(A_x + Rd(\theta_x))\theta'(0)
\]

where the definition of Reynold's number is

\[
Re = \frac{U_x(x) x / \nu_y}{w_f}, \quad \text{and} \quad Re = \frac{V_y(y) y / \nu_f}{w_f}.
\]

Table 3. Comparison of results of different value of \(\alpha \) with Wang [56], Hayat et al. [55] and Ganesh Kumar et al. [57]

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>Wang [56]</th>
<th>Hayat et al. [55]</th>
<th>Ganesh Kumar et al. [57]</th>
<th>Present Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0488</td>
<td>1.048810</td>
<td>1.04881011</td>
<td>1.00000000</td>
</tr>
<tr>
<td>0.25</td>
<td>1.0488</td>
<td>1.048810</td>
<td>1.04881011</td>
<td>1.04563838</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0930</td>
<td>1.093095</td>
<td>1.0930952</td>
<td>1.0930958</td>
</tr>
<tr>
<td>0.75</td>
<td>1.1344</td>
<td>1.134500</td>
<td>1.13448575</td>
<td>0.79461826</td>
</tr>
<tr>
<td>1</td>
<td>1.1737</td>
<td>1.173721</td>
<td>1.17372074</td>
<td>1.17372074</td>
</tr>
</tbody>
</table>

3. Numerical Solution

It is tough dealing with the solutions for the highly non-linear equations (11) - (13) analytically. This difficult situation is dealt numerically by assisting R-K method as well as shooting technique. For the usage of R-K method, the boundary value problems must be transformed into an initial value problem. Starting with initial conditions, the increment in the converted equations are computed by means of the following formula:

\[
k_1 = h f_1(x_0, y_0)
\]

\[
k_2 = h f_1\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)
\]

\[
k_3 = h f_1\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)
\]

\[
k_4 = h f_1\left(x_0 + h, y_0 + k_3\right)
\]

\[
\Delta y = k_1 + 2k_2 + 2k_3 + k_4
\]

To compute the next increment, it is necessary only to replace \(x_0 \) and \(y_0 \) in the above formulas by \(x_1 \) and \(y_1 \). So, the previously mentioned equations with their boundary condition given in Eq. (14) are altered in terms of initial value problems as stated below (see Ghadikolaei et al. [4]).

\[
y_1' (\eta) = y_2
\]

\[
f'(\eta) = y_1
\]

\[
y_2' (\eta) = \left(\beta^{-1}(\beta + 1)\right)\left\{y_1' - (f + g) y_2 - QA_2 e^{-A_1}\right\} / A_1
\]

\[
y_3' (\eta) = \left(\beta^{-1}(\beta + 1)\right)\left\{y_2' - (f + g) y_3 - QA_2 e^{-A_1}\right\} / A_1
\]

\[
g'(\eta) = y_3
\]

\[
y_4' (\eta) = \left(\beta^{-1}(\beta + 1)\right)\left\{y_3' - (f + g) y_4 - QA_2 e^{-A_1}\right\} / A_1
\]

\[
\theta'(\eta) = y_5
\]
\[y'_s(\eta) = -\frac{A_s}{A_s + Rd(1+\theta_e)\theta} Pr(f + g) y_s \]

with the boundary conditions

\[
\begin{aligned}
 f(0) &= 0, \quad g(0) = 0, \quad y_1(0) = 1, \\
 y_3'(0) &= \alpha \quad \text{and} \quad \theta(0) = 1 \\
\end{aligned}
\]

(20)

The initial guesstimate was supplied to the unidentified constants \(y_2(0) \) i.e., \(f''(0) \), \(y_4(0) \) i.e., \(g''(0) \) and \(y_5(0) \) i.e., \(\theta'(0) \). Then convenient modification was done on the initial guesstimates to satisfy the boundary conditions \(f' \to 0, \quad g' \to 0 \) and \(\theta \to 0 \) as \(\eta \to \infty \). This procedure will be repeated until the convergence criterion of \(10^{-4} \) is reached. In addition, the step size is chosen as \(\Delta \eta = 0.001 \).

Table 4. Numerical values of the local skin friction coefficient for the base fluid \(H_2O \) with \(Fe_3O_4 \) and \(Al_2O_3 \) for different physical parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>(\left[1 + \frac{1}{\beta} \right] \frac{1}{(1-\phi)^{\frac{1}{3}}} f''(0))</th>
<th>(\left[1 + \frac{1}{\beta} \right] \frac{1}{(1-\phi)^{\frac{1}{3}}} g''(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>0.5</td>
<td>-0.981362</td>
<td>-1.011366</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>-1.009582</td>
<td>-1.088076</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>-1.022133</td>
<td>-1.120831</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.5</td>
<td>-0.985906</td>
<td>-1.086021</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>-1.060760</td>
<td>-1.130313</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>-1.129507</td>
<td>-1.194017</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.05</td>
<td>-1.017985</td>
<td>-1.088062</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>-1.001493</td>
<td>-1.066391</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>-1.000982</td>
<td>-1.063112</td>
</tr>
<tr>
<td>(Q)</td>
<td>0.5</td>
<td>-0.763450</td>
<td>-0.949385</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>-0.477356</td>
<td>0.180060</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>-0.200565</td>
<td>0.823798</td>
</tr>
</tbody>
</table>

Fig. 2. Influence of dimensionless parameter \(A \) on the velocity profile \(f'(\eta) \) for \(Q = 0.1, \alpha = 0.6, \theta_e = 1.5, \quad Rd = 0.5, \phi = 0.1 \)

4. Results and Discussion

To get a reasonable understanding of the physical problem numerical calculations have been completed to discuss the impact of various non-dimensional parameters. In order to reach a decision the plots of individual pertinent parameters in different fields are taken into account. The Newtonian base fluid \((H_2O) \) case arises when \(\beta \to \infty \). Table 1 records the
thermophysical properties of $H_2O/NaC_6H_5O_2$ base fluids alongside the Fe_3O_4/Al_2O_3 nanoparticles. Table 2 displays the applied formulation of nanofluids properties. Table 3 portrays the correspondence of the existed consequences of Wang et al. [56], Hayat et al. [55] and Ganesh Kumar et al. [57] with the present outcomes (H_2O base fluid case) with a few special assumptions. This demonstrates the legitimacy of the present outcomes and the precision of the numerical method we utilized as a part of this review. To discover the impression of individual parameters on the common distribution, Figures 1 to 9 are plotted.

4.1. Effects of physical parameters on the velocity & temperature profiles

Figure 2 uncovers the conduct of the velocity distribution $f'(\eta)$ being carried by dimensionless parameter A. It is dissected that velocity distribution demonstrates diminishing conduct for large values of A for selected cases. This is a result of shrinkage in the momentum boundary layer extent. Further, it is noticed that Fe_3O_4 nanoparticles have overwhelming effect of the velocity distribution with the base fluids than Al_2O_3 nanoparticles. Variation of modified Hartmann number Q on the velocity distribution $f'(\eta)$ is portrayed in Figs. 3(a) and 3(b) for both geometries. The higher Q outcomes in magnification of velocity distribution and the relative boundary layer extent. In the way that higher estimations of Q relate to the potency of the external electric field extending above the normal level, heading up in the generation of wall parallel Lorentz force. Subsequently, velocity distribution improves.
Fig. 5. Influence of stretching ratio parameter α on the temperature profile for $A = 0.8, Q = 0.1, \theta_w = 1.5, Rd = 0.5, \phi = 0.1$

Fig. 6. Influence of nanoparticle volume fraction parameter ϕ on the velocity profiles $f'(\eta)$ and $g'(\eta)$ for $A = 0.8, \alpha = 0.6, \theta_w = 1.5, Rd = 0.5, Q = 0.1$

Fig. 7. Influence of nanoparticle volume fraction parameter ϕ on the temperature profile for $A = 0.8, \alpha = 0.6, \theta_w = 1.5, Rd = 0.5, Q = 0.1$
Non-linear radiation in the three-dimensional flow and heat transfer of Fe$_3$O$_4$/Al$_2$O$_3$ nanoparticles

Fig. 8. Influence of temperature ratio parameter θ_w on the temperature profile for $A = 0.8, \alpha = 0.6, Rd = 0.5, Q = 0.1, \phi = 0.1$

Fig. 9. Influence of radiation parameter Rd on the temperature profile for $A = 0.8, \alpha = 0.6, \theta_w = 1.5, Q = 0.1, \phi = 0.1$

Fig. 10. Influence of Casson parameter β on the velocity profile and temperature profile for $A = 0.8, \alpha = 0.6, \theta_w = 1.5, Rd = 0.5, Q = 0.1, \phi = 0.1$
Figure 4(a) exhibits the velocity profile $f'(\eta)$ and $g'(\eta)$ of Fe_3O_4/Al_2O_3 nanoparticles with H_2O for distinct values of stretching ratio parameter a. From this figure, it is seen that an expansion in a prompts to decrease the velocity $f'(\eta)$ along x direction while an inverse tendency can be seen for velocity $g'(\eta)$ along y direction. The ascending values of $a(=b/a)$ initiate an increment in b or deterioration in a. Therefore, along with the y direction the velocity increases and downturns along x direction. Relatively in Fig. 4(b) comparable pattern is observed for $NaC_6H_5O_7$ based nanoparticles. The impact of stretching ratio parameter a is manifest for both cases through Figs 5(a) and 5(b) for $\theta(\eta)$. It is noted that the temperature $\theta(\eta)$ fall off when a top-ups. The potential difference between the hot and cold liquid is matched to the level that is required with augmenting a. Therefore, the thermal boundary, the temperature attenuates. The feature of ϕ is displayed in Figs. 6(a) and 6(b) on the velocity profiles $f'(\eta)$ and $g'(\eta)$. The velocity profile upturns briskly with the strength of ϕ. For the reason that, as an upward trend in ϕ intensifies, the relative boundary layer extent remarkably, for both cases of nanoparticles and base fluids. Literature proves that the significance of nanofluid is expanding because of their upgraded thermal conductivity. This is a result of the suspension of nanoparticle whose heat conductivity is substantially higher than the base fluids. Clearly higher estimations of ϕ helps advancing the temperature of the nanofluid. These adjustments in the temperature profile are recorded in Fig. 7(a) for H_2O and 7(b) for $NaC_6H_5O_7$ separately.

The temperature ratio parameter showing its potency on $\theta(\eta)$ is manifested for both cases through the Figs 8(a) and 8(b). Under the circumstance $\theta_0 > 1$ the temperature curves in the specified domain is higher. θ_0 which denotes the temperature at the Riga plate, when extends above relates to the thickening of the temperature boundary layer, which in turn hikes the temperature profile. Modifying the radiation parameter R_d, the corresponding response given by $\theta(\eta)$ is captured in Fig. 9(a) for Fe_3O_4 and Al_2O_3 nanoparticles with H_2O. The temperature profile undergoes natural development by changing R_d gradually. The premise is $\partial g/\partial z$ which gives measures of the quantity of flux emanating increases which is the primary cause for the thermal growth. Same pattern of the result is given in Fig. 9(b) for Fe_3O_4 and Al_2O_3 nanoparticles with $NaC_6H_5O_7$.

Figure 10(a) gives a clear demonstration of the change of the Casson parameter β on velocity profiles $f'(\eta)$ and $g'(\eta)$. The Casson parameter decreasingly affects $f'(\eta)$ and $g'(\eta)$. This is by reason of a rise in the opposition with increasing β. The temperature curve in Fig. 10(b) indicates an impression produced by the expanding Casson parameter β. Impairing the rate of fluid transport, β, adding strength to the temperature profile.

Table 5. Numerical values of the local skin friction coefficient for the base fluid $NaC_6H_5O_7$ with Fe_3O_4 and Al_2O_3 for different physical parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>$(1+1/\beta)f''(0)/(1-\varphi)^{1.5}$</th>
<th>$(1+1/\beta)g''(0)/(1-\varphi)^{1.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.5</td>
<td>-2.932941</td>
<td>-3.089644</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>-3.023958</td>
<td>-3.172717</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>-3.061636</td>
<td>-3.209618</td>
</tr>
<tr>
<td>α</td>
<td>0.5</td>
<td>-2.952982</td>
<td>-3.100070</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>-3.177210</td>
<td>-3.334653</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>-3.383147</td>
<td>-3.550083</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.05</td>
<td>-3.051101</td>
<td>-3.137365</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>-2.996651</td>
<td>-3.198283</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>-3.036529</td>
<td>-3.198283</td>
</tr>
<tr>
<td>Q</td>
<td>0.5</td>
<td>-2.285151</td>
<td>-2.446328</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>-1.426380</td>
<td>-1.602311</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>-0.595529</td>
<td>-0.785946</td>
</tr>
<tr>
<td>β</td>
<td>0.5</td>
<td>-2.996737</td>
<td>-3.148919</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>-2.787272</td>
<td>-2.928769</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>-2.817269</td>
<td>-2.962202</td>
</tr>
</tbody>
</table>

4.2. Effects of physical parameters on the local skin friction coefficients & local Nusselt number

Figures 11(a) and 11(b) are drawn to see the dimensionless parameter A and its impact on $f''(0)$. A out-turn in decrement of $f''(0)$. In addition to what has already been done, the thermal boundary layer thickness also has diminishing behavior for both H_2O and $NaC_6H_5O_7$ nanofluids. The same is seen through $g''(0)$ curves in Fig. 12 for both cases. Figures 13(a) and 13(b) present the change that had undergone various values of stretching ratio parameter α.

Non-linear radiation in the three-dimensional flow and heat transfer of Fe$_3$O$_4$/Al$_2$O$_3$ nanoparticles

Fig. 11. Influence of dimensionless parameter A on the local skin friction coefficient in the x-direction for $\alpha = 0.6, \theta_w = 1.5, Rd = 0.5, Q = 0.1, \phi = 0.1$

Fig. 12. Influence of dimensionless parameter A on the local skin friction coefficient in the y-direction for $\alpha = 0.6, \theta_w = 1.5, Rd = 0.5, Q = 0.1, \phi = 0.1$

Fig. 13. Influence of stretching ratio parameter α on the local skin friction coefficient in the x-direction for $A = 0.8, \theta_w = 1.5, Rd = 0.5, Q = 0.1, \phi = 0.1$
Fig. 14. Influence of stretching ratio parameter α on the local skin friction coefficient in the y-direction for $A = 0.8, \theta_w = 1.5, Rd = 0.5, Q = 0.1, \phi = 0.1$.

Fig. 15. Influence of modified Hartman number Q on the local skin friction coefficient in the x-direction for $A = 0.8, \alpha = 0.6, \theta_w = 1.5, Rd = 0.5, \phi = 0.1$.

Fig. 16. Influence of modified Hartman number Q on the local skin friction coefficient in the y-direction for $A = 0.8, \alpha = 0.6, \theta_w = 1.5, Rd = 0.5, \phi = 0.1$.
Non-linear radiation in the three-dimensional flow and heat transfer of Fe$_3$O$_4$/Al$_2$O$_3$ nanoparticles

Fig. 17. Influence of stretching ratio parameter α on the local Nusselt number for $A = 0.8, \theta_w = 1.5, Rd = 0.5, Q = 0.1, \phi = 0.1$

Fig. 18. Influence of temperature ratio parameter θ_w on the local Nusselt number for $A = 0.8, \alpha = 0.6, Rd = 0.5, Q = 0.1, \phi = 0.1$

Fig. 19. Influence of radiation parameter Rd on the local Nusselt number for $A = 0.8, \alpha = 0.6, \theta_w = 1.5, Q = 0.1, \phi = 0.1$
On scrutinizing, \(f''(0) \) is smaller for large \(\alpha \). Further \(H_2O \) based nanofluid has a dominating contribution in comparison to \(NaCsH_4O \) based nanofluid. The similar outcome is observed for \(g''(0) \) from figures 14(a) and 14(b).

Figures 15 and 16 illustrate the effects of modified Hartmann number \(Q \) on \(f''(0) \) in \(x \)-direction and \(g''(0) \) in \(y \)-direction. It is evaluated that the \(f''(0) \) and \(g''(0) \) increases by advancing \(Q \) with \(\phi \). As stated before (\(H_2O \) based nanofluid has a dominating contribution in comparison to \(NaCsH_4O \) based nanofluid. The similar outcome is observed for \(g''(0) \) from figures 14(a) and 14(b).

Figures 15 and 16 illustrate the effects of modified Hartmann number \(Q \) on \(f''(0) \) in \(x \)-direction and \(g''(0) \) in \(y \)-direction. It is evaluated that the \(f''(0) \) and \(g''(0) \) increases by advancing \(Q \) with \(\phi \). As stated before (\(H_2O \) based nanofluid has a dominating contribution in comparison to \(NaCsH_4O \) based nanofluid. The similar outcome is observed for \(g''(0) \) from figures 14(a) and 14(b).

From the aforementioned Figures 11 – 16, we noticed the mixed response of the local skin friction coefficient with respect to \(\phi \) respectively, That is the values of the local skin friction coefficient is higher in the case \(\phi < 0.1 \) whereas gradually decreases for \(\phi > 0.1 \), as \(\phi \) intensifies the frictional force within the fluid.

Figures 17(a) and 17(b) are drawn to discuss \(\theta'(0) \) for various values of stretching ratio parameter \(\alpha \). \(\theta'(0) \) seems to face an increment in company with \(\alpha \). The same level of result is noted for distinct values of \(\theta_w \) and \(Rd \) on \(\theta'(0) \) in Figs. 18 and 19. The gain in \(\theta_w \) and \(Rd \) encourages to increase the measure of heat transfer.

Tables 4, 5 and 6 are presented with reference to the impacts of relevant parameters on the local skin friction coefficient for both base liquids separately and the local Nusselt number. We observed bring up in the local skin friction coefficient for augmented \(Q \) and \(\beta \). Further, the local Nusselt number is increased for \(\alpha \) and \(Q \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Water</th>
<th>Sodium Alginate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>0.5</td>
<td>2.516941</td>
<td>2.549671</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2.506093</td>
<td>2.538394</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>2.501542</td>
<td>2.533681</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.5</td>
<td>2.429725</td>
<td>2.461062</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2.801933</td>
<td>2.838165</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>3.126582</td>
<td>3.166849</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0.05</td>
<td>2.404015</td>
<td>2.418762</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>2.509148</td>
<td>2.541565</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
<td>2.609332</td>
<td>2.661976</td>
</tr>
<tr>
<td>(Q)</td>
<td>0.5</td>
<td>2.571339</td>
<td>2.605543</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>2.638257</td>
<td>2.674175</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>2.697173</td>
<td>2.734485</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\theta_w)</td>
<td>1.5</td>
<td>4.431468</td>
<td>4.425297</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>7.148326</td>
<td>7.095628</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>11.203872</td>
<td>11.082302</td>
</tr>
<tr>
<td>(Rd)</td>
<td>0.5</td>
<td>4.431468</td>
<td>4.425297</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>5.795349</td>
<td>5.765802</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td>6.868885</td>
<td>6.820473</td>
</tr>
</tbody>
</table>

5. Conclusion

This paper begins to deal with the MHD boundary layer flow and heat transfer of \(FeO_4 / Al_2O_3 \) nanoparticles added \(H_2O / NaCsH_4O \) base fluids over a Riga plate. The influence of parameters showing different properties on the flow and heat transfer is observed from the plots. Give below are the brief statement of the main points of the discussed study:

- Modified Hartman number \(M \) enhances the horizontal velocity \(f''(\eta) \) and reduces the temperature profile.
- The temperature ratio parameter \(\theta_w \) and radiation parameter \(Rd \) take part in promoting the temperature profile and measure of heat transport.
- The magnitude of the local skin friction coefficients in both directions increases with an increase in modified Hartmann number \(Q \).
- The rate of heat transfer was found to be higher for the modified Hartmann number \(Q \) and stretching ratio parameter \(\alpha \).

Non-linear radiation in the three-dimensional flow and heat transfer of \(\text{Fe}_3\text{O}_4/\text{Al}_2\text{O}_3 \) nanoparticles

An increase in the values of respective parameters exhibits increment in the local skin friction coefficient of \(\text{H}_2\text{O} - \text{Fe}_3\text{O}_4 \) and increment in the heat transfer rate of NaC\(_6\)H\(_8\)O\(_7\) - Al\(_2\)O\(_3\) nanofluid when contrasted with other proposed combinations.

Author Contributions

A.K. Abdul Hakeem and P. Ragupathi contemplated the presented idea. P. Ragupathi and S. Saranya developed the theory and performed the computations. B. Ganga verified the numerical methods and the results that were discussed in the paper. A.K. Abdul Hakeem encouraged P. Ragupathi and S. Saranya to investigate the non-linear radiation aspects and supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

The authors received no financial support for the research, authorship and publication of this article.

Nomenclature

- **A**: Material constant
- **a, b**: Constants
- **\(a_1 \)**: The width of the magnets between the electrodes
- **\(C_f, C_z \)**: Skin friction coefficients
- **\(f, g \)**: Dimensionless stream functions
- **\(j_0 \)**: Applied current density in electrodes
- **\(k^* \)**: Mean absorption coefficient
- **\(M_0 \)**: Magnetization of the permanent magnets
- **\(N_u \)**: Local Nusselt number
- **\(Pr \)**: Prandtl number of base fluids
- **\(p_r \)**: Yield stress of the fluid
- **\(Q \)**: Modified Hartmann number
- **\(q_w \)**: Wall heat flux \([\text{W/m}^2]\)
- **\(q_r \)**: Radiative heat flux \([\text{W/m}^2]\)
- **\(Re_x, Re_y \)**: Local Reynolds number
- **\(T \)**: Local fluid temperature \([\text{K}]\)
- **\(T_w \)**: Temperature at the surface of the plate \([\text{K}]\)
- **\(T_{\infty} \)**: Free stream temperature \([\text{K}]\)
- **\(u, v, w \)**: Components of velocity \([\text{m/s}]\)
- **\(x, y, z \)**: Coordinates \([\text{m}]\)
- **\(\alpha \)**: Stretching ratio parameter
- **\(\alpha_{nf} \)**: Thermal diffusivity of the nanofluid \([\text{m}^2/\text{s}]\)
- **\(\beta \)**: Casson parameter
- **\(\phi \)**: Volume fraction of nanoparticle
- **\(\eta \)**: Similarity variable
- **\(\mu \)**: Absolute viscosity \([\text{N-s/m}^2]\)
- **\(\nu \)**: Kinematic viscosity \([\text{m}^2/\text{s}]\)
- **\(\sigma \)**: Electric conductivity
- **\(\sigma_s \)**: Stefan-Boltzmann constant
- **\(\rho \)**: Density \([\text{kg/m}^3]\)
- **\(\rho C_f \)**: Heat capacity \([\text{kg-m}^2/\text{s}^2/\text{K}]\)
- **\(\theta \)**: Dimensionless temperature
- **\(\theta_w \)**: Temperature ratio parameter
- **\(\psi \)**: Stream function
- **\(\tau \)**: Viscous stress at the surface of the plate \([\text{N m}^{-2}]\)

Subscripts

- **\(w \)**: Temperature at the surface of the plate \([\text{K}]\)
- **\(nf \)**: Nanofluid
- **\(f \)**: Base fluid
- \(s \): Solid nanoparticles
- \(\infty \): Boundary layer edge

References

Nayak, M. K., Shaw, S., Pandey, V. S., and Chamkha, A. J., Combined effects of slip and convective boundary

Sheikholeslami, M., Lattice Boltzmann method simulations for MHD non-Darcy nanofluid free convection,
International Journal of Heat and Mass Transfer

Lattice Boltzmann method,

Sheikholeslami, M., Influence of magnetic field on nanofluid free convection in an open porous cavity by means of
Computational Mechanics

Hatami, M., Zhou, J., Geng, J., and Jing, D., Variable magnetic field (VMF) effect on the heat transfer of a half-
Journal of Mechanical Science and Technology

Atashafrooz, M., Gandjalikhan Nassab, S. A., and Lari, K., Application of full-spectrum k-distribution method to

Hatami, M., Zhou, J., Geng, J., and Jing, D., Variable magnetic field (VMF) effect on the heat transfer of a halfannulus cavity filled by Fe3O4-water nanofluid under constant heat flux, Journal of Magnetism and Magnetic Materials, 451, 2018, 173-182.

[34] Pourmehran, O., Rahimi-Gorji, M., Hatami, M., Sahebi, S.A.R., and Domairry, G., Numerical optimization of microchannel heat sink (MCHS) performance cooled by KKL based nanofluids in saturated porous medium, Journal of the Taiwan Institute of Chemical Engineers, 55, 2015, 49-68.

ORCID iD

A.K. Abdul Hakeem https://orcid.org/0000-0003-1698-7789
P. Ragupathi https://orcid.org/0000-0001-6508-8443
S. Saranya https://orcid.org/0000-0002-4408-1979
B. Ganga https://orcid.org/0000-0003-3742-1696