Dufour and Soret Effects on Unsteady Heat and Mass Transfer for Powell-Eyring Fluid Flow over an Expanding Permeable Sheet

G.C. Layek¹, B. Mandal², K. Bhattacharyya³

¹ Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India, Email: gc.layek@math.buruniv.ac.in
² Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India, Email: bmandalmath@gmail.com
³ Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi–221005, Uttar Pradesh, India, Email: krishmath@bhu.ac.in

Abstract: In the present analysis, the Dufour and Soret effects on unsteady heat-mass transfer of a viscous incompressible Powell-Eyring fluids flow past an expanding/shrinking permeable sheet are reported. The fluid boundary layer develops over the variable sheet with suction/injection to the non-uniform free stream velocity. Under the symmetry group of transformations, the governing equations along with three independent variables, are converted into a system of PDEs with two independent variables. Finally, by employing the order-reduction technique the PDEs are transformed into ODEs, which are then solved numerically. The results are presented graphically and analyzed. The main advantage of this technique is that without any prior knowledge, one can easily find the scaling transformations, expanding velocity, suction/injection velocity, and free-stream velocity. From computed numerical results many important findings are obtained. Most importantly, thermal and concentration overshoots are found for larger values of Dufour and Soret numbers, respectively. Also, thermal and concentration crossing over found for different values of Soret and Dufour numbers, respectively.

Keywords: Unsteady heat and mass transfer; Soret and Dufour effects; Powell-Eyring fluid; Expanding sheet; Symmetry analysis.

1. Introduction

According to independent or dependent on the time at every point, flow can be categorized into two types, viz. steady and unsteady. Most of the flows that we encounter in our daily life are unsteady. The boundary layer theory of such kinds of flows is important in science and technology.

In nature, most of the fluids are non-Newtonian. Among the available non-Newtonian fluid models, the Powell-Eyring fluid model is popular for vast applications in chemical engineering systems. In spite of the complicity of this rheological model, it has certain advantages over other non-Newtonian fluid models. It was obtained from the kinetic theory of gases and it reduces to Newtonian behavior for small and large shear rates. Patel and Timol [12] illustrated MHD Powell-Eyring fluid flow by use of the method of satisfaction of asymptotic boundary conditions. The Powell-Eyring fluid flow of an expanding sheet was discussed by Javed et al. [13]. Whereas, Powell-Eyring fluid flow in a stretching cylinder with variable viscosity was described by Malik et al. [14]. In a stretching sheet, Hamid et al. [15] discovered dual solutions and stability analysis of flow and heat transfer of Casson fluid. Related to the flow of nanofluids some very recent work can be found in [16]-[21].

Heat transfer is the energy transfer due to a temperature difference in a medium or between two or more mediums. Heat transfer can take place in one of the three processes, conduction, convection, and radiation, whereas the mass transfer is the displacement of the mass from one position to another. It can be found in many mechanisms, such as absorption, drying, evaporation, etc. Prasad et al. [22] exposed Powell-Eyring fluid flow characteristics with heat transfer in a non-isothermal stretching sheet. The stagnation-point flow of Powell-Eyring fluid in the presence of melting heat transfer was examined by Hayat et al. [23]. In an unsteady expanding sheet, Khader and Megahed [24], Hayat et al. [25] and Reddy et al. [26] pioneered the flow and heat transfer of Powell-Eyring fluid. Hayat et al. [27] compared the series solution for Powell-Eyring fluid flow with a numerical solution. The thermal radiation effect in Powell-Eyring nano-fluid MHD flow caused due to a stretching cylinder was scrutinized by Hayat et al. [28]. In an exponentially shrinking sheet, Ara et al. [29] investigated the thermal radiation effect on the flow of Eyring-Powell fluid in the boundary layer. Nadeem and Saleem [30] analyzed the mixed convective flow of Eyring-Powell fluid along a rotating cone. Panigrahi et al. [31]-[32] and Malik et al. [33] derived mixed convective boundary layer MHD flow of Powell-Eyring fluid due to an expanding sheet. In an exponentially expanding sheet, Megahed [34] discovered flow and heat transfer with heat flux and changeable thermal conductivity of a Powell-Eyring fluid. Krishna et al. [35] derived dual solutions for unsteady Powell-Eyring fluid flow on an inclined stretching sheet. While, in an inclined expanding cylinder and taking heat absorption/generation effect, Rehman et al. [36] analyzed the dual stratified mixed convective flow of Eyring-Powell fluid. Zaib et al. [37] derived dual solutions of unsteady flow of a copper-water nano-fluid past an exponentially shrinking sheet with non-uniform suction. Ye [38] pioneered the melting process in a rectangular thermal storage cavity heated from vertical walls. Using a finite value method, the non-uniformity of electrode evaluation is conducted computationally based on the heat conduction equation by Ye [39]. By design method and modeling verification, Ye [40] derived uniform airflow distribution in duct ventilation.

For the simultaneous occurrence of heat and mass transfer in between the fluxes, the driving potential is very complex, as the energy flux can be created not only by temperature gradient but also by composition gradient. Energy flux caused by the concentration gradient is called Dufour or diffusion-thermo effect. The temperature gradient can also produce mass fluxes, and this is the Soret or thermo-diffusion effect. Soret and Dufour effects were neglected on the basis that they are in a smaller order of magnitude compared to the effects described by Fourier’s and Fick’s laws. There exists however exceptions. Eckert and Drake [41] prescribed lots of cases when this effect can’t be neglected. The Soret effect is vital for isotope separation in a mixture of gases with very light molecular weight (H_2, He). The Dufour effect is considerable for medium molecular weight (N_2, air, etc.). Khan and Sultan [42] analyzed Soret and Dufour effects for the double-diffusive convective flow of non-Newtonian Eyring-Powell fluid for a cone in a porous medium. Hayat et al. [43] established Soret and Dufour effects on three-dimensional flow over exponentially expanding surface in a porous medium with chemical reaction and heat/sink/source.

In the present analysis, we investigate unsteady heat and mass transfer for non-Newtonian Powell-Eyring fluid flow over an expanding/shrinking sheet with suction/injection taking into consideration both the Soret and Dufour effects with thermal radiation. By using the Lie symmetry technique, the governing partial differential equations are transformed into ordinary differential equations. Then, these equations are solved numerically using shooting method with the help of Mathematica software and the physical characteristics for the flow, heat and mass transfer are discussed. It is noted that thermal and concentration overshoots are found for larger values of Dufour and Soret numbers, respectively. Also, thermal and concentration crossing over found for different values of Soret and Dufour numbers, respectively.

2. Formulation of the Problem

Consider the heat and mass transfer of two-dimensional unsteady boundary layer flow of a viscous incompressible non-Newtonian Powell-Eyring fluid along with an expanding/shrinking sheet with non-uniform suction, Dufour-Soret effects, and thermal radiation. The Geometrical and Physical sketch of the flow problem is given in Fig. 1.

The shear-stress tensor for the Powell-Eyring fluid is given by [44]

$$
\tau_{xy} = \mu \frac{\partial \sigma}{\partial y} + \frac{1}{\beta_1} \sinh^{-1} \left(\frac{1}{C_1} \frac{\partial \sigma}{\partial y} \right)
$$

(1)
where μ is the coefficient of viscosity, β_i and C_i are material fluid parameters. The second order approximation of $\sinh^{-1}\left(\frac{\partial \pi}{C_i \frac{\partial y}{y}}\right)$ function is given by [34]

$$\sinh^{-1}\left(1 \frac{\partial \pi}{C_i \frac{\partial y}{y}}\right) \approx 1 \frac{\partial \pi}{C_i \frac{\partial y}{y}} - \frac{1}{2} \left(\frac{\partial \pi}{C_i \frac{\partial y}{y}} \right)^2 < 1. \tag{2}$$

Under the usual boundary layer approximations, the governing equations of the mass, momentum, energy and concentration for the unsteady flow can be written as [25], [26], [34], [35], [43]

$$\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} = 0, \tag{3}$$

$$\frac{\partial \pi}{\partial t} + \bar{u} \frac{\partial \pi}{\partial x} + \bar{v} \frac{\partial \pi}{\partial y} = \frac{\partial \bar{u}}{\partial t} + \bar{u} \frac{\partial \bar{u}}{\partial x} + \bar{v} \frac{\partial \bar{u}}{\partial y} + \left(\nu + \frac{1}{\rho \beta_i C_i}\right) \frac{\partial^2 \bar{u}}{\partial y^2} - \frac{1}{2 \rho \beta_i C_i} \left(\frac{\partial \pi}{\partial y}\right)^2 \frac{\partial^2 \pi}{\partial y^2}, \tag{4}$$

$$\frac{\partial \bar{T}}{\partial t} + \bar{u} \frac{\partial \bar{T}}{\partial x} + \bar{v} \frac{\partial \bar{T}}{\partial y} = \kappa \frac{\partial^2 \bar{T}}{\partial y^2} + \frac{1}{\rho c_p} \frac{\partial \bar{q}_r}{\partial y} + \frac{D_m k_i}{c_p \epsilon_r} \frac{\partial^2 \bar{C}}{\partial y^2}, \tag{5}$$

$$\frac{\partial \bar{C}}{\partial t} + \bar{u} \frac{\partial \bar{C}}{\partial x} + \bar{v} \frac{\partial \bar{C}}{\partial y} = D_m \frac{\partial^2 \bar{C}}{\partial y^2} + \frac{D_m k_i}{T_m} \frac{\partial^2 \bar{T}}{\partial y^2}, \tag{6}$$

with the boundary conditions

$$\bar{u}(x, y, \bar{T}) = \bar{S}_e(x, \bar{T}), \bar{v}(x, y, \bar{T}) = \bar{V}_e(x, \bar{T}), \bar{T} = T_e(x, \bar{T}), \bar{C} = C_e(x, \bar{T}) \quad \text{at} \quad y = 0, \tag{7}$$

$$\bar{u}(x, y, \bar{T}) \rightarrow \bar{u}_e(x, \bar{T}), \bar{T} \rightarrow T_\infty, \bar{C} \rightarrow C_\infty \quad \text{at} \quad y \rightarrow \infty, \tag{8}$$

where x-direction is along with the plate, y perpendicular to the plate, \bar{T} is the time, \bar{u} and \bar{v} are, respectively, the velocity components in the x and y directions, $\nu(=\mu/\rho)$ is the kinematic viscosity, \bar{T} is the temperature, \bar{C} is the concentration, κ is the thermal conductivity of the fluid, ρ is the constant fluid density, ϵ_r the specific heat at constant pressure, \bar{q}_r is the radiation heat-flux, D_m is the coefficient of mass diffusivity, k_i is the thermal diffusion ratio, C_e is the concentration susceptibility, T_∞ is the mean fluid pressure, $\bar{S}_e(x, \bar{T})$ is the moving surface velocity, $\bar{V}_e(x, \bar{T})$ is the suction or injection velocity of the surface, $T_e(x, \bar{T})$ is the surface temperature, $C_e(x, \bar{T})$ is the surface concentration, $\bar{u}_e(x, \bar{T})$ is the free stream velocity outside the boundary layer, and T_∞ and C_∞ are uniform ambient temperature and concentration of the flow respectively.

Using Rosseland approximation for thermal radiation [45], one obtains $\bar{q}_r = -(4 \sigma^* / 3 k_i) (\partial \bar{T}^4 / \partial y)$, where σ^* is the Stefan-Boltzman constant, k_i is the absorption coefficient. We consider the temperature variation within the flow field in such way that \bar{T}^4 can be expanded in a Taylor’s series. Expanding \bar{T}^4 about T_∞ and neglecting higher order
In order to make Eq. (3), (8) non-dimensional, we introduce the following dimensionless variables

\[
x = \frac{\bar{x}}{L}, \quad y = \frac{\bar{y}}{\sqrt{Re}}, \quad u = \frac{\bar{u}}{U_0}, \quad v = \frac{\bar{v}}{U_0 \sqrt{Re}}, \quad T = \frac{\bar{T} - T_\infty}{T_s - T_\infty},
\]

\[
C = \frac{C_s - C_w}{C_w - C_\infty}, \quad \tau = \frac{U_0 t}{L}, \quad u_0 = \frac{\bar{u}}{U_0}, \quad \bar{s}_0 = \frac{\bar{s}}{U_0}, \quad V_0 = \frac{\bar{V}_0}{U_0 \sqrt{Re}},
\]

\[
(9)
\]

where \(L, \ U_0 \) and \(Re \) are, respectively, the length of the horizontal surface, average free stream velocity and the Reynolds number. Then, the flow equations are transformed into

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,
\]

\[
\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + (1+\epsilon) \frac{\partial^2 u}{\partial y^2} - \epsilon \delta \left(\frac{\partial u}{\partial y} \right) \frac{\partial^2 u}{\partial y^2},
\]

\[
\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{1}{Pr} \frac{\partial^2 T}{\partial y^2} + \frac{16}{3R} \frac{\partial^2 T}{\partial y^2} + Du \frac{\partial^2 C}{\partial y^2},
\]

\[
\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = \frac{1}{Sc} \frac{\partial^2 C}{\partial y^2} + Sr \frac{\partial^2 T}{\partial y^2},
\]

with

\[
u(x,y,t) = \bar{s}_0(x,t), \quad v(x,y,t) = V_0(x,t), \quad T = 1, \quad C = 1, \text{ at } y = 0
\]

\[
u(x,y,t) \to u_0(x,t), \quad T \to 0, \quad C \to 0 \text{ at } y \to \infty
\]

(15)

In Equations. (10)-(13), the dimensionless parameters are \(Pr = \rho c_p \nu / \kappa \), the Prandtl number; \(R = k_l \rho C_p \nu / \sigma^* T_s^3 \), the radiation parameter; \(Du = D_u k_l (C_w - C_\infty) / c_p C_p (T_s - T_\infty) \), the Dufour number; \(Sc = \nu / D_u \), the Schmidt number; \(Sr = D_u k_l (T_s - T_\infty) / T_u^* C_p (C_w - C_\infty) \), the Soret number; \(\epsilon = 1 / \rho \nu \beta \), and \(\beta = U_0^3 / 2 \nu L C_s^2 \), the Powell-Eyring fluid parameters.

The governing equations are partial and very difficult to solve. So, we will transform them to self-similar ordinary differential equations. For that, here we adopt Lie symmetry group theory [4] to the equations to obtain the symmetry transformations of the variables under which the equations remain form invariant. Note that the equations may remain form invariant under many transformations, but we will consider only those transformations under which the boundary conditions are also form invariant. Since the equations contain three independent variables, we have adopted the method twice to obtain the desired similar ordinary differential equations with boundary conditions.
3. Symmetry Analysis of the Governing Equations

There exist many standard books (see Cantwell [4], Layek [3] (Chapter 8), Bluman and Kumei [5] and references therein) on Lie Group theory. Also, the Lie Group theory is now extensively used in many Laminar and Turbulent flow to obtain similarity variables and self-preserving functions. Here we described the method very briefly as follows:

Consider the following partial differential equation

\[F(x,U,U^{(1)},U^{(2)},...,U^{(n)}) = 0 \]

(16)

where \(x = (x_1, x_2, ..., x_n) \) is the independent variable, \(U = (U_1(x), U_2(x), ..., U_m(x)) \) is the dependent variables, \(U^{(i)} \) is the \(i \)-th order derivative of \(U \). The main idea of the Lie is to find transformations of variables that do not change the functional form of differential equation (16). A transformation \((X = (\phi, \psi)): D \times \mathbb{R} \rightarrow D, D \subseteq \mathbb{R}^n \) such that \(T_{\epsilon} \equiv x' = \phi(x, U, \epsilon) \) and \(U' = \psi(x, U, \epsilon), \epsilon \in S \subset \mathbb{R} \) is a continuous parameter and forming a group, with \(x' = x \) and \(U' = U \) when \(\epsilon = 0 \) is called a symmetry group of transformation of Equation (16) iff equivalence

\[F(x, U^{(1)}, U^{(2)}, ..., U^{(n)}) = 0 \Leftrightarrow F(x', U^{(1)}, U^{(2)}, ..., U^{(n)}) = 0 \]

holds. The infinitesimal form of the transformations \(T_{\epsilon} \) can be written as

\[x' = x + \epsilon \xi(x, U) + o(\epsilon^2) \quad \text{and} \quad U' = U + \epsilon \eta(x, U) + o(\epsilon^2), \]

(17)

where \(\xi = \partial \phi / \partial x |_{\epsilon=0} \) and \(\eta = \partial \psi / \partial x |_{\epsilon=0} \) are called the infinitesimals of the transformations. Again, global form \(T_{\epsilon} \) of the transformations (17) can hence be determined by integrating the first order system

\[\partial X'/\partial \epsilon = \xi(x', U'), \partial y'/\partial \epsilon = \eta(x', U') \]

with the initial conditions \(x'=x, y'=y \) at \(\epsilon=0 \). The infinitesimal transformation (17) can be represented by the infinitesimal generator given by

\[X = \xi(x, U) \partial / \partial x + \eta(x, U) \partial / \partial U_j, \quad i = 1, 2, ..., k; \quad j = 1, 2, ..., l. \]

The infinitesimals \(\xi, \eta \) of the differential equation \(F = 0 \) can be determined using the defining equation \(X^{(n)}F |_{\epsilon=0} = 0 \), where \(X^{(n)} \) is the prolongation of \(X \) to all the derivatives of the dependent variables \(U \) w.r.t \(x \) up to order \(n \) of the equation (16). The \(n \)-th prolongation \(X^{(n)} \) is defined as

\[X^{(n)} = \xi_1 \partial / \partial x + \eta_1 \partial / \partial U_j + \xi_2 \partial / \partial U_{h_2} + \eta_2 \partial / \partial U_{h_2} + \frac{\partial}{\partial U_{h_3}} + \frac{\partial}{\partial U_{h_4}} + \frac{\partial}{\partial U_{h_5}} + \frac{\partial}{\partial U_{h_6}} + \frac{\partial}{\partial U_{h_7}} \]

(18)

where \(U_{h_i} \) is the partial derivative of the variable \(U_j \) with respect to the variable \(x_i \), \(i, j, k = 1, 2, ..., d \) and \(D_{i} \) denotes the total differential operator with respect to the variable \(x_i \).

We shall now focus on the invariant solutions of the equations (10), (15) by employing the Lie symmetry analysis (see Layek [3] (Chapter 8), Cantwell [4], Bluman and Kumei [5] and references therein). The equations has three independent variables \(t, x, y \) and five dependent variables \(u(t, x, y), \nu(t, x, y), u_i(t, x), T(t, x, y), C(t, x, y) \). So, the infinitesimal generator of these equations is of the following form

\[X = \xi_t \partial / \partial t + \xi_x \partial / \partial x + \xi_y \partial / \partial y + \eta_u \partial / \partial u + \eta_v \partial / \partial v + \eta_{u_i} \partial / \partial u_i + \eta_{T} \partial / \partial T + \eta_{C} \partial / \partial C \]

(19)
By using the Mathematica package \textit{IntrotoSymmetry.m} (Cantwell [4]), the infinitesimals are found as

\[
\begin{align*}
\xi_1 &= a_1 + a_2 t, \\
\xi_2 &= h(t) + \frac{3}{2} a_2 x, \\
\xi_3 &= g(t, x) + \frac{1}{2} a_2 y, \\
\eta_1 &= h'(t) + \frac{1}{2} a_2 u, \\
\eta_2 &= \frac{\partial}{\partial t} + \frac{\partial g}{\partial x} u - \frac{1}{2} a_2 v, \\
\eta_3 &= h'(t) + \frac{1}{2} a_2 u,
\end{align*}
\]

(20)

where the group parameters \(a_1, a_2, a_3, a_4, a_5, a_6 \in \mathbb{R}\) are arbitrary constants and \(h(t), g(t, x)\) are arbitrary functions. Now, the boundary conditions (14)-(15), will remain form invariant under the transformation for this infinitesimal if \(g(x, t) = a_3 = a_4 = a_5 = 0\) and the functions \(S_{\alpha}(x, t), V_{\alpha}(x, t), u_{\alpha}(x, t)\) satisfy the following equations

\[
\begin{align*}
h'(t) + \frac{1}{2} a_2 S_{\alpha} &= (a_1 + a_2 t) \cdot \frac{\partial S_{\alpha}}{\partial t} + h(t) + \frac{3}{2} a_2 x \cdot \frac{\partial S_{\alpha}}{\partial x}, \\
\frac{1}{2} a_2 V_{\alpha} &= (a_1 + a_2 t) \cdot \frac{\partial V_{\alpha}}{\partial t} + \left[h(t) + \frac{3}{2} a_2 x \right] \cdot \frac{\partial V_{\alpha}}{\partial x} = 0, \\
h'(t) + \frac{1}{2} a_2 u_{\alpha} &= (a_1 + a_2 t) \cdot \frac{\partial u_{\alpha}}{\partial t} + h(t) + \frac{3}{2} a_2 x \cdot \frac{\partial u_{\alpha}}{\partial x}.
\end{align*}
\]

(21)

without loss of generality, we assume that \(h(t) = 0\). So, there are left one translational parameter \(a_1\) and one scaling parameter \(a_2\). We can write infinitesimal generators for each of the parameter as

\[
X_1 = \frac{\partial}{\partial t}, \quad X_2 = t \frac{\partial}{\partial t} + \frac{3}{2} x \frac{\partial}{\partial x} + \frac{1}{2} y \frac{\partial}{\partial y} + \frac{1}{2} v \frac{\partial}{\partial v} + \frac{1}{2} u \frac{\partial}{\partial u}.
\]

(22)

and the Eq. (10), (15) read the same under the following global transformation groups

\[
\begin{align*}
G_1 & : t' = t + a_1, \quad x' = x, \quad y' = y, \quad u' = u, \quad v' = v, \quad T' = T, \quad C' = C, \\
G_2 & : t' = e^{a_2} t, \quad x' = xe^{a_2}, \quad y' = ye^{a_2}, \quad u' = ae^{a_2} u, \quad v' = ve^{a_2}, \quad T' = T, \quad C' = C.
\end{align*}
\]

(23)

Using invariant surface condition of the curve \(F(x, U) = 0\) according to which the solution is to be invariant if \(X F = 0\). Using the characteristic method [5], we have found the characteristic system as

\[
\frac{dt}{a_1 + a_2 t} = \frac{dx}{3 a_2 x} = \frac{dy}{2 a_2 x} = \frac{du}{2 a_2 u}, \quad \frac{dv}{2 a_2 v} = \frac{dC}{0} = \frac{dT}{0}.
\]

(24)

Solving the above equations, we found the following invariants (self-similar variables and self-preserving functions) in dimensionless form as

\[
\begin{align*}
X &= \frac{x}{(a_{12} + t)^2}, \quad Y = \frac{y}{(a_{12} + t)^2}, \quad U(X, Y) = \frac{u}{(a_{12} + t)^2}, \quad V(X, Y) = \nu(a_{12} + t)^{\frac{1}{2}}, \\
U_{\alpha}(X) &= \frac{\partial U(X)}{\partial X}, \quad T = P(X, Y), \quad C = Q(X, Y),
\end{align*}
\]

(25)

where \(a_{12} = a_1 / a_2\) is arbitrary and may be called as virtual origin. Using (25), Eqs. (10) - (15) are transformed into the following PDEs

\[
\begin{align*}
\frac{\partial U}{\partial X} + \frac{\partial V}{\partial Y} &= 0, \\
\frac{1}{2} \frac{\partial U}{\partial X} - \frac{3}{2} \frac{\partial V}{\partial Y} - \frac{U}{2} \frac{\partial U}{\partial Y} + V \frac{\partial U}{\partial Y} + U \frac{\partial V}{\partial Y} &= -\frac{3}{2} \frac{\partial P}{\partial X} - \frac{Y}{2} \frac{\partial P}{\partial Y} + U \frac{\partial P}{\partial Y} + V \frac{\partial P}{\partial Y} = 0.
\end{align*}
\]

(26)

(27)

(28)
Dufour and Soret Effects on Unsteady Powell-Eyring Fluid Flow

\[
\frac{3}{2} X \frac{\partial Q}{\partial X} - \frac{3}{2} Y \frac{\partial Q}{\partial Y} + U, \frac{\partial Q}{\partial X} + V, \frac{\partial Q}{\partial Y} = \frac{1}{Sc} \frac{\partial^2 Q}{\partial Y^2} + Sr \frac{\partial^2 P}{\partial Y^2},
\]

(29)

The boundary condition (14) and (15) remain form invariant and hold for the above solution form (25) only if \(S_q(x, t), V_q(x, t) \) are of the form

\[
S_q(x, t) = (a_{12} + t)^{\frac{1}{12}} A(X), \quad V_q(x, t) = (a_{12} + t)^{\frac{1}{12}} B(X).
\]

(30)

Hence, the boundary conditions (14), (15) under the above symmetry group of transformations Equation (25) become

\[
U(X, Y) = A(X), \quad V(X, Y) = B(X), \quad P = 1, \quad Q = 1, \quad \text{at} \quad Y = 0,
\]

(31)

\[
U(X, Y) \to U, (X), \quad P \to 0, \quad Q \to 0 \quad \text{at} \quad Y \to \infty.
\]

(32)

Till now, we obtain Symmetry transformations that reduce the number of independent variables from three to two. We now apply the stream function \(U = \frac{\partial \psi}{\partial Y}, V = -\frac{\partial \psi}{\partial X} \) to reduce the number of dependent variables. So the equation (26) is automatically satisfied. The Eqs. (27) - (32) are transformed into

\[
\frac{1}{2} \frac{\partial \psi}{\partial Y} - \frac{3}{2} X \frac{\partial^2 \psi}{\partial X \partial Y} - \frac{Y}{2} \frac{\partial^2 \psi}{\partial Y^2} + \frac{\partial \psi}{\partial Y} \frac{\partial^2 \psi}{\partial X \partial Y} + \frac{\partial \psi}{\partial Y} \frac{\partial^2 \psi}{\partial X \partial Y} = \frac{3}{2} X \frac{\partial U}{\partial X} + U, \frac{\partial U}{\partial X} + (1 + \epsilon) \frac{\partial^2 \psi}{\partial Y^2} - \epsilon \frac{\partial^2 \psi}{\partial Y^2} \frac{\partial^2 \psi}{\partial Y^2},
\]

(33)

\[
- \frac{3}{2} X \frac{\partial P}{\partial X} - \frac{3}{2} Y \frac{\partial P}{\partial Y} + \frac{\partial \psi}{\partial Y} \frac{\partial P}{\partial X} - \frac{\partial \psi}{\partial Y} \frac{\partial P}{\partial X} = \frac{1}{Pr} \frac{\partial^2 P}{\partial Y^2} + \frac{16}{3R} \frac{\partial^2 P}{\partial Y^2} + Du \frac{\partial^2 Q}{\partial Y^2},
\]

(34)

\[
- \frac{3}{2} X \frac{\partial Q}{\partial X} - \frac{3}{2} Y \frac{\partial Q}{\partial Y} + \frac{\partial \psi}{\partial Y} \frac{\partial Q}{\partial X} - \frac{\partial \psi}{\partial Y} \frac{\partial Q}{\partial X} = \frac{1}{Sc} \frac{\partial^2 Q}{\partial Y^2} + Sr \frac{\partial^2 P}{\partial Y^2},
\]

(35)

with the boundary conditions

\[
\frac{\partial \psi}{\partial Y} = A(X), \quad \frac{\partial \psi}{\partial X} = B(X), \quad P = 1, \quad Q = 1, \quad \text{at} \quad Y = 0,
\]

(36)

\[
\frac{\partial \psi}{\partial Y} \to U, (X), \quad P \to 0, \quad Q \to 0 \quad \text{at} \quad Y \to \infty.
\]

(37)

Now, our aim is to transform the PDES (33), (35) with boundary conditions (36), (37) to an ODEs by using the same Lie Group.

4. Second Reduction of Order

The equations (33), (35) contains two independent variables \((X, Y)\) and four dependent variables \((\psi, U, P, Q)\). So infinitesimal generator of the eqns. (33), (35) has the following form

\[
X = \xi_1 \frac{\partial}{\partial X} + \xi_2 \frac{\partial}{\partial Y} + \eta_1 \frac{\partial \psi}{\partial X} + \eta_2 \frac{\partial \psi}{\partial Y} + \eta_3 \frac{\partial U}{\partial X} + \eta_4 \frac{\partial U}{\partial Y}.
\]

(38)

The infinitesimals \((\xi_1, \xi_2, \eta_1, \eta_2, \eta_3, \eta_4)\) are obtained by solving the defining equations with the help of Mathematica package IntroToSymmetry.m (Cantwell [4]) as

\[
\begin{align*}
\xi_1 &= b_{10} + b_{11}X + b_{12}Y + b_{13} \psi + b_{14}U, + b_{15}P + b_{10}Q, \\
\xi_2 &= b_{20} + b_{21}X + b_{22}Y + b_{23} \psi + b_{24}U, + b_{25}P + b_{20}Q, \\
\eta_1 &= b_{30} + b_{31}X + b_{32}Y + b_{33} \psi + b_{34}U, + b_{35}P + b_{30}Q, \\
\eta_2 &= b_{40} + b_{41}X + b_{42}Y + b_{43} \psi + b_{44}U, + b_{45}P + b_{40}Q, \\
\eta_3 &= b_{50} + b_{51}X + b_{52}Y + b_{53} \psi + b_{54}U, + b_{55}P + b_{50}Q, \\
\eta_4 &= b_{60} + b_{61}X + b_{62}Y + b_{63} \psi + b_{64}U, + b_{65}P + b_{60}Q.
\end{align*}
\]

(39)

Using invariant surface condition, the characteristic equations analogous to the scaling variables \(b_{11}, b_{22}, b_{33}, b_{55}, b_{66}\) can be written as

\[
\begin{align*}
\xi_1 &= b_{11} + b_{12}X + b_{13}Y + b_{14} \psi + b_{15}U, + b_{16}P + b_{11}Q, \\
\xi_2 &= b_{21} + b_{22}X + b_{23}Y + b_{24} \psi + b_{25}U, + b_{26}P + b_{21}Q, \\
\eta_1 &= b_{31} + b_{32}X + b_{33}Y + b_{34} \psi + b_{35}U, + b_{36}P + b_{31}Q, \\
\eta_2 &= b_{41} + b_{42}X + b_{43}Y + b_{44} \psi + b_{45}U, + b_{46}P + b_{41}Q, \\
\eta_3 &= b_{51} + b_{52}X + b_{53}Y + b_{54} \psi + b_{55}U, + b_{56}P + b_{51}Q, \\
\eta_4 &= b_{61} + b_{62}X + b_{63}Y + b_{64} \psi + b_{65}U, + b_{66}P + b_{61}Q.
\end{align*}
\]
Solving the above-mentioned characteristic equations, we have the invariants in dimensionless form as

\[\eta = \frac{Y}{X^b}, \psi = X^h f(\eta), U_x = c X^h, \theta = X^h P(\eta), \phi = X^h Q(\eta). \]

Here \(b_2 = b_3 / b_1, b_3 = b_4 / b_1, b_4 = b_5 / b_1, b_5 = b_6 / b_1, b = \text{const.} \)

Using the transformations in Eq. (41), the non-linear partial differential Equations (33)-(35) are transformed into following ordinary differential equations if \(b_2 = b_3 = b_4 = 0, b_5 = b_6 = 1: \)

\[
(1 + \epsilon) f'''' - f''' + f f'' + f' + \frac{\eta}{2} f'' + c^2 - c = 0, \\
-\frac{\eta}{2} \theta' - f \theta' = \frac{1}{Pr} \theta'' + \frac{16}{3R} \theta'' + Du \phi' , \\
\frac{\eta}{2} \phi' - f \phi' = \frac{1}{Sc} \phi'' + Sr \theta' ,
\]

where \(\delta = \beta X^2 \) is the dimensionless local material fluid parameter.

Also, we assume \(A(X), B(X) \) are of the form \(A(X) = aX, B(X) = b \) where \(a \) is the dimensionless expanding/shrinking parameter with \(a > 0 \) for expanding surface and \(a < 0 \) for shrinking surface, and \(b \) is the dimensionless mass flux parameter with \(b > 0 \) for suction and \(b < 0 \) for injection respectively.

So, the boundary conditions (36), (37) become

\[f' = a, f = b, \theta = 1, \phi = 1 \text{ at } \eta = 0, \]
\[f' \to c, \theta \to 0, \phi \to 0 \text{ as } \eta \to \infty. \]

5. Numerical Procedure

The above non-linear differential Equations (42), (44) along with boundary conditions (45), (46) form a two-point boundary value problem and are solved using shooting method, by converting it into an initial value problem. In this method, we have chosen a suitable finite value of \(\eta \to \infty, \) say \(\eta_c. \) We set the following first order systems

\[
f' = z, z' = p, p' = \frac{z^2 - fp - z \frac{\eta}{2} p - c^2 + c}{1 + \epsilon - \epsilon \delta p^2}, \\
\theta' = r, r' = \left[\frac{\eta}{2} - fr - \frac{1}{3R} - Du \left(\frac{\eta}{2} s - fs \right) \right], \\
\phi' = s, s' = \left[\frac{\eta}{2} - fr - s \left(\frac{1}{Pr} + \frac{16}{3R} \right) - Du \cdot Sr \right],
\]

with

\[f(0) = b; z(0) = a; \theta(0) = 1; \phi(0) = 1 \]
To solve (47)-(49) with (50) as an initial value problem we must need values for $(0)p_0, i.e., (0)f''$, $(0)\theta'$ and $(0)\phi'$, but no such values are given in the problem. The initial guess values for $(0)f''$, $(0)\theta'$ and $(0)\phi'$ are chosen and fourth order Runge-Kutta method is applied to obtain the solution. We compare the computed values of $(\theta)(\eta)$, $(\phi)(\eta)$ at η_∞ with the given boundary conditions $f'(\eta_\infty) = c$, $\theta(\eta_\infty) = 0$ and $\phi(\eta_\infty) = 0$ and adjust values of $f''(0)$, $\theta'(0)$ and $\phi'(0)$ using Newton-Raphson method to get better approximation for the solution. The step size is taken as $\Delta \eta = 0.01$. The process is repeated until we get the result correct up to desired accuracy of 10^{-5} level.
6. Results and Discussion

The numerical results are illustrated graphically in the form of a non-dimensional velocity, temperature, concentration profiles. The parameters are chosen arbitrary, where $Pr = 0.71$ corresponds physically to the air at $20^\circ C$, $Pr = 1$ corresponds to electrolyte solution such as salt-water and $Pr = 7.0$ corresponds to pure water. Throughout the study of results, we consider the value of the governing parameters as $\epsilon = 0.2, \delta = 0.6, Pr = 7.0, R = 2.0, Du = 0.4, Sc = 0.6, Sr = 0.5$. These values are taken as default unless otherwise specified.

![Fig. 12. Temperature profiles for different values of Dufour number Du.](image1)

![Fig. 13. Concentration profiles for different values of Dufour number Du.](image2)

![Fig. 14. Concentration profiles for different values of Schmidt number Sc.](image3)

![Fig. 15. Temperature profiles for different values of Soret number Sr.](image4)

To confirm the validity of numerical scheme and the obtained results, our obtained results of skin-friction for steady case and different Powell-Eyring fluid parameters δ with $\epsilon = 0.2, c = 0$ are compared with published work Khan et al. [46] in Table 1 and those data are established excellent agreement.

Figs. 2 - 3 depict the effect of Powell-Eyring fluid parameters ϵ and δ on self-similar velocity profiles. It is found that the velocity decreases for increasing ϵ and so the flow boundary layer thickness increases for rising ϵ. Whereas, the other Powell-Eyring fluid parameter δ shows the opposite behavior, but its effect is less prominent. It is noted that the impact of ϵ and δ on temperature and concentration profiles is very less, so we have not given these graphs.

Figs. 4 - 6 present effects of expanding/shrinking parameter a on the velocity, temperature and concentration profiles. It is obvious that $a > 0$ corresponds to expanding sheet, $a < 0$ corresponds to shrinking sheet and $a = 0$ corresponds to plane sheet. We can spot that for an increase of expanding parameter a (assuming velocity ratio of the expanding sheet to the free stream velocity is greater than unity i.e. $a > c$), the velocity profile $f'(\eta)$ along the plate increases, and accordingly the boundary layer thickness enlarges. For increase of shrinking parameter $a(<0)$, the velocity profile $f'(\eta)$ along the plate increases, but the flow boundary layer thickness decreases. Also, for increase of expanding/shrinking parameter a, the temperature profile $\theta(\eta)$ and the concentration profile $\phi(\eta)$ (at a fixed η) along the plate decrease with constant other parameters. As a result, the concentration and thermal boundary layer thickness lessen for increasing a.
The suction/injection of fluid mass has a major impact on velocity, concentration and temperature and those are illustrated Figs. 7 - 9. We see that the value of velocity in the boundary layer enhances with larger suction/injection parameter b, but the temperature and the concentration profile decrease with b. So, the suction/injection decreases the flow, concentration and thermal boundary layer thicknesses.

The prediction of the influence of Prandtl number Pr and radiation parameter R on the temperature profiles are depicted in Figs 10 - 11. It is obvious that for increasing Pr the temperature profiles decrease (at a fixed η). So, the thermal boundary layer thickness reduces for increasing Pr. Similar to the Prandtl number, we notice that the temperature profiles decrease for increasing radiation parameter R. Thus, the thermal boundary layer thickness decreases for increasing R.

Figs. 12 - 13 reveal the temperature and concentration profiles for dissimilar values of the Dufour number Du. We see that for the rise of Dufour number Du causes an increment of temperature profiles. The diffusion-thermo effect results in the enlargement of thermal boundary layer thickness with thermal overshoot for larger values of Du. In the case of concentration profiles, initially it decreases with increasing Du, but after a certain stage, it increases with increasing Du, i.e., concentration crossing over is found. So, the concentration boundary layer thickness also enlarges with Du.

While the concentration profiles for unlike values of Schmidt number Sc is demonstrated in Fig. 14. It is monitored that when Sc increases, the concentration profile decreases. As it is known that mass diffusivity causes enhancement in concentration boundary layer thickness and Sc is inversely proportional to mass diffusivity, so the outcome is justified.

Finally, the effects of Soret number Sr on the temperature and concentration profiles are portrayed through Figs. 15 - 16. Similar to concentration for Du variation, it is seen that initially, temperature profile decreases for increasing Sr, but after some distance from the sheet, it increases with increasing with Sr. Hence, though it is small but there is a growth in thermal boundary layer thickness increases with Sr showing thermal crossing over. Also, the concentration profiles increase with increasing Sr. Thus, the thermo-diffusion effect, i.e., larger values of Sr makes the concentration boundary layer thickness thick. Also, concentration overshoot found for higher values of Sr.

7. Concluding Remarks

In this work, the combined heat and mass transfer in an unsteady, incompressible, viscous, non-Newtonian Powell-Eyring fluid along with expanding/shrinking sheet with suction/injection, Dufour and Soret effects are investigated. The Lie-group transformations are applied to obtain the invariants of the system. The equations are then solved using numerical technique and the acquired results are plotted graphically. From the present study, we may conclude the following points:

i. The flow boundary layer thickness increases with increasing Powell-Eyring fluid parameter ϵ and expanding parameter $a(>c)$ but it decreases with increasing Powell-Eyring fluid parameter δ, shrinking parameter and suction/injection parameter b.

Table 1. Comparison of skin-friction coefficient with Khan et al. [46] for steady case and for different values of δ with $\epsilon =0.2$, $c=0$.

<table>
<thead>
<tr>
<th>δ</th>
<th>Khan et al. [46]</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.09400</td>
<td>1.09402</td>
</tr>
<tr>
<td>0.2</td>
<td>1.09240</td>
<td>1.09239</td>
</tr>
<tr>
<td>0.3</td>
<td>1.09090</td>
<td>1.09091</td>
</tr>
<tr>
<td>0.4</td>
<td>1.08940</td>
<td>1.08942</td>
</tr>
<tr>
<td>0.5</td>
<td>1.08780</td>
<td>1.08784</td>
</tr>
<tr>
<td>0.6</td>
<td>1.08620</td>
<td>1.08618</td>
</tr>
<tr>
<td>0.7</td>
<td>1.08470</td>
<td>1.08467</td>
</tr>
<tr>
<td>0.8</td>
<td>1.08320</td>
<td>1.08323</td>
</tr>
<tr>
<td>0.9</td>
<td>1.08160</td>
<td>1.08162</td>
</tr>
<tr>
<td>1.0</td>
<td>1.07970</td>
<td>1.07968</td>
</tr>
</tbody>
</table>
ii. The thermal boundary layer thickness reduces with increasing expanding/shrinking parameter a, suction/injection parameter b, Prandtl number Pr and radiation parameter R, but it increases with larger Dufour number Du and Soret number Sr.

iii. The thickness of the Concentration boundary layer lessens with increasing expanding/shrinking parameter a, suction/injection parameter b and Schmidt number Sc, but it increases with increasing Dufour number Du and Soret number Sr.

iv. Thermal and concentration overshoots are found for many values of Dufour and Soret numbers respectively and it grows with their increments.

v. While for different values of Soret and Dufour numbers the thermal and concentration crossing over found.

Author Contributions

The manuscript was planned, formulated, written through the equal contribution of all authors. All authors discussed the results, reviewed and approved the final form of the manuscript.

Acknowledgments

The authors would like to thank the Editor and anonymous Reviewers for their careful reading and constructive comments and suggestions, which help a lot for improvement of the manuscript.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

The authors received no financial support for the research, authorship and publication of this article.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a,b,c</td>
<td>Constants</td>
</tr>
<tr>
<td>C</td>
<td>Concentration</td>
</tr>
<tr>
<td>C_i</td>
<td>Material fluid parameter</td>
</tr>
<tr>
<td>C_w</td>
<td>Concentration at the wall</td>
</tr>
<tr>
<td>C_∞</td>
<td>Free stream concentration</td>
</tr>
<tr>
<td>c_p</td>
<td>Specific heat at constant pressure</td>
</tr>
<tr>
<td>c_s</td>
<td>Concentration susceptibility</td>
</tr>
<tr>
<td>D_m</td>
<td>Coefficient of mass diffusivity</td>
</tr>
<tr>
<td>Du</td>
<td>Dufour number</td>
</tr>
<tr>
<td>f</td>
<td>Dimensionless stream function</td>
</tr>
<tr>
<td>f'</td>
<td>Dimensionless velocity</td>
</tr>
<tr>
<td>k_e</td>
<td>Thermal diffusion ratio</td>
</tr>
<tr>
<td>k_i</td>
<td>Absorption coefficient</td>
</tr>
<tr>
<td>L</td>
<td>Characteristic length</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>R</td>
<td>Radiation parameter</td>
</tr>
<tr>
<td>Re</td>
<td>Reynold number</td>
</tr>
<tr>
<td>Sc</td>
<td>Schmidt number</td>
</tr>
<tr>
<td>Sr</td>
<td>Soret number</td>
</tr>
<tr>
<td>S_o</td>
<td>Moving surface velocity</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>T_m</td>
<td>Mean fluid pressure</td>
</tr>
<tr>
<td>T_w</td>
<td>Temperature at the wall</td>
</tr>
<tr>
<td>T_∞</td>
<td>Free stream temperature</td>
</tr>
<tr>
<td>U_0</td>
<td>Characteristic velocity</td>
</tr>
<tr>
<td>V_0</td>
<td>Suction/injection</td>
</tr>
<tr>
<td>x,y</td>
<td>Cartesian coordinates</td>
</tr>
<tr>
<td>τ_{xy}</td>
<td>Shear stress tensor</td>
</tr>
<tr>
<td>ϵ,δ</td>
<td>Powell-Eyring fluid parameter</td>
</tr>
<tr>
<td>β_i</td>
<td>Material fluid parameter</td>
</tr>
<tr>
<td>μ</td>
<td>Coefficient of viscosity</td>
</tr>
<tr>
<td>κ</td>
<td>Thermal conductivity of the fluid</td>
</tr>
<tr>
<td>η</td>
<td>Similarity variable</td>
</tr>
<tr>
<td>ρ</td>
<td>Density of the fluid</td>
</tr>
<tr>
<td>ψ</td>
<td>Stream function</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>θ</td>
<td>Dimensionless temperature</td>
</tr>
<tr>
<td>σ^*</td>
<td>Stefan-Boltzmann constant</td>
</tr>
<tr>
<td>ϕ</td>
<td>Dimensionless concentration</td>
</tr>
</tbody>
</table>

Greek symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>η</td>
<td>Density of the fluid</td>
</tr>
<tr>
<td>ψ</td>
<td>Stream function</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>θ</td>
<td>Dimensionless temperature</td>
</tr>
<tr>
<td>σ^*</td>
<td>Stefan-Boltzmann constant</td>
</tr>
<tr>
<td>ϕ</td>
<td>Dimensionless concentration</td>
</tr>
</tbody>
</table>

Subscript

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>w</td>
<td>Condition at the surface</td>
</tr>
<tr>
<td>∞</td>
<td>Condition at infinity</td>
</tr>
</tbody>
</table>
References

[37] Zaib, A., Bhattacharyya, K. and Shafie, S., Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid, Journal of Central South University, 22, 2015, 4856-4863.

[42] Khan, N.A. and Sultan, F., On the double diffusive convection flow of Eyring-Powell fluid due to convection through a porous medium with Soret and Dufour effects, AIP Advances, 5, 2015, 057140.

ORCID iD

G.C. Layek® https://orcid.org/0000-0003-0867-5689
Bidyut Mandal® https://orcid.org/0000-0001-6476-9167
Krishnendu Bhattacharyya® https://orcid.org/0000-0001-7975-0709

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).