Spectral Quasi-linearization for MHD Nanofluid Stagnation Boundary Layer Flow due to a Stretching/Shrinking Surface

Hiranmoy Mondal1, Shipra Bharti2

1 Department of Mathematics, Brainware University, 398 Ramkrishnapur Road, Barasat, North 24 Parganas, Kolkata, West Bengal 700125, India, Email: hiranmoymondal@yahoo.co.in

2 Durgapur Institute of Advanced Technology and Management, Maulana Abul Kalam Azad University of Technology B.Tech 3rd year, Department of Chemical Engineering, West Bengal 713212, India, Email: shiprabharti341999@gmail.com

Abstract. This article concentrates on the effect of MHD heat mass transfer on the stagnation point nanofluid flow over a stretching or shrinking sheet with homogeneous-heterogeneous reactions. The flow analysis is disclosed in the neighborhood of stagnation point. Features of heat transport are characterized with Newtonian heating. The homogeneous-heterogeneous chemical reaction between the fluid and diffusing species is included in the mass diffusion equation. The MHD stagnation boundary layer flow is explored in the presence of heat generation/absorption. Numerical convergent solutions are computed via the spectral quasi-linearization method (SQLM). The physical aspects of different parameters are discussed through graphs.

Keywords: Melting heat transfer; Chemical reaction; Nanofluids; Stagnation point flow; Spectral quasilinearization method.

1. Introduction

The study of mixed convective flow heat and mass transfer through nanofluid stagnation point flow has important applications in industry and environmental sciences. The MHD stagnation nanofluid flow with homogeneous-heterogeneous chemical reaction has an application in engineering and sciences like petroleum industries, production of polymer and ceramics, fibrous insulation and agricultural lands. In view of these applications studies by Song \cite{1} and Ikeda \cite{2}. Williams et al. \cite{3} and Kameswaran et al. \cite{4} have established the model of homogeneous-heterogeneous chemical reaction with the effect of electric field. Hayat et al. \cite{5} investigated the MHD ree-Eyring fluid in the coordinate system. The vast applications of magnetohydrodynamics (MHD) in the field of science, physical engineering processes, medicine, hydro pumps, separation of magnetic cells, optical gratings and MHD generators compels one to study its effect in the boundary layers flow problems. The strength and alignment of the magnetic field change the behavior of the boundary layer flow. The MHD nanofluid stagnation boundary layer flow has an important role in the recent trend of research areas. The significance in many areas such as the melting of permafrost, magma solidification, the heat exchanger coils around freezing of soil of a ground-based pump. Rahman et al. \cite{6} described the features of the melting phenomenon in thermal radiation with MHD flow. Mostafa and Mahmoud \cite{7} exposed the variation in stagnation nanofluid flow along a vertical stretching sheet. The impacts of different governing parameters on mixed convection flow of MHD activation energy thermal extrusion past stretching surfaces have been studied in \cite{8} – \cite{11}.

The inviscid or viscous stagnation point exists in flows, regardless of being 2-D or 3-D, normal or oblique, forward or reverse, homogeneous or two immiscible fluid. The flow over the tips of rockets, aircraft, submarines, and oil ships, are the examples of stagnation point flow. Mukhopadhyay \cite{12} analyzed the radiative effect with variable viscosity in
stagnation point flow past a permeable stretching sheet. Whereas, there are very useful studies (see [13-24]) dealing with heat generation (or) absorption and stagnation point flow model together.

The homogeneous-heterogeneous chemical reactions depend on the reaction occurs in the bulk of the fluid (homogeneous) or on some catalytic surfaces (heterogeneous). The formation of homogeneous-heterogeneous chemical reactions are associated with the formation of reactant species at different rates both within the fluid and on the catalytic surfaces are complex. Das et al. [25] studied the Casson fluid with nonlinear stretching surfaces in the presence of homogeneous and heterogeneous reactions. Sithole et al. [26] studied heat and mass transfer with homogeneous-heterogeneous chemical reaction in the presence of nonlinear thermal radiation over a stretching sheet.

Literature surveys reveal that the MHD flow of a nanofluid in the stagnation point region with homogeneous-heterogeneous reaction is characterized via Newtonian heating. The mass transfer process is involved in the first-order chemical reaction. Variable fluid properties are implemented to study the heat and mass transport processes. The numerical solutions are explained in this paper through the spectral quasi-linearization method (see [27],[28]). The velocity, temperature and homogenous-heterogeneous species concentration profiles are demonstrated graphically and analyzed through different physical parameters.

2. Formulation

A model of 2-D magneto-nanofluid stagnation point flow over a stretching/shrinking sheet with the effect of homogeneous-heterogeneous chemical reactions was developed (see in Fig. 1). The stretching or shrinking sheet generates the flow due to the simultaneous application of two equal forces along the x-axis when the origin is fixed. The outside boundary layer velocity is $U_x = ax$, where $a > 0$ is the strength of the stagnation-point flow. The magnetic field B_0 is externally applied normal to the sheet. The interaction of homogeneous and heterogeneous reactions involving two chemical species A and B in the boundary layer flow. In the forward stagnation point, the homogeneous reaction for cubic autocatalysis can be expressed as:

$$A + B \rightarrow 3A, \quad \text{rate} = k_1 C_a C_b^2,$$

while first-order isothermal reaction on the catalyst surface is presented in the following form:

$$A \rightarrow B, \quad \text{rate} = k_s C_a,$$

Here C_a and C_b are concentrations of chemical species A and B, k_1 is the homogeneous chemical reaction and k_s is the heterogeneous reaction rate. The external flow reactant A in which has a uniform concentration C_∞.

![Fig. 1. The physical model and coordinate system](image)

The chemical reaction of the outer edge in the boundary layer is assumed to be zero. Based on those assumptions, the equations for boundary layer MHD stagnation point flow for a nanofluid are written as:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0,$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = U_x \frac{dU_x}{dx} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - \frac{\sigma B_0^2}{\rho} (u - u_0)$$
\[u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = a \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) + \tau D_s \left(\frac{\partial C_s}{\partial x} + \frac{\partial C_s}{\partial y} \right) + \frac{D_f}{T_\infty} \left[\left(\frac{\partial T}{\partial x} \right)^2 + \left(\frac{\partial T}{\partial y} \right)^2 \right] + \frac{Q_s}{\sigma C_p} (T - T_\infty) \]
\[(3) \]

\[u \frac{\partial C_s}{\partial x} + v \frac{\partial C_s}{\partial y} = D_s \left(\frac{\partial^2 C_s}{\partial x^2} + \frac{\partial^2 C_s}{\partial y^2} \right) - k_s C_s \]
\[(4) \]

\[u \frac{\partial C_b}{\partial x} + v \frac{\partial C_b}{\partial y} = D_s \left(\frac{\partial^2 C_b}{\partial x^2} + \frac{\partial^2 C_b}{\partial y^2} \right) + \frac{D_f}{T_\infty} \left[\left(\frac{\partial T}{\partial x} \right)^2 + \left(\frac{\partial T}{\partial y} \right)^2 \right] + k_s C_b \]
\[(5) \]

where \(u \) and \(v \) are the velocity, \(\nu \) is the kinematic viscosity, \(\sigma \) is the electric conductivity, \(r \) is the ratio of the effective heat capacity of nanoparticle to that of the fluid, \(\rho \) is the fluid density, \(T \) and \(T_\infty \) are the fluid and melting surface temperatures, \(T_\infty \) is temperature at the outer edge of the boundary layer and \(D_f \) is the thermophoresis diffusion coefficient. The corresponding boundary conditions are:
\[u = U_w (x), \quad v = v_w, \quad T = T_\infty, \quad D_s \frac{\partial C_s}{\partial y} = k_s C_s, \quad D_s \frac{\partial C_b}{\partial y} = -k_s C_b \text{ at } y = 0 \]
\[(6) \]

Using the following non-dimensional variables:
\[u = a f' (\eta), \quad v = -(av)^{1/2} f (\eta), \quad \theta (\eta) = \frac{T - T_\infty}{T_w - T_\infty}, \quad \xi (\eta) = \frac{C_s}{C_\infty}, \quad \phi (\eta) = \frac{C_b}{C_\infty}, \quad \eta = \left(\frac{a}{v} \right)^{1/2} y, \]
\[(7) \]

where \(f, \theta, \xi \) and \(\phi \) are the dimensionless velocity, temperature, concentration of chemical species \(A \) and \(B \) respectively.

Using Eqs. (10), the continuity Eq. (3) is identically satisfied and Eqs. (4) to (7) reduce to:
\[f'''' + f''' + 1 - f''^2 + Ha^2 \left(1 - f' \right) = 0 \]
\[(8) \]
\[\frac{1}{Pr} \theta'' + N_s \theta' \phi' + N_t \theta'^2 + f \theta' + \delta \theta = 0 \]
\[(9) \]
\[\frac{1}{Sc} \xi'' + f \xi' - K_s \xi \phi^2 = 0 \]
\[(10) \]
\[\frac{1}{\varepsilon Sc} \left(\phi'' + \frac{N_t}{N_b} \theta'' \right) + f \phi' + K_s \xi \phi^2 = 0 \]
\[(11) \]

where \(Ha = B_s \sqrt{\sigma / (\rho a)} \) is the Hartmann number, \(Pr = \nu / \alpha \) is the Prandtl number, \(Nb = \tau D_s C_\infty / \nu \) is the Brownian motion parameter, \(N_t = \tau D_s (T_w - T_\infty) / \nu T_\infty \) is the thermophoresis parameter, \(\delta = Q_s / \alpha \rho C_p \) is the heat generation/absorption parameter, \(Sc = \nu / D_s \) is the Schimdt number, \(K = k_s C_\infty / a \) is the homogeneous reaction rate parameter, \(K_s = k_s / D_s (a / \nu)^{1/2} \) is the heterogeneous reaction rate parameter, \(\varepsilon = D_s / D_b \) is the ratio of the diffusion coefficient, \(\lambda = m / a \) is the stretching rate of external flow rate where \(\lambda > 0 \) corresponds to a stretching surface and \(\lambda < 0 \) corresponds to a shrinking surface and \(S = -v_w / (av)^{1/2} \) is the mass transfer parameter with \(S > 0 \) for suction, \(S < 0 \) for injection and \(S = 0 \) for an impermeable surface. The boundary conditions of the problem are as follows:
\[f (0) = S, \quad f' (0) = \lambda, \quad \theta (0) = 1, \quad \xi' (0) = K_s \xi (0), \quad \phi' (0) = -\varepsilon K_s \xi (0) \]
\[(12) \]

The physical quantity of interest here is the skin friction coefficient \(C_f \) and Nusselt number \(Nu \), which are defined as:
\[C_f = \frac{r_w}{\rho U_w}, \quad \tau_w = \mu \frac{\partial u}{\partial y} \bigg|_{y=0}, \quad Re_{\frac{1}{2}} C_f = f'' (0) \]
\[(13) \]
\[N_u = \frac{xq_w}{k(T_w - T_0)} \quad q_w = -k \left(\frac{\partial T}{\partial y} \right)_{y=0}, \quad Re_x^{-\frac{1}{2}} N_u = -\theta'(0) \] (14)

where \(r_w \) and \(q_w \) are the stress of shear at the surface and heat transfer from the sheet, \(Re_x = xU_e / \nu \) is the Reynolds number.

3. Numerical Solution using Spectral Quasi-linearization Method (SQLM)

The coupled system of equations (10)-(13) were solved using the spectral quasi-linearization method. The nonlinear components of the Eqs. (10)-(13) give the following iterative sequence of linear differential equations:

\[a_{0,r} f''_{r+1} + a_{1,r} f'_{r+1} + a_{2,r} f_{r+1} + a_{3,r} = R_f \]

\[b_{0,r} \theta''_{r+1} + b_{1,r} \theta'_{r+1} + b_{2,r} \theta_{r+1} + b_{3,r} f_{r+1} + b_{4,r} \xi_{r+1} = R_g \]

\[c_{0,r} \xi''_{r+1} + c_{1,r} \xi'_{r+1} + c_{2,r} \xi_{r+1} + c_{3,r} f_{r+1} + c_{4,r} = R_t \]

\[d_{0,r} \phi''_{r+1} + d_{1,r} \phi'_{r+1} + d_{2,r} \phi_{r+1} + d_{3,r} f_{r+1} + d_{4,r} = R_\psi \]

subject to the boundary conditions:

\[f_{r+1}(0) = S, \quad f'_{r+1}(0) = \lambda, \quad \theta_{r+1}(0) = 1, \quad \xi'_{r+1}(0) = K \xi_{r+1}(0), \quad \phi'_{r+1}(0) = -\epsilon K \xi(0), \]
\[f'_{r+1}(\infty) = 1, \quad \theta_{r+1}(\infty) = 0, \quad \xi_{r+1}(\infty) = 1, \quad \phi_{r+1}(\infty) = 0, \]

The system of equations (17) to (20) are chosen as functions that satisfy the boundary conditions as follows:

\[f_0 = \eta + S + (1 - \lambda)(e^{-\eta} - 1), \quad \theta_0 = e^{-\eta}, \quad \xi_0 = 1 - \frac{K_e}{1 + K_e} e^{-\eta}, \quad \phi_0 = \epsilon \frac{K_e}{1 + K_e} e^{-\eta} \]

(20)

Similarly, the vectors \(\Theta \), \(\chi \), and \(\psi \), are defined as:

\[\Theta = \left[\theta(\eta_0), \theta(\eta_1), \ldots, \theta(\eta_N) \right]^T \]

\[\chi = \left[\chi(\eta_0), \chi(\eta_1), \ldots, \chi(\eta_N) \right]^T \]

(21)

(22)
The superscript t in equation denotes the transpose matrix. Applying the quasi-linearization technique gives the following system of equations:

$$A_1 F + A_2 \Theta + A_3 \chi + A_4 \psi = R_f$$
$$A_2 F + A_2 \Theta + A_3 \chi + A_4 \psi = R_\Theta,$$
$$A_3 F + A_3 \Theta + A_3 \chi + A_4 \psi = R_\chi,$$
$$A_4 F + A_4 \Theta + A_3 \chi + A_4 \psi = R_\psi.$$

Applying the spectral method as described above gives a matrix of size $(N_x + 1) \times (N_x + 1)$ with:

$$\begin{bmatrix}
A_{11} & A_{12} & A_{13} & A_{14} & f_{r-1} \\
A_{21} & A_{22} & A_{23} & A_{24} & \theta_{r-1} \\
A_{31} & A_{32} & A_{33} & A_{34} & \xi_{r-1} \\
A_{41} & A_{42} & A_{43} & A_{44} & \phi_{r-1}
\end{bmatrix} = \begin{bmatrix}
R_f \\
R_\Theta \\
R_\chi \\
R_\psi
\end{bmatrix}$$

The approximate solutions for F, Θ, χ and ψ are obtained by solving the above system of equations after applying appropriate boundary conditions.

4. Results and Discussion

The system of nonlinear differential Eqs. (11) to (14) together with boundary conditions (15) and (16) solved by using the spectral quasi-linearization method (SQLM) for different parameter values. Results for a stretching sheet are compared with Wang [24], Ishak et al. [25] and Shaw et al. [26] in Table 1, and for the shrinking sheet with Rosali et al. [27] and Bhattacharyya [10] in Table 2. There is an excellent agreement with the present results. The results show that the existence and uniqueness of the non-linear solution depend on the stretching/shrinking parameter. It is clear from Table 1 that the positive values of the skin friction coefficient decrease for $\lambda < 1$, and are negative when $\lambda > 1$. Physically, the negative values of $f''(0)$ correspond to the surface exerting a drag force on the fluid and the positive sign implies the opposite. The skin friction coefficient $f''(0)$ is zero when $\lambda = 1$ meaning the cylinder and fluid move with the same velocity. From Table 2, the skin friction coefficient $f''(0)$ increases for some values of λ, but decreases after a certain value of λ.

Table 1. Comparison of $f''(0)$ for different values of the stretching parameter.

<table>
<thead>
<tr>
<th>λ</th>
<th>Wang [29]</th>
<th>Ishak [30]</th>
<th>Shaw et al. [31]</th>
<th>Present Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.23258</td>
<td>1.23258</td>
<td>1.232586</td>
<td>1.23259</td>
</tr>
<tr>
<td>0.5</td>
<td>0.71330</td>
<td>0.713295</td>
<td>0.71329496</td>
<td>0.71329</td>
</tr>
<tr>
<td>2</td>
<td>-1.88731</td>
<td>-1.887307</td>
<td>-1.8873066</td>
<td>-1.88730</td>
</tr>
<tr>
<td>5</td>
<td>-10.26475</td>
<td>-10.264749</td>
<td>-10.264749</td>
<td>-10.2650</td>
</tr>
</tbody>
</table>

Table 2. Comparison of $f''(0)$ for different values of the shrinking parameter.

<table>
<thead>
<tr>
<th>λ</th>
<th>Rosali et al. [32]</th>
<th>Shaw et al. [31]</th>
<th>Bhattacharyya [33]</th>
<th>Present Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.25</td>
<td>1.402241</td>
<td>1.40224081</td>
<td>1.4022405</td>
<td>1.4022</td>
</tr>
<tr>
<td>-0.75</td>
<td>1.4892983</td>
<td>1.48929824</td>
<td>1.4892981</td>
<td>1.4893</td>
</tr>
<tr>
<td>-1.05</td>
<td>1.266228</td>
<td>1.26622794</td>
<td>---</td>
<td>1.2662</td>
</tr>
<tr>
<td>-1.15</td>
<td>1.082231</td>
<td>1.08223117</td>
<td>1.0822316</td>
<td>1.0822</td>
</tr>
</tbody>
</table>

Figures 2-4 show the effect of iterations on residual errors of f, Θ, ξ and ϕ. It is observed that as the number of iterations increase, the errors reduce significantly using the method of spectral quasi-linearization. The accuracies of the SQLM can be determined by calculating the residual error of the methods. The residual error is used to determine how close the approximate solution is to the true solution of the differential equation. We considered the maximum residual error hence the choice of the infinity norm when calculating the residual error. These figures show the residual error of the SQLM for different values of suction or suction/injection parameter S. It can be seen that within this time interval, the method maintains a very high accuracy as they have a residual error of 10^{-10}.

Fig. 2. Effects of S on residual error $\theta(\eta)$.

Fig. 3. Effects of S on residual error $\xi(\eta)$.

Fig. 4. Effects of S on residual error $\phi(\eta)$.

Fig. 5. Velocity profiles for various values of the suction parameter S.

Fig. 6. Temperature profiles for various values of the suction parameter S.

Fig. 7. The concentration of chemical species A for various values of the suction parameter S.
Fig. 8. The concentration of chemical species B for various values of the suction parameter S.

Fig. 9. Temperature profiles for various values of the heat generation parameter δ.

Fig. 10. The concentration of chemical species A for various values of the heat generation parameter δ.

Fig. 11. The concentration of chemical species B for various values of heat generation parameter δ.

Fig. 12. The concentration of chemical species B for various values of Brownian motion parameter Nb.

Fig. 13. The concentration of chemical species A for various values of thermophoresis parameter Nt.

The impact of the suction parameter S on the velocity, temperature and concentration profiles is shown in Figures 5-8. It is analyzed that with an increase in S, the velocity and concentration profiles of chemical species A increase due to the decrease of kinematic viscosity whereas the opposite behavior is noted for the temperature profiles. The concentration of chemical species B increase when the similarity transformation $\eta \geq 2$. The concentration boundary layer thickness decreases as the suction parameter increases.

The effects of the melting heat generation/absorption parameter on temperature and concentration profiles are presented in Figures 9-11. The higher values of the melting parameter lead to an enhancement of the thermal boundary layer thickness of $\theta(\eta)$ and concentration species A. The chemical species B and the concentration profiles decrease with an increase in melting heat generation/absorption parameter δ.

Figure 12 shows the effect of Brownian motion parameter Nb on the concentration of chemical species B. The effect of increasing Nb is to decrease the concentration of chemical species B due to diffusion of chemical species of the heterogeneous chemical reaction. Figure 13 illustrates that the concentration profiles $\xi(\eta)$ for different values thermophoresis parameter Nt. The chemical species A decreases with increasing the thermophoresis parameter due to a decrease in the free stream temperature.

The influence of homogeneous reaction rate parameter K on the concentration of chemical species A and B are sketched in Figure 14-15. The concentration profile of decreases while boundary layer thickness increases for higher values of K whereas the reverse effect is seen in Figure 15 for chemical species B. The impact of the strength of the heterogeneous reaction parameter K_s on the concentration distribution is shown in Figure 16-17. The chemical species A decreases near the surface of the cylinder and increases away from the surface for higher values of the heterogeneous reaction parameter K_s.

Fig. 14. The concentration of chemical species A for various values of heterogeneous reaction rate parameter K.

Fig. 15. The concentration of chemical species B for various values of homogeneous reaction rate parameter K.

Fig. 16. The concentration of chemical species A for various values of heterogeneous reaction rate parameter K_s.

Fig. 17. The concentration of chemical species B for various values of heterogeneous reaction rate parameter K_s.
Figure 18 presents the variation of the skin friction coefficient with homogeneous chemical reaction K for different values of Ha (Hartmann number). From this figure, it is evident that the absolute values of the skin friction coefficient increase as K increased. But the reverse effect is seen in Figure 19 that the variation of the gradient of temperature at the surface $-\theta'(0)$ decrease with the increase the homogeneous chemical reaction K for different values of Hartmann number Ha. Figure 20 represents the graph of the Prandtl number on temperature profiles. The temperature profile decreases due to the decrease of the thermal diffusivity. The increment of Pr means the slow down of the rate of thermal diffusion.

5. Concluding Remarks

The characteristics of homogeneous-heterogeneous chemical reactions with heat generation in stagnation boundary-layer nanofluid flow was investigated. The dimensionless nonlinear differential equations were solved numerically using the SQLM method. Flow was two dimensional MHD over a stretching surface. The following observations are worth mentioning:

(i) Velocity profiles and concentration of chemical species are enhanced when the suction parameter increases.
(ii) Temperature distribution increases for higher values of the melting parameter.
(iii) As the value of the homogeneous reaction rate parameter increases, the concentration of the chemical species decreases.
(iv) Higher values of the heterogeneous reaction rate parameter result in the enhancement of concentration profiles.

Author Contributions

H. Mondal planned the scheme and developed the mathematical model. S. Bharti examined the theory validation. The manuscript was written through the contribution of all authors. All authors discussed the results, reviewed and approved the final version of the manuscript.
Acknowledgments

The authors wish to express their thanks to the competent anonymous of the editors and referees for their valuable comments and suggestions. The authors also acknowledge the Department of Mathematics to encourage the research in Brainware University, Barasat, Kolkata.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Funding

The authors received no financial support for the research, authorship, and publication of this article.

References

ORCID iD
Hiranmoy Mondal https://orcid.org/0000-0002-9153-300X
Shipra Bharti https://orcid.org/0000-0003-2641-6007

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

https://doi.org/10.22055/JACM.2019.30677.1766