TY - JOUR ID - 14704 TI - Experimental and Numerical Buckling Analysis of Carbon Fiber Composite Lattice Conical Structure before and after Lateral Impact JO - Journal of Applied and Computational Mechanics JA - JACM LA - en SN - AU - Ahmadifar, Ahmad AU - Zamani, Mohammad Reza AU - Davar, Ali AU - Eskandari Jam, Jafar AU - Heydari Beni, Mohsen AD - M.Sc. Student, Mechanical Engineering Department, Malek-Ashtar University of Technology, Tehran, Iran AD - Assistant Professor, Mechanical Engineering Department, Malek-Ashtar University of Technology, Tehran, Iran AD - Assistant Professor, Composite Research Centre, Malek-Ashtar University of Technology, Tehran, Iran AD - Professor, Mechanical Engineering Department, Malek-Ashtar University of Technology, Tehran, Iran AD - Ph.D. Student, Mechanical Engineering Department, Malek-Ashtar University of Technology, Tehran, Iran Y1 - 2020 PY - 2020 VL - 6 IS - 4 SP - 813 EP - 822 KW - Conical lattice structure made of carbon KW - experimental and numerical analysis KW - lateral impact KW - buckling analysis DO - 10.22055/jacm.2019.29929.1664 N2 - In this research, the numerical and experimental analysis of the carbon fiber composite lattice conical structure has been performed to assess the buckling stability of the structure before and after the lateral impact. In the experimental analysis, the carbon fiber composite lattice conical structure was constructed with the winding method and using elastic molds and metal mandrel. In order to investigate the buckling stability of the structures before each lateral impact, they are subjected to be compressive-axial loading. The rest of the structures first subjected under the axial-compressive loading, then in the next step, a compressive loading is applied to determine the effect of the impact on the compressive strength of the damaged structures. In the numerical analysis, the Abaqus software is used to modeling and performing the mentioned analysis. Finally, the comparison of the results shows that the effect of the lateral impact causes how many reductions will be occurred in the buckling strength. So, it should be considered during the design of the applied structures. On the other hand, the low difference between the numerical and experimental simulations shows that the experimental and numerical methods can be used to analyze the structures with different geometric characteristics and material. UR - https://jacm.scu.ac.ir/article_14704.html L1 - https://jacm.scu.ac.ir/article_14704_f40d4abf411fe7caca1815cac8f9653a.pdf ER -