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Abstract. Thermal buckling behavior of  functionally graded Euler-Bernoulli beams in thermal conditions is 
investigated analytically. The beam with material and thermal properties dependent on the temperature and 
position is considered. Based on the transformed-section method, the functionally graded beam is considered 
as an equivalent homogeneous Euler-Bernoulli beam with an effective bending rigidity under an eccentric 
thermal load. Then, the thermal elastic buckling equation associated with the bending deflection about the 
neutral axis is established. The easily usable closed-form solutions for the critical thermal buckling temperature 
of  functionally graded beams under uniform and non-linear temperature rise are obtained and used to calculate 
the thermal buckling temperature. Some results are evaluated and compared with those by other investigators 
to validate the accuracy of  the presented method. The effects of  material compositions, temperature-dependent 
material properties, slenderness ratios and restraint conditions on thermal buckling behaviors are discussed. It 
is believed that the proposed model provides engineers and designers an easy and useful method to investigate 
the effects of  various parameters affecting the thermal buckling characteristics of  functionally graded beams. 

Keywords: Thermal buckling, Euler-Bernoulli beam, Transformed-section method, Functionally graded beam, Buckling 
temperature. 

1. Introduction 

Functionally graded materials (FGMs) are advanced composite materials having material properties varying smoothly 
in the specified direction by a gradually change in the volume fraction of  the constituents. They are usually consisted of  
the ceramic and metal with the combination of  the high toughness of  metal and excellent heat resistance of  ceramic. 
Because of  the advantages of  this combination, FGMs made of  metals and ceramics have been largely utilized in several 
engineering structures in thermal environments. While FGM structures are exposed in high-temperature conditions, they 
may encounter the thermal buckling problem due to the thermal loading effects. Therefore, to better understand the thermal 
buckling of  FGM structures in thermal conditions is needed from the structural design point of  view. For the past decades, 
the buckling problems [1-13] of  FG beams subjected to the mechanical loads had been studied by many researchers. The 
goal of  the present paper is focused on the thermal buckling behaviors of  FG beams so only the literature related to the 
current work is discussed next. 

Kiani and Eslami [14] investigated the thermal buckling of  FG Euler-Bernoulli beams subjected to different thermal 
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loadings, by assuming that the material properties vary with a power-law function in the thickness direction. The beam is 
assumed to be subjected to uniform, linear and nonlinear temperature rises along the thickness direction. Close-form 
expressions of  the critical thermal buckling temperature for FG beams with various end supports were obtained and used 
to investigate the buckling of  bifurcation type. Based on the third-order shear deformation theory, Wattanasakulpong et al. 
[15] used Ritz method to study the vibration and thermal buckling of  FG beams under uniform temperature rise. The 
influences of  material constituents, power law indices, slenderness ratios, temperature-dependent properties and restraint 
conditions on the natural frequency and thermal buckling temperature were investigated. The results reveal that 
temperature-dependent properties significantly affect the beams with small slenderness ratio. Kiani et al. [16-17] studied 
the thermal buckling behavior of  piezoelectric FG Euler-Bernoulli and Timoshenko beams, respectively, under various 
thermal loadings and actuator voltages. The material properties are assumed to change in the thickness following the 
power-law distribution. Analytical solutions for the critical buckling temperature were formulated and used to examine the 
effects of  the volume fraction index, applied voltage, geometric aspect and restraint types on the bifurcation-type thermal 
buckling. Fallah and Aghdam [18] dealt with the thermo-mechanical non-linear vibration and buckling of  FG Euler-
Bernoulli beams resting on non-linear elastic foundations using the Galerkin’s decomposition method. The material 
properties are assumed to change along the thickness direction by a simple power law. Closed-form expressions for the 
nonlinear natural frequency and critical buckling temperature were derived. The effects of  foundation parameters, volume 
fraction indices, thermal loads, vibration amplitudes and boundary conditions were studied. Fu et al. [19] studied the 
thermal buckling problem of  FG Timoshenko beams with axial crack under uniform temperature rise. The materials 
properties vary in the thickness direction described by a power law. The buckling equations were established based on the 
Hamilton’s principle and solved using the differential quadrature method to determine the thermal buckling temperature 
and modes. The effects of  volume fraction index, crack size and position on the thermal buckling behavior of  the FG beam 
were presented. Anandrao et al. [20] analyzed the vibration and thermal buckling of  FG Timoshenko beams under uniform 
temperature rise using the finite element approach. The temperature dependent material properties were considered in the 
calculations of  natural frequencies and critical thermal buckling temperatures. The results indicate that temperature 
dependence of  material properties has a significant impact on the performance of  the beam. Based on the virtual 
displacements principle, Kiani and Eslami [21] investigated the thermal-mechanical buckling behavior of  temperature-
dependent FG Timoshenko beams. The mechanical and thermal properties are assumed to depend on temperature and 
the thickness coordinate, and change along the thickness by a power-law distribution. Close-form solutions were 
determined and used to obtain the critical thermal buckling temperatures of  FG beams under uniform, linear and nonlinear 
temperature distributions, respectively. Esfahani et al. [22] applied the generalized differential quadrature method to 
investigate the thermal buckling and post-buckling behaviors of  temperature-dependent FG Timoshenko beams subjected 
to uniform and nonlinear temperature changes. The beam is supported on the nonlinear elastic foundation. The influences 
of  the power-law indices, foundation coefficients, thermal loading types, temperature-dependent properties and restrained 
supports on thermal stability behaviors were discussed.  

Ghiasian et al. [23] dealt with the nonlinear thermal dynamic buckling of  temperature-dependent FG Timoshenko 
beams resting on an elastic foundation. Based on the Newton-Raphson method, a set of  nonlinear algebraic equations was 
analyzed to investigate the effects of  the geometric imperfection and foundation stiffness on the dynamic buckling of  the 
FG beam under a sudden uniform temperature rise. Based on the shooting method, Sun et al. [24] studied the thermal 
buckling and post-buckling of  FG Timoshenko beams with material properties changing with the power law function in 
the thickness direction. The beam is supported on nonlinear elastic foundations and subjected to uniform and non-linear 
temperature rises, respectively. The effects of  the slenderness ratio, foundation stiffness and power law exponent on the 
critical buckling temperature and post-buckling deformations of  FG beams were examined. Trinh et al. [25] studied the 
vibration and buckling behaviors of  higher-order shear deformable FG beams under mechanical and thermal loadings 
using the Hamilton’s principle and state space method. The material properties are function of  position and temperature, 
and change along the thickness with the power-law function. Three types of  thermal loads, which are uniform temperature 
rise, linear and nonlinear temperature distributions along the thickness, were considered. The effects of  material 
compositions, volume fraction indices, temperature distributions, slenderness ratios and restraint types on the natural 
frequencies, critical buckling temperature and buckling loads were investigated. Shenas et al. [26] analyzed the thermal 
buckling of  third-order shear deformable twisted FG beams with temperature-dependent material properties based on the 
Chebyshev-Ritz method. The temperature field is assumed to be uniform or change across the beam thickness. The effects 
of  twist angle, aspect ratios, volume fraction index, temperature-dependent properties and boundary conditions on the 
thermal buckling behavior of  the FG beams were discussed. Nguyen et al. [27] studied the free vibration and buckling of  
FG beams under various hygro-thermal loadings using the higher-order shear deformation theory. They applied Lagrange’s 
equations to establish the governing equations and used Ritz method to solve the equations. The effects of  material, 
geometric and hygro-thermal parameters on the temperature-independent and temperature-dependent results were 
presented. Hosseini et al. [28] presented the thermal buckling of  FG Timoshenko beams with elastic end supports using 
Fourier series expansion. The symmetrical and unsymmetrical FG beams subjected to uniform temperature rise were 
considered. The effects of  the material distribution, power law exponent, support stiffness and slenderness ratio on the 
critical buckling temperature were investigated. Majumdar and Das [29] presented the thermal buckling stability of  
clamped-clamped FG Euler-Bernoulli beams under linear and nonlinear temperature gradients based on the variational 
principle and Ritz method. The temperature-dependent material properties are assumed to vary across the thickness with 
a power-law function. The effects of  thermal loading types, volume fraction indices and slenderness ratios on the thermal 
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buckling loads of  various FG beams were examined. Based on the physical neutral plane, Liu et al. [30] investigated the 
thermal buckling behavior of  porous FG sandwich beams using a high-order sinusoidal shear deformation theory. The 
beams were assumed to be subjected to uniform, linear and nonlinear temperature rises. The influences of  porosity, the 
face-to-core ratio, physical neutral plane, temperature-dependent properties and volume fraction index were discussed. 
Tranh et al. [31] used the isogeometric analysis to investigate the thermal buckling and post-buckling of  porous FG 
microplates with even, uneven and logarithmic-uneven distributions of  porosities. The effects of  porosity, porosity 
distribution type, temperature gradient, material gradient index, boundary condition and size-dependent parameter were 
studied. Zhang et al. [32] studied the elastoplastic thermal buckling behavior of  FG beams under non-uniform temperature 
rise using the symplectic method. The effects of  the thermal loading, volume fraction index, aspect ratio, and elastoplastic 
material parameters on thermal buckling characteristics of  the beams were examined. 

In most of  previous studies, the equations governing the thermal buckling stability of  FG beams were formulated by 
considering the coupling of  axial and transverse deformations. Then, various approximate methods were used to reduce 
the system equations to a set of  algebraic eigenvalue equations, which was then solved numerically to obtain the critical 
thermal buckling temperature. As to the best of  the authors’ knowledge, no attempt has been made to solve the thermal 
buckling problem based on the transformed-section method [33]. Hence, the transformed-section method [34-35] is used 
to study the thermal buckling of  FG Euler-Bernoulli beams with material and thermal properties dependent on 
temperature and the thickness coordinate. The variation of  the properties in the thickness direction is described by the 
power-law function. First, the investigated FG beam is transformed to an equivalent homogeneous Euler-Bernoulli beam 
with an effective bending rigidity subjected to an eccentric thermal load. Then, the thermal elastic buckling equation of  
such an equivalent Euler-Bernoulli beam is derived and used to analytically study the thermal buckling of  the 
corresponding FG beam. Because the presented thermal buckling equation is decoupled with the axial mode, only the 
bending deflection equation is needed to analyze the thermal buckling of  the FG beam. Unlike those in the published 
literature, no algebraic eigenvalue equations are formed and solved in the present study. Instead, the easily usable closed-
form expressions for the critical thermal buckling temperature of  clamped-clamped and clamped-roller FG beams under 
uniform and nonlinear temperature rises are obtained and used to evaluate the thermal buckling temperature. Numerous 
results for the critical thermal buckling temperatures of  FG beams with various power law indices, thermal loadings and 
boundary restraints are calculated and compared with those obtained by other investigators to assure the accuracy of  the 
proposed method. Parametric study is conducted to investigate the effects of  the material constituents, material graded 
indices, temperature-dependent material properties, slenderness ratios and end support conditions on the thermal buckling 
behaviors of  FG beams. It is believed that the present model can facilitate the engineers a simple and effective method to 
study the thermal buckling behavior of  the FG beams. 

2. Governing Equations 

A functionally graded beam of  length L, width b and thickness h is considered. The beam configuration and coordinate 
systems xyz and x1y1z1 are illustrated in Fig. 1. The axis x of  coordinate xyz is on the physical midplane xy and its z axis lies 
in the thickness direction. The x1 axis of  coordinate x1y1z1 denotes the neutral axis of  the transformed cross-section; the y1 
axis parallels with y axis; the z1 and z axes coincide with each other. The material and thermal properties of  the FG beam 
are assumed to vary smoothly across the beam thickness with the power-law function. 

𝑃(𝑧) = 𝑃௕ + (𝑃௧ − 𝑃௕) ൬
𝑧

ℎ
+

1

2
൰

఑

 (1) 

 

Fig. 1 Beam configuration and coordinate systems. 

Here Pt and Pb denote the properties of  the top and bottom surfaces of  the beam, respectively;  is the non-negative power-
law exponent; z is the thickness coordinate, -h/2  z  h/2. According to eq. (1), the effective Young’s modulus E, thermal 
expansion coefficient  and thermal conductivity K can be written as follows 

𝐸(𝑧) = 𝐸௕ + (𝐸௧ − 𝐸௕) ൬
𝑧
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൰

఑

 (2a) 
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in which the subscripts t and b denote the materials at the top and bottom surfaces, respectively. When the temperature 
dependence of  material properties is considered, the nonlinear equation of  the Touloukian model [36] is used to evaluate 
the thermal-elastic material properties as follows 

𝑃 = 𝑃଴(𝑃 ଵ𝑇ିଵ + 1 + 𝑃ଵ𝑇 + 𝑃ଶ𝑇ଶ + 𝑃ଷ𝑇ଷ) (3) 

where P0, P-1, P1, P2 and P3 are coefficients associated with the constituent; T = T0+T in which T0 andT is the ambient 
temperature (300 K) and temperature difference. 
Considering the FG beam whose temperature is increased from the reference temperature T0 to the current temperature T, 
it can be regarded as a beam subjected to a thermal compressive load PT at a distance zT as shown in Fig. 1. They are 
obtained as follows 

𝑃் = − න 𝐸(𝑧) 𝛼(𝑧)(𝑇 − 𝑇଴)𝑑𝐴 (4) 

𝑧் =
∫ 𝐸(𝑧) 𝛼(𝑧)𝑧(𝑇 − 𝑇଴)𝑑𝐴

∫ 𝐸(𝑧) 𝛼(𝑧)(𝑇 − 𝑇଴)𝑑𝐴
 (5) 

To derive the differential equations governing the bending defection of  the above FG beam under a thermal compressive 
load using the transformed-section method, the original rectangular cross section (Fig. 2a) of  functionally graded material 
with two compositions is transformed to an equivalent cross-section of  the material at the top surface (Fig. 2b). A modular 
ratio, n(z), is defined as 

𝑛(𝑧) =
𝐸(𝑧)

𝐸௧

= 𝐸ത + (1 − 𝐸ത) ൬
𝑧
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൰
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where 𝐸ത = 𝐸௕/𝐸௧. Then, the centroid h0 and the effective second area moment Ie about the neutral axis of  this equivalent 
cross-section can be obtained as follows 

ℎ௢ =
∫ 𝑧𝑑𝐴

஺೟

∫ 𝑑𝐴
஺೟

=
𝜅(1 − 𝐸ത)

2(𝜅 + 2)(1 + 𝜅𝐸ത)
ℎ (7) 
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1
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−

1
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+

1

4𝜅 + 4
൰ −

3𝜅ଶ(1 − 𝐸ത)

(𝜅 + 1)(𝜅 + 2)ଶ(1 + 𝜅𝐸ത)
቉ (8) 

 
Fig. 2 Beam of  functionally graded materials: (a) Original section; (b) Transformed section. 

The detailed derivations of  above expressions can be referred to the authors’ previous work [34]. Hence, the equivalent 
beam with the transformed cross-section is then considered as a homogeneous beam with an effective bending rigidity EtIe 
and subjected to an eccentric thermal load PT at a distance e = h0 - zT from the centroidal axis of  the beam. 
By applying the bending deflection equation associated with homogeneous uniform Euler-Bernoulli beams under an 
eccentric load to the FG beam with the transformed section composed of  only material at the top surface, we can yield the 
following governing equation for the deflection of  the FG beam under the thermal compressive load PT at the end supports 

dସ𝑤

d𝑥ଵ
ସ + 𝛽ଶ

dଶ𝑤

d𝑥ଵ
ଶ = 0 (9a) 
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where 

𝛽ଶ =
𝑃்

𝐸௧𝐼௘

 (9b) 

Here w is the bending displacement along the z1 direction about the neutral axis x1. To investigate the thermal buckling 
behaviors of  bifurcation type [21], only the FG beams with the clamped-clamped (CC) and clamped-roller (CR) end 
supports are considered. For the present boundary conditions, they can be given as 

Clamped: w = 0,  wᇱ = 0 (10a) 

Roller: wᇱ = 0, wᇱᇱᇱ = 0 (10b) 

In the following, the solutions of  the thermal buckling temperature for the uniform equivalent beam with CC and CR 
boundary conditions will be obtained by using eqs. (9) and (10). 

3. Thermal Buckling Analysis 

The general solution of  the thermal buckling problem for the FG beam in eq. (9) is 

w(𝑥ଵ) = 𝐶ଵ𝑐𝑜𝑠𝛽𝑥ଵ + 𝐶ଶ𝑠𝑖𝑛𝛽𝑥ଵ + 𝐶ଷ + 𝐶ସ𝑥ଵ (11) 

which represents the buckling mode of  the beam. The values of  C1, C2, C3, C4 and can be obtained by properly imposing 
the boundary conditions in eq. (11). For clamped-clamped FG beams, introducing the conditions w(0) = 𝑤(𝐿) = 0 and 
w′(0) = 𝑤′(𝐿) = 0 into eq. (11) yields the following eigenvalue equation 

൦

1 0
𝑐𝑜𝑠𝛽𝐿 𝑠𝑖𝑛𝛽𝐿

1 0
1 𝐿

0 𝛽
−𝛽𝑠𝑖𝑛𝛽𝐿 𝛽𝑐𝑜𝑠𝛽𝐿

0 1
0 1

൪ ൞

𝐶ଵ

𝐶ଶ

𝐶ଷ

𝐶ସ

ൢ = 0 (12) 

The condition for a nontrivial solution of  eq. (12) is that its determinant of  the coefficient matrix has to be null, which 
leads to 

sin
βL

2
൬2𝛽𝐿𝑐𝑜𝑠

𝛽𝐿

2
− 4𝑠𝑖𝑛

𝛽𝐿

2
൰ = 0 (13) 

Hence, the smallest critical value crL satisfying eq. (13) is 2. The critical thermal buckling load (PT)cr of  the clamped-
clamped FG beam can be obtained from eq. (9b) as 

(𝑃୘)௖௥ = (2𝜋)ଶ
𝐸௧𝐼௘

𝐿ଶ
 (14) 

With the boundary conditions w(0) = 𝑤′(0) = 0 and w′(𝐿) = 𝑤′′′(𝐿) = 0, the eigenvalue equation for the clamped-
roller FG beam can be obtained as 

൦

1 0
0 𝛽

1 0
0 1

−𝛽𝑠𝑖𝑛𝛽𝐿 𝛽𝑐𝑜𝑠𝛽𝐿

𝛽ଷ𝑠𝑖𝑛𝛽𝐿 −𝛽ଷ𝑐𝑜𝑠𝛽𝐿
0 1
0 0

൪ ൞

𝐶ଵ

𝐶ଶ

𝐶ଷ

𝐶ସ

ൢ = 0 (15) 

Similarly, to obtain the nontrivial solution of  eq. (15), the singular coefficient matrix yields 

𝛽ସ𝑠𝑖𝑛𝛽𝐿 = 0 (16) 

Thus, the smallest critical value crL = . The critical thermal buckling load (PT)cr for the clamped-roller FG beam is 

(𝑃୘)௖௥ = 𝜋ଶ
𝐸௧𝐼௘

𝐿ଶ
 (17) 

In the present study, the temperature field is assumed to change merely along the thickness direction of  the beam. Two 
typical thermal conditions, uniform temperature rise and nonlinear temperature change, are investigated. For the FG 
beams under uniform temperature rise, we have 

∆𝑇 = 𝑇 − 𝑇଴ (18) 

in which T0 and T represent the initial and final temperature, respectively. Thus, the thermal load is obtained from eq. (4) 
as 

𝑃் = 𝐸௧𝛼௧𝐴∆𝑇 ቈ
(1 − 𝐸ത)(1 − 𝛼ത)

2𝜅 + 1
+

(1 − 𝐸ത)𝛼ത + 𝐸ത(1 − 𝛼ത)

𝜅 + 1
+ 𝐸ത𝛼ത቉ = 𝐵𝐸௧𝛼௧𝐴∆𝑇 (19) 
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where 𝛼ത = 𝛼௕/𝛼௧. Substituting eq. (19) into eqs. (14) and (17), the critical thermal buckling temperature for FG beams 
with temperature-independent (TID) material properties can be obtained as 

(∆𝑇)௖௥ =
(𝛽௖௥𝐿)ଶ𝐼௘

𝐵𝛼௧𝐴𝐿ଶ
 (20) 

where crL = 2andfor the clamped-clamped and clamped-roller FG beams, respectively. 
For the FG beams subjected to nonlinear temperature rise, the temperature field T(z) across the thickness is governed by 
one dimensional steady state heat conduction equation with the prescribed temperature conditions at the top and bottom 
surface 

𝑑

𝑑𝑧
൬𝐾(𝑧)

𝑑𝑇

𝑑𝑧
൰ = 0 

𝑇 ൬
ℎ

2
൰ = 𝑇௧ , 𝑇 ൬−

ℎ

2
൰ = 𝑇௕ 

(21) 

The temperature field of  eq. (21) can be determined by using polynomial series as 

𝑇(𝑧) = 𝑇௕ +
𝑅ଶ

𝑅ଵ

∆𝑇 (22a) 

with 

𝑅ଵ = ෍
(−1)௝

(𝑗𝜅 + 1)

௡

௝ୀ଴

𝐾ഥ௝ 

𝑅ଶ = ෍
(−1)௝

(𝑗𝜅 + 1)

௡

௝ୀ଴

𝐾ഥ௝ ൬
𝑧

ℎ
+

1

2
൰

௝఑ାଵ

 

(22b) 

in which T = Tt - Tb is the temperature difference between the top and bottom surfaces of  the FG beam; 𝐾ഥ =
(𝐾௧ − 𝐾௕)/𝐾௕. Sufficient terms of  the series should be taken in the calculation of  the temperature distribution. Introducing 
eq. (22) into eq. (4) yields the following thermal load 

𝑃் = 𝐷ଵ𝐸௧𝛼௧𝐴(𝑇௕ − 𝑇଴)+𝐷ଶ𝐸௧𝛼௧𝐴∆𝑇 

𝐷ଵ =
(1 − 𝐸ത)(1 − 𝛼ത)

2𝜅 + 1
+

(1 − 𝐸ത)𝛼ത + 𝐸ത(1 − 𝛼ത)

𝜅 + 1
+ 𝐸ത𝛼ത 

𝐷ଶ =
1

𝑅ଵ

ቐ෍
(−𝐾ഥ)௝

(𝑗𝜅 + 1)

௡

௝ୀ଴

ቈ
(1 − 𝐸ത)(1 − 𝛼ത)

(𝑗 + 2)𝜅 + 2
+

(1 − 𝐸ത)𝛼ത + 𝐸ത(1 − 𝛼ത)

(𝑗 + 1)𝜅 + 2
+

𝐸ത𝛼ത

𝑗𝜅 + 2
቉ቑ 

(23) 

Substituting eq. (23) into eqs. (14) and (17), the temperature-independent critical thermal buckling temperature for 
clamped-clamped and clamped-roller FG beams under nonlinear temperature change can be determined as 

∆𝑇௖௥ =
(𝛽௖௥𝐿)ଶ𝐼௘

𝐷ଶ𝛼௧𝐴𝐿ଶ
+

𝐷ଵ(𝑇௕ − 𝑇଴)

𝐷ଶ

 (24) 

To obtain the thermal buckling temperature for FG beams with temperature-dependent (TD) material properties using eqs. 
(20) and (24), an iteration procedure [15, 29] is needed. The detailed procedures are given as follows. 
(i) Begin with an initial temperature Ti = T0 or Tb. Then calculate the material properties at T = Ti using eq. (3) and 

determine the effective second area moment using eq. (8). 
(ii) Determine the critical thermal buckling temperature difference (Tcr)i using eq. (20) or eq. (24). 
(iii) Let the current temperature Ti+1 = Ti + (Tcr)i. Recalculate the material properties at T = Ti+1 using eq. (3) and 

determine the new effective second area moment using eq. (8). 
(iv) Determine the new critical thermal buckling temperature difference (Tcr)i+1 using eq. (20) or eq. (24). 

(v) Evaluate the error 𝜀 = ቚ
(∆ ೎்ೝ)೔శభି(∆ ೎்ೝ)೔

(∆ ೎்ೝ)೔
ቚ to check the convergence. If  𝜀 ≤ 5 × 10ି଺ , then the final solution Tcr = 

(Tcr)i+1; otherwise, let i = i+1 and repeat steps (iii) to (v). 

4. Results and Discussion 

The present work studies the thermal buckling behaviors of  various ceramic-metal FG beams by varying the material 
parameters, slenderness ratios, thermal loadings and restraint conditions. Three types of  FG beams constructed from 
Si3N4/SUS304 (S/S), ZrO2/SUS304 (Z/S) and Al2O3/SUS304 (A/S), respectively, are considered. Table 1 [37-38] presents 
the temperature-dependent coefficients of  various material properties for certain ceramic and metal materials. Each of  
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these FG beams is assumed to subject to uniform temperature rise (UTR) and nonlinear temperature rise (NTR), 
respectively. For NTR case, the temperature at the bottom surface of  the beam is taken to be a constant value of  Tb = 305K. 

Table 1. Temperature-dependent coefficients of  thermal and material properties for various ceramics and metals. 

Material P0 P-1 P1 P2 P3 
Al2O3 

E 


 

 
349.55e+9 
6.8269e-6 

0.26 
-14.087 

 
0 
0 
0 

-1123.6 

 
-3.853e-4 
1.838e-4 

0 
-6.227-3 

 
4.027e-7 

0 
0 
0 

 
-1.673e-10 

0 
0 
0 

Si3N4 
E 


 

 
348.43e+9 
5.8723e-6 

0.24 
13.723 

 
0 
0 
0 
0 

 
-3.070e-4 
9.095e-4 

0 
-1.032e-3 

 
2.160e-7 

0 
0 

5.466e-7 

 
-8.946e-11 

0 
0 

-7.876e-11 
ZrO2 

E 


 

 
244.27e+9 
12.766e-6 

0.2882 
1.7 

 
0 
0 
0 
0 

 
-1.371e-3 
-1.491e-3 
1.133e-4 
1.276e-4 

 
1.214e-6 
1.006e-5 

0 
6.648e-8 

 
-3.681e-10 
-6.778e-11 

0 
0 

SUS304 
E 


 

 
201.04e+9 
12.330e-6 

0.3262 
15.379 

 
0 
0 
0 
0 

 
3.079e-4 
8.086e-4 
-2.002e-4 
-1.264e-3 

 
-6.534e-7 

0 
3.797e-7 
2.092e-6 

 
0 
0 
0 

-7.223e-10 
Ni 
E 

 

 
223.95e+9 
9.9209e-6 

0.3100 

 
0 
0 
0 

 
-2.794e-4 
8.705e-4 

0 

 
-3.998e-9 

0 
0 

 
0 
0 
0 

As stated in the previous section, the convergence check is conducted while determining the critical thermal buckling 
temperature of  FG beams with temperature-dependent material properties based on the iteration procedure. Fig. 3 
illustrates the convergence of  the temperature-dependent critical thermal buckling temperature with respect to the iteration 
number for various clamped-clamped FG beams with L/h = 40 and  = 0.5 subjected to nonlinear temperature rise. As 
observed, the solutions converge as the numbers of  iteration are increased. To validate the accuracy of  the present work, 
various analytical results are evaluated and compared with those in the published literature. First, the example to be 
concerned is the thermal buckling of  clamped-clamped ZrO2/Ni (Z/N) FG beams with L/h = 50 under uniform 
temperature rise. 

 
Fig. 3. Critical thermal buckling temperature Tcr (K) against iteration number for various clamped-clamped FG beams under 

NTR (L/h = 40, k = 0.5). 

Table 2 gives the results of  the dimensionless critical buckling temperature 𝜆 = ∆𝑇௖௥(𝑙/ℎ)ଶ𝛼௕଴ with various values of  
alongside with those by Anandrao et al. [20], where 𝛼௕଴ is the thermal expansion coefficient at T = 300K of  the 
material at the bottom surface. The present TID and TD solutions match well with the results by Anandrao et al. [20]. 
Secondly, the thermal buckling of  S/S FG beams with L/h = 25 under uniform temperature rise is considered. Table 3 
presents the values of  TID and TD critical buckling temperature with different values of  for the FG beams with CC and 
CR boundary conditions, respectively. The present results agree well with those given by Esfahani et al. [22]. Finally, the 
thermal buckling of  clamped-clamped and clamped-roller S/S FG beams with L/h = 40 under nonlinear temperature rise 
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is investigated. Table 4 gives the critical buckling temperature of  the S/S FG beams with various values of  In comparison 
with the data obtained by Esfahani et al. [22], the present results also yield good agreement with the published ones. The 
differences between the compared results in Tables 2-4 are due to the fact that the shear deformation effect is neglected in 
the present study. As expected, the difference is becoming smaller as the FG beam has a higher value of  L/h 

Table 2. Comparison of  dimensionless critical thermal buckling temperature for clamped-clamped Z/N FG beams with L/h = 
50 under uniform temperature rise. 

 Source  = 0 0.5 1 10 

TID 
Present 2.2141 2.5093 2.6553 3.0986 

Anandrao et al. [20] 2.2056 2.4996 2.6452 3.0870 

TD 
Present 1.8358 2.1126 2.2653 2.8180 

Anandrao et al. [20] 1.8299 2.1056 2.2578 2.8084 

Table 3. Comparison of  critical thermal buckling temperature Tcr (K) for S/S FG beams with L/h = 25 under uniform temperature rise. 

BC  Source  = 0 0.5 1 2 5 10 ∞ 

CR 
 

TID 
Present 176.06 129.54 116.55 107.67 100.32 95.68 85.89 

Esfahani et al. [22] 175.32 129.02 116.07 107.21 99.88 95.26 85.53 

TD 
Present 158.18 119.76 108.61 100.87 94.38 90.26 81.56 

Esfahani et al. [22] 157.58 119.30 108.16 100.46 93.98 89.88 81.24 

CC 

TID 
Present 704.23 518.18 466.20 430.67 401.29 382.71 343.57 

Esfahani et al. [22] 692.70 509.89 458.68 423.53 394.39 376.14 337.94 

TD 
Present 514.84 404.77 372.30 350.07 331.32 318.35 289.16 

Esfahani et al. [22] 508.17 399.50 367.32 345.15 326.40 313.58 285.06 

 
(a) 

 

(b) 

Fig. 4. Critical thermal buckling temperature Tcr (K) of  clamped-clamped S/S FG beams with various L/h. (a) UTR (b) NTR. 
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Table 4. Comparison of  critical thermal buckling temperature Tcr (K) for S/S FG beams with L/h = 40 under nonlinear temperature rise. 

BC  Source  = 0 0.5 1 2 5 10 ∞ 

CR 
 

TID 
Present 127.06 97.98 87.31 78.86 70.90 66.05 56.89 

Esfahani et al. [22] 127.32 97.97 87.23 78.74 70.77 65.92 56.77 

TD 
Present 116.55 94.90 85.92 78.35 70.73 65.94 56.89 

Esfahani et al. [22] 116.74 94.88 85.85 78.23 70.60 65.81 56.77 

CC 
TID 

Present 538.22 424.27 381.66 347.46 314.81 294.92 257.54 
Esfahani et al. [22] 536.62 422.18 379.47 345.22 312.64 292.87 255.81 

TD 
Present 413.52 379.73 359.90 339.12 312.22 293.36 257.54 

Esfahani et al. [22] 412.24 377.96 357.94 337.03 310.12 291.35 255.81 

In the next, the thermal buckling characteristics of  various S/S, Z/S and A/S FG beams with different restraint conditions 
and thermal loadings are investigated. Figures 4 to 6 show the variations of  critical buckling temperature with respect to 
the power-law exponent  for the respective clamped-clamped S/S, Z/S and A/S FG beam with different L/h ratios under 
UTR and NTR thermal gradients. As seen in Fig. 4, both TID and TD solutions for the critical buckling temperatures of  
the S/S FG beam decrease with the increasing volume fraction index . The critical thermal buckling temperature 
decreases dramatically as increases from 0 to 1, but reduces slightly thereafter. However, the discrepancy between the 
TID and TD solutions decreases significantly when the slenderness ratio and volume fraction index increase, especially 
for the FG beam under NTR. Unlike the S/S FG beam, both TID and TD solutions in Fig. 5(a) for Z/S FG beams under 
UTR increases with the increase in . In Fig. 5(b), the buckling temperature of  TD solution for Z/S FG beams under NTR 
continuously enlarges with the increasing , while that of  TID solution increases firstly and reaches a maximum, then 
decrease thereafter. It is noted that the critical buckling temperature of  FG beams with small slenderness ratio is 
considerably affected by the temperature-dependent material properties. Meanwhile, the influence is diminished as the 
slenderness ratio and volume fraction index are increased. 

 
(a) 

 
(b) 

Fig. 5. Critical thermal buckling temperature Tcr (K) of  clamped-clamped Z/S FG beams with various L/h. (a) UTR (b) NTR. 
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Similar to the S/S FG beam, it is seen in Fig. 6(a) that both TID and TD solutions of  A/S FG beams under UTR decrease 
sharply with initially and then reduce gradually. The results also show that the effects of  temperature-dependent material 
properties become less significant for A/S beams with higher slenderness ratio and volume fraction index. Unlike the 
beams under UTR, the values for the critical buckling temperatures of  A/S FG beams under NTR increase continuously 
with . However, the critical thermal buckling temperature could not be obtained when is increased up to a typical value. 
As observed in Fig. 6(b), the critical buckling temperature of  the A/S FG beam could be obtained up to a higher value of  
 as the beam has a higher L/h ratio. As cited by Majumdar and Das [29], it is attributable to the fact that the values of  
the effective Young’s modulus and/or thermal expansion coefficient of  FG materials are very lower under high-
temperature environments, which is encountered for A/S FG beams under NTR. As expected, the results in Figs. 4 to 6 
reveal that the critical buckling temperature decreases with the increasing slenderness ratio. 
Figures 7(a) and 7(b) illustrate the results of  the critical buckling temperature with the power-law exponent  for the 
respective clamped-clamped S/S, Z/S and A/S FG beam with L/h = 40 under UTR and NTR, respectively. As observed, 
the A/S FG beam has the highest buckling temperature, followed by the S/S FG beam and Z/S FG beam irrespective of  
the thermal loading type. In the case of  UTR, the critical buckling temperature of  the A/S FG beam is approaching to 
that of  the S/S FG beam when increases from 2 to 10. As seen in Fig. 7(b), the A/S FG beam under NTR exhibits an 
apparently high buckling temperature as increases from 0 to 1 compared to the S/S and Z/S beam. 

 

(a) 

 

(b) 

Fig. 6. Critical thermal buckling temperature Tcr (K) of  clamped-clamped A/S FG beams with various L/h. (a) UTR (b) NTR. 

Tables 5 and 6 show the effects of  the slenderness ratios and volume fraction indices on the critical buckling temperature 
of  clamped-roller FG beams subjected to UTR and NTR types of  thermal loadings. Compared to the corresponding 
clamped-clamped one, the clamped-roller beam has a smaller buckling temperature because CR end support is softer than 
the CC end support. Similar behaviors of  the variations of  critical buckling temperature with  and L/h for various 
clamped-clamped FG beams as discussed previously can also be seen for the corresponding clamped-roller ones. 
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(a) 

 

(b) 

Fig. 7. Critical thermal buckling temperature Tcr (K) of  various clamped-clamped FG beams with L/h = 40. (a) UTR (b) NTR. 

Table 5. Critical thermal buckling temperature Tcr (K) of  various clamped-rolled FG beams with various L/h under uniform temperature rise. 

BC L/h   = 0 0.5 1 2 5 10 ∞ 

S/S 
 

30 
TID 122.26 89.96 80.94 74.77 69.67 66.44 59.65 
TD 113.12 85.03 76.95 71.36 66.69 63.73 57.50 

40 
TID 68.77 50.60 45.53 42.06 39.19 37.37 33.55 
TD 65.69 48.97 44.21 40.93 38.21 36.48 32.85 

50 
 

TID 44.01 32.39 29.14 26.92 25.08 23.92 21.47 
TD 42.71 31.70 28.59 26.45 24.67 23.55 21.18 

70 
TID 22.46 16.52 14.87 13.73 12.80 12.20 10.96 
TD 22.11 16.34 14.72 13.61 12.69 12.11 10.88 

Z/S 

30 
TID 49.16 52.64 53.88 54.93 56.29 57.37 59.65 
TD 42.90 46.99 48.77 50.53 52.78 54.38 57.50 

40 
TID 27.65 29.61 30.31 30.90 31.67 32.27 33.55 
TD 25.51 27.72 28.61 29.45 30.51 31.29 32.85 

50 
TID 17.70 18.95 19.40 19.78 20.27 20.65 21.47 
TD 16.79 18.15 18.68 19.17 19.79 20.25 21.18 

70 
TID 9.03 9.67 9.90 10.09 10.34 10.54 10.96 
TD 8.78 9.46 9.71 9.93 10.21 10.43 10.88 

A/S 

30 
TID 126.87 91.71 82.02 75.36 69.88 66.52 59.65 
TD 124.18 88.52 79.00 72.47 67.12 63.93 57.50 

40 
TID 71.36 51.59 46.13 42.39 39.31 37.42 33.55 
TD 70.50 50.55 45.15 41.44 38.40 36.56 32.85 

50 
TID 45.67 33.01 29.53 27.13 25.16 23.95 21.47 
TD 45.31 32.58 29.12 26.74 24.78 23.59 21.18 

70 
TID 23.30 16.84 15.06 13.84 12.83 12.22 10.96 
TD 23.21 16.73 14.96 13.74 12.73 12.12 10.88 
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Table 6. Critical thermal buckling temperature Tcr (K) of  various clamped-rolled FG beams with various L/h under nonlinear temperature rise. 

BC L/h   = 0 0.5 1 2 5 10 ∞ 

S/S 
 

30 
TID 233.65 182.57 163.62 148.49 134.13 125.38 108.91 
TD 202.90 172.95 159.23 146.92 133.64 125.07 108.91 

40 
TID 127.05 97.98 87.31 78.86 70.90 66.05 56.89 
TD 116.55 94.90 85.92 78.35 70.72 65.94 56.89 

50 
TID 77.72 58.83 51.98 46.62 41.63 38.58 32.81 
TD 73.36 57.60 51.43 46.41 41.55 38.53 32.81 

70 
TID 34.75 24.73 21.23 18.56 16.14 14.67 11.84 
TD 33.70 24.45 21.10 18.50 16.12 14.66 11.84 

Z/S 
 

30 
TID 86.79 118.29 127.58 130.24 123.98 118.01 108.91 
TD 67.85 91.02 99.50 105.48 108.44 108.79 108.91 

40 
TID 44.45 61.03 65.99 67.50 64.42 61.43 56.89 
TD 38.21 52.06 56.89 59.72 59.80 58.79 56.89 

50 
TID 24.84 34.53 37.49 38.47 36.85 35.23 32.81 
TD 22.45 31.10 34.04 35.58 35.19 34.30 32.81 

70 
TID 7.78 11.46 12.66 13.18 12.84 12.43 11.84 
TD 7.37 10.86 12.07 12.70 12.57 12.28 11.84 

A/S 
 

30 
TID 243.51 446.63 650.68 1094.66 NA NA 108.91 
TD 233.61 424.39 606.21 964.01 NA NA 108.91 

40 
TID 132.60 239.94 347.48 581.61 1758.27 NA 56.89 
TD 129.46 234.02 336.21 536.30 1104.81 NA 56.89 

50 
TID 81.26 144.27 207.14 344.15 1032.71 NA 32.81 
TD 80.01 142.31 204.41 332.38 683.46 NA 32.81 

70 
TID 36.56 60.96 84.94 137.37 400.93 NA 11.84 
TD 36.27 60.61 84.79 139.66 347.43 NA 11.84 

5. Conclusions 

The thermal buckling analysis for the FG Euler-Bernoulli beam with the power law function of  material distribution 
was established based on the transformed-section method. Analytical solutions of  the critical buckling temperature were 
derived for the clamped-clamped and clamped-roller FG beams under uniform and nonlinear temperature changes. The 
critical thermal buckling loads for typical examples were analytically evaluated and compared with the published data to 
verify the accuracy of  the presented model. A good agreement between the compared results was achieved. The proposed 
model was then applied to investigate the influences of  the material constituents, material distributions, slenderness ratios, 
temperature distributions and boundary conditions on the thermal buckling behaviors of  various FG beams. The results 
revealed that these parameters significantly affect the thermal buckling characteristics of  FG beams. It is believed that the 
present analytical solutions give engineers a good insight in the parameters of  the FG beam affecting its thermal buckling 
characteristics. This paper focused on the thermal buckling stability analysis of  the temperature-dependent FG beams with 
simple rectangular cross-section. In the future work, more complex annulus cross-section should be considered in order to 
demonstrate the general applicability of  the proposed method. 
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