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Abstract. The effects of viscous dissipation, chemical reaction and activation energy on the two-dimensional hydromagnetic 
convective heat and mass transfer flow of a Casson nanofluid fluid over a stretching sheet with thermal radiation, have been 
discussed in detail. The formulated highly nonlinear equations for the above-mentioned flow are converted into first-order 
ordinary differential equations (ODEs). The shooting method along with Adams-Bash forth Moulton method is used to solve the 
BVP by using the Fortran language program. The numerical results are computed by choosing different values of the involved 
physical parameters and compared with earlier published results and excellent validation of the present numerical results has 
been achieved for local Nusselt number and local Sherwood number. The graphical numerical results of different physical 
quantities of interest are presented to analyze their dynamics under the varying physical quantities. From the results, it has been 
remarked that the heat transfer rate escalates for the large values of radiation parameter, viscous dissipation for the Casson 
nanofluid. 

Keywords: Casson nanofluid, Viscous dissipation, Chemical reaction, Brownian motion, Thermophoresis, Stretching Sheet. 

1. Introduction 

Nanofluids are processed by the diffusion of the suspended nanoparticles in the immersed liquid (a base fluid and 
nanoparticles). Moreover, such fluids when compared with the conventional heat transfer fluids, have a much higher rate of 
thermal conduction and exhibit significant characteristics. Owing to their enhanced features, nanofluids have immense 
applications in the automobile industries, medical arena, power plant cooling systems, nuclear engineering and a lot more. 
Moreover, several research studies have been performed by considering the different aspects of the flows past a stretching sheet. 
Crane [1] discussed the ow by considering a stretching sheet. Pavlov [2] illustrated his findings on the MHD flow past a stretching 
sheet. On the contrary, Fang and Zhang [3] explored the MHD flow past a stretching sheet by examining the wall mass suction and 
presented the exact solution for the problem. In addition, many significant features of the MHD flow past a stretching sheet were 
presented and elaborated in the literature [4-7]. 

Anjali Devi and Ganga [8] studied the MHD flow over a porous stretching sheet under the influence of Joule heating and 
viscous dissipation. Makinde and Mutuku [9] investigated the thermal boundary layer of hydromagnetic nanofluids over a heated 
plate under the impact of Ohmic heating and viscous dissipation. Ahmed et al. [10] investigated the impacts of heatsink/source 
on the boundary layer flow of single-phase nanofluid over a stretching tube. Very recently, Akilu and Narahari [11] studied 
numerically the impact of internal heat absorption of a nanofluid on natural convective flow over an inclined plate numerically.  

Furthermore, other types of fluids have been used for describing the different flow problems, which are not non-Newtonian in 
nature and are regarded as Newtonian fluids. In the past few years, the problem involving stagnation point flow has acquired the 
considerable attention of many research scientists. Owing to its significant properties, the study of flow nearby a stagnation point 
past a stretching/shrinking sheet has a wide range of practical applications, for instance, cooling process of atomic reactors and 
electronic equipment, the layouts of thrust bearings, and several hydrodynamics processes. Moreover, the analysis of the 
magnetohydrodynamic flow is highly significant in the fluid dynamics owing to the reason that the impact of the magnetic field 
on the viscous flow using a fluid having electrically conducting properties has played a key role in several commercial 
productions, for instance in the refinement of crude oil, glass, and paper production, manufacturing of magnetic materials, 
geophysics and MHD electrical power generation. The MHD factor has a fundamental role to play in controlling the cooling rate 
and for achieving the desired quality of the product. Mahapatra [12] analyzed the flow nearby a stagnation point by taking into 
consideration the heat transfer past a stretching sheet. Furthermore, Nazar et al. [13] discussed the stagnation point flow over a 
stretching sheet using a micropolar fluid. Several researchers have contributed to the study of the stagnation point MHD flow in 
the light of various significant effects [14-18]. 

Fluids serve as the necessity of life and owing to their significance in natural and technological processes, scientists have 
been discovering the various facts and figures about the fluid flow. Fluid dynamics characterizes the flow of fluids and how forces 
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influence them. It illustrates the methodology of understanding the evolution of stars, meteorological phenomena, marine 
currents as well as the blood circulation. Archimedes was a Greek mathematician, who first examined the statics and buoyancy of 
the fluid and formulated the Archimedes principle, which was the first contribution in the area of fluid mechanics. Rapid 
investigation on this subject began in the fifteenth century. Some crucial engineering applications of fluid dynamics comprise oil 
pipelines, rocket engines, air conditioning systems, and wind turbines. Casson fluid, being non-Newtonian in nature, exhibits the 
behavior of elastic solids. When stress rate is zero, the Casson fluid can be regarded as a shear-thinning liquid, showing an 
infinite viscosity whereas the viscosity drops to zero as the stress rate approaches to an infinite value [19]. Jam, tomato ketchup, 
honey and concentrated fruit syrups are some familiar examples of the Casson fluid. The Casson fluid has been implemented in 
the preparation of printing ink, silicon suspensions and polymers [20]. During the past few years, a vast range of experiments and 
investigations have been carried out using the Casson fluid due to its enormous applications in the scientific and engineering 
domains. Dash et al. [19] examined the flow using a homogeneous porous medium inside a pipe for the Casson fluid. The 
stagnation point flow for mixed convection and convective boundary conditions using the Casson fluid was analyzed by Hayat et 
al. [21]. Further to this, Mukhopadhyay et al. [22] investigated the flow past an unsteady stretching surface using the Casson fluid. 
Moreover, the aspects of such flows using the Casson fluid are presented in recent studies [23-30]. 

The leading motivation for the present work is to investigate the impacts of external magnetic field inclinations and viscous 
dissipation due to heat generation or absorption parameter on MHD mixed convective flow of Casson nanofluid. Moreover, the 
chemical reaction and radiation effects are examined. The governing partial differential equations (PDEs) have been converted to 
a set of ODES through suitable similarity transformations and the numerical solution has been derived by the shooting technique 
with Adams – Bashforth Moulton method of order four. 

 

2. Mathematical Model of the Flow 

The present model aims to investigate the laminar, incompressible, 2D and steady flow of the Casson nanofluid past a 
stretched surface. Along the x-axis, a stretching sheet is taken with stretching velocity =wu ax  where the fluid flow is bounded by 

the region y > 0. In the light of thermal radiation and heat generation/absorption, the characteristics of flow and heat transfer are 

examined. The temperature provided to the stretching surface is denoted by fT , with fh  as the heat transfer coefficient, wC  as 

surface concentration. ∞C  denotes the ambient concentration and ∞T  represents the ambient temperature. With the assumption 

that no nanoparticles flux is present on the surface, the impact of thermophoresis is incorporated along with boundary 
conditions. A magnetic field is applied normal to the stretching surface having strength 0B  as we can see in Figure 1 induced 

magnetic field is ignored with the assumptions of small values of magnetic Reynolds number. The rheological equation of state 
for an isotropic and incompressible flow of a Casson fluid is 
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In the above expression where Bµ is the plastic dynamic viscosity of the non-Newtonian fluid, yp  is the yield stress of fluid, π  is 

the product of the component of deformation rate and itself, namely, = ijeπ , ije  is the ( , )i j  component of the deformation rate, 

and π  is a critical value of π  based on the non-Newtonian model. 

 
Fig. 1. Geometry for the flow under consideration. 

 

The constitutive equations of the Casson nanofluid model are as follow [31]: 

The Continuity equation: 

∂ ∂
+ =

∂ ∂
0

u v

x y
 (2) 

The Momentum equation: 
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The Energy equation: 

( )∞
∞

            ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂             + =− + + + − + + + + − −                         ∂ ∂   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂          

2 2 22 2

2 2

1 1
1 r T

B

p p p

T T u T T q C T C T D T T Q
u v D T T

x y c y x y c y x x y y T y x c

µ
α τ

ρ β ρ ρ
 (4) 

The Concentration equation: 
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The corresponding boundary conditions for the proposed model are 

( ) ( ) ( )
∂ ∂

= ⇒ = = − = − − = −
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*, 0, ,w f f

T C
u U x u ax v k h T T D h C C

y y
at = 0y  (6a) 

∞ ∞= = → →0, 0, ,u v T T C C as →∞y  (6b) 

In the above equations, 
*σ  is electrical conductivity of the base fluid, 0B  is the uniform magnetic field strength, g  is the 

gravitational acceleration, = 2 /B ypβ πµ  is the Casson parameter, = /Bν µ ρ  is the kinematics viscosity, α  is the thermal 

diffusivity, k  is the thermal conductivity, τ  is the ratio of nanoparticle heat capacity and base fluid capacity, BD  is the Brownian 

diffusion coefficient, TD is the thermophoresis diffusion coefficient, Tβ volumetric thermal expansion coefficient, Cβ is 

volumetric solutal thermal expansion coefficient, x  and y  are coordinate axis along the continuous surface in the direction same 

as direction of motion and normal to it, respectively. The components of velocity along −x and −y axis are respectively u  and v , 

BU  is the stretching velocity, U  is the uniform velocity. 

The velocity components in terms of the stream functions are given as 

∂ ∂
= =−
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,u v
y x

ψ ψ
 (7) 

In Eq. (4), the Rosseland approximation for heat flux rq  is given as 

− ∂
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where *k  stand for the absorption coefficient and 

*σ  Stefan-Boltzmann constant. If temperature constant is very small, then 

4T  

might be expanded about ∞T  by utilizing Taylor series, given as: 
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Higher order terms are ignored resulting in the following form: 
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Using Eq. (10) in Eq. (8) and differentiating, the following form is achieved: 
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To solve the above system of PDEs numerically, it is converted into the nondimensionalized form. For this, the following 
dimensionless variables are used: 
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The above, equation (2) is satisfied identically. After using similarity transformation, the equations take the form 
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The BCs, now, become: 
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The dimensionless parameters are defined as 
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The skin friction coefficient fC , Nusselt number xNu  and Sherwood number xSh  are defined as 
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Here, the heat flux wq , the skin - friction on flat plate wτ  and the mass transfer rate wh  are given by 

= = =
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By using the above equations: 
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Here, =Re /x wU x ν  is the local Reynold number. 

3. Numerical Treatment 

The numerical solution of the mathematical model in the form of non-linear differential equations (13-15) along with the 
boundary condition (16) was reported by Hayat et al. [31]. They opted the series solution for the numerical solution of the above 
model. In the present section, shooting technique has been proposed to reproduce the same solution. The Adams-Bashforth 
Moulton method of order four and the Newton's technique for solving the non-linear algebraic equations, are the main 
components of the shooting technique. By re-writing equation (13-15) as: 
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To have a system of first order ODEs, use the notations: 
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where r , s  and t  are the initial guesses. For the computational purpose, the unbounded domain [ )∞0,  has been replaced by a 

bounded domain [ ]∞0,η , where ∞η  is some suitable finite real number. It is chosen in such a way that the solutions of the problem 

start looking settled for ∞>η η . In (25), the missing initial conditions r , s and t  are to be chosen such that 

( ) ( ) ( )∞ ∞ ∞= = =2 4 6, , , 0, , , , 0, , , , 0y r s t y r s t y r s tη η η  (26) 

To start the iterative process, choose = =0 0,r r s s  and = 0t t . To the values of r , s  and t  Newton's iterative scheme has been used. 
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 (28) 

The convergence criteria are chosen to be successive value agree up to 3 significant digits. The choice =max 9η  was more than 

enough for end conditions. 

4. Results and Discussion 

In this section, the numerical values of Nusselt number and Sherwood numbers are illustrated by tables and graphs by 
assuming varies values of different physical parameters of interest. 

4.1 Code validation 

To validate the computational program language Fortran code the values of − '(0)θ  and − �'(0)φ  are reproduced for the problem 

discussed by [31]. Table 4.1 reflects a very good agreement between the results computed by the present code and the code in [31]. 
In Table 4.2, numerical analysis of physical parameters such as mixed convection parameter ,λ concentration buoyancy parameter 

,N heat transfer Biot number 1γ  and mass transfer Biot number 2γ  and their influence on local Nusselt and Sherwood numbers is 

presented. From this table, it is noted that an increase in the mixed convection parameter and concentration buoyancy parameter, 
the Nusselt number increases whereas the Sherwood number decreases. 

  

Fig. 2. Variation of M on ( )'f η  Fig. 3. Variation of Nb on ( )θ η  

  

Fig. 4. Variation of Nb on ( )φ η  Fig. 5. Variation of β  on ( )f η  

 



MHD casson nanofluid past a stretching sheet with viscous dissipation, chemical reaction and heat source/sink  
 

Journal of Applied and Computational Mechanics, Vol. 7, No. 4, (2021), 2040–2048 

2045 

Table 4.1. Comparison of current code results with some earlier results of [28]. 

β  Nt  Nb  
( )− ' 0θ  ( )− ' 0φ  

T. Hayat et al. [31] Present Result T. Hayat et al. [31] Present Result 

0.5 0.2 0.2 0.15271 0.1526939 0.12054 0.1205407 

0.7   0.15204 0.1519901 0.11910 0.1188185 

0.9   0.15150 0.1514782 0.11758 0.1175741 

0.5 0.4  0.15195 0.1518633 0.096142 0.0956810 

 0.6  0.15106 0.1510139 0.071520 0.0717563 

  0.4 0.15186 0.1517981 0.13368 0.1336129 

  0.6 0.15100 0.1509065 0.13815 0.1379848 

Table 4.2. Comparison of current results of ( )− ' 0θ and ( )− ' 0φ for numerous values of Nt & Nb . 

λ  N  1γ  2γ  
( )− ' 0θ  ( )− ' 0φ  

T. Hayat et al. [31] Present Result T. Hayat et al. [31] Present Result 

-0.5 0.3 0.2 0.2 1.5201 0.1411910 0.11969 0.0840725 

0.0    0.15248 0.1524246 0.12014 0.1199470 

0.3    0.15271 0.1526939 0.12054 0.1205407 

0.6    0.15302 0.1529436 0.12144 0.1210837 

0.3 0.0   0.15261 0.1525648 0.12032 0.1202398 

 0.3   0.15271 0.1526939 0.12054 0.1205407 

 0.6   0.15302 0.1528177 0.12078 0.1208268 

0.3 0.3 0.2  0.15271 0.1526939 0.12054 0.1205407 

  0.4  0.24602 0.2458604 0.10535 0.1053597 

  0.6  0.30822 0.3080297 0.095273 0.0954224 

0.3 0.3 0.2 0.1 0.15304 0.1529687 0.069638 0.0694951 

   0.3 0.15255 0.1524822 0.15995 0.1599500 

   0.5 0.15224 0.1521774 0.21584 0.2156148 

  

Fig. 6. Variation of λ  on ( )f η  Fig. 7. Variation of R  on ( )θ η  

  

Fig. 8. Variation of 1β  on ( )θ η  Fig. 9. Variation of Pr  on ( )θ η  

4.2 The velocity, Temperature and Concentration profiles 

The graphs illustrated in this section show the behavior of the velocity, temperature and concentration for the present model 

regarding a change in the values of various parameters like 1 1, , , , ,Pr, , , , , ,M Nb R Sc Nt Ecβ λ β γ γ . Figure 2 presents the impact of the 

magnetic parameter on the velocity distribution. From this figure, with increasing values of the magnetic parameter, the profile of 
velocity decreases. The reason beyond this electrically conducting fluid produces a resistive force known as Lorentz force, which 
opposes the flow and tends to make the fluid motion slowdown in the boundary layer and therefore reduces the profile of velocity. 
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Fig. 10. Variation of Sc  on ( )φ η  Fig. 11. Variation of γ  on ( )φ η  

  

Fig. 12. Variation of Nt  on ( )θ η  Fig. 13. Variation of Nt on ( )φ η  

Figures 3-4 display the influence of the Brownian motion parameter on the temperature and concentration distributions. The 

temperature profile climbs marginally for the larger values of Nb . This happens due to the reason that as the value of Nb  rises, 
the movement of the nanoparticles enhances significantly which triggers the kinetic energy of the nanoparticles resulting in an 
escalation in the temperature and the thermal boundary layer thickness. On the other hand, the concentration of the fluid falls as 

Nb  assumes the higher values. Also, the concentration boundary layer thickness is depressed. 
Figure 5 is framed to delineate the effect of the Casson parameter on the velocity field. The velocity profile shows an increasing 
trend by increasing β . Additionally, the velocity boundary layer thickness undergoes a decrement as β  assumes the larger value. 

This stems from the fact that the plasticity of the Casson fluid increases for the smaller β  and leads to an enhancement in the 

momentum boundary layer thickness. 
Figure 6 depicts the effect of the mixed convection parameter on the velocity. It is seen that as λ  increases, the velocity increases. 
This is because the positive force acts like a favorable pressure gradient and hence accelerates the fluid flow in the boundary layer. 
This results in higher velocity as λ  increases. 
Figures 7 & 8 elucidate the effect of the radiation parameter R  and the heat generation or absorption parameter 1β  on the 

temperature distributions. Since the heat transfer climbs marginally for the higher estimation of R , thereby an increment in the 
temperature of the fluid and the thermal boundary layer has been noticed. However, as the value of 1β  rises, more heat is 

generated causing an increment in the temperature and the thermal boundary layer thickness. On the other hand, as the value of 

1β  de-escalates, the heat absorbed results in a decrement in the temperature and the associated thermal boundary layer 

thickness. 
Figure 9 is framed to delineate the outcome of Pr  on temperature distribution. Since Pr  is directly proportionate to the viscous 
diffusion rate and inversely related to the thermal diffusivity, so the thermal diffusion rate suffers a reduction for the larger 
estimation of Pr  and subsequently, the temperature of the fluid drops significantly. Moreover, a decrement in the thermal 
boundary layer thickness has been noted. 
Figures 10 & 11 delineate the outcome of Sc  and γ  on the concentration fields. The concentration of the fluid depicts a decreasing 

behavior as Sc  assumes a higher value. This behavior stems from the fact that the Schmidt number and mass diffusion rate have 

inverse relation, therefore, for the larger Sc , the process of the mass diffusivity slows down and thus, the concentration falls, and 
the concentration boundary layer thickness is reduced. Furthermore, the chemical reaction parameter also has a similar effect on 
the concentration profile. The larger values of γ  result in a decrement in the chemical molecular diffusion and hence, the 

concentration of the fluid de-escalates, and the associated concentration boundary layer thickness is reduced. 
Figures 12 & 13 interpret the impact of the thermophoresis parameter on the temperature and concentration distributions. Both 
the temperature and concentration escalate by taking larger values of Nt  into account. In addition to this, an increment in the 
associated thermal and concentration boundary layer has been noticed. Physically, heated particles come away from high 
temperature as compared to low-temperature so the temperature of fluid increases. 
Figures 14 and 15 are presented to visualize the effect of the 1γ  on temperature distribution and concentration profile. This figure 

defines that temperature profile and concentration profile enhances as the Biot number 1γ  is increased gradually. Physically, the 

Biot number defines the ratio between the resistance rate of heat transfer inside the body to the resistance at the body surface. 
The reason behind is that convective heat exchange at the surface will raise the boundary layer thickness therefore the nanofluid 
with convective boundary condition is a more effective model as compared to the constant surface temperature estate. 
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Fig. 14. Variation of 1γ on ( )θ η  Fig. 15. Variation of 1γ on ( )φ η  

  

Fig. 16. Variation of Ec  on ( )θ η  Fig. 17. Variation of Ec  on ( )φ η  

Figure 16 shows the impact of the viscous dissipation on the temperature profile. When the value of the viscous dissipation is 
increased, the fluid region can store the energy. As a result of dissipation due to fractional heating, heat is generated. Figure 17 
display the influence of Eckert number on the concentration profile. It is observed that the concentration of the fluid decreases 
near the plate. However, it rises away from the surface as the value of the Eckert number is enhanced. 

5. Conclusion 

Concluding all arguments and results we summarized our findings as follows:  
The decrement in temperature profile and concentration profile is observed for increasing values of the Prandtl number. It is 
reported that for enhances increasing values of the thermal radiation R  temperature profile also enhanced. By increasing the 

thermophoresis parameter Nt  and Brownian motion parameter Nb  concentration boundary layer thickness increases. Physically, 
heated particles come away from high temperatures as compared to low-temperature so the temperature of fluid increases. 
Looking at the effect of the chemical reaction, the mass transfer rate is observed to decrease. The temperature profile increases as 
the Eckert number increases, the physical reason behind it is that an increment in the dissipation enhances the thermal 
conductivity of the fluid which causes an enhancement in the thermal boundary layer. When 1γ  increases, it causes increases in 

temperature and concentration on the surface which sequels in the thickening of the thermal boundary layer. Numerically, it can 
be calculated by dividing the convection on the surface to the conduction into the surface of an object. Greater values of Schmidt 
number Sc  represents the lower mass diffusivity. For the Casson fluid, the higher estimation of the Casson parameter escalates 
the velocity profile. 
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