

# Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves

# Ji-Huan He<sup>1,2</sup>

<sup>1</sup> School of Science, Xi'an University of Architecture and Technology Xi'an, China, Email: hejihuan@suda.edu.cn
<sup>2</sup> University National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University 199 Ren-Ai Road, Suzhou, China

Received September 11 2019; Revised October 12 2019; Accepted for publication October 12 2019. Corresponding author: J.H. He (hejihuan@suda.edu.cn) © 2020 Published by Shahid Chamran University of Ahvaz & International Research Center for Mathematics & Mechanics of Complex Systems (M&MoCS)

**Abstract.** The unsmooth boundary will greatly affect motion morphology of a shallow water wave, and a fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semiinverse method is used to establish a fractal variational formulation of the problem, which provides conservation laws in an energy form in the fractal space and possible solution structures of the equation.

Keywords: Continuum assumption, Two scale transform, Fractal dimension, Variational derivative.

# 1. Introduction

This paper considers the following generalized KdV-Burgers equation [1-4]

$$\frac{\partial u}{\partial T} + au \frac{\partial u}{\partial X} + b \frac{\partial^2 u}{\partial X^2} + c \frac{\partial^3 u}{\partial X^3} = 0$$
(1)

where *a*, *b* and *c* are constants.

When a=1,b=0 and c=1, Eq. (1) is the KdV equation, and when a=1,b=1 and c=0, we obtain the Burgers equation. There are many analytical methods to solve Eq. (1), among which the exp-function method [5-7], the semi-inverse variational method [8-11], the Taylor series method [12], He's frequency formulation for fast insight into the periodic property of a nonlinear equation [13], the homotopy perturbation method [14-19] and the variational iteration method [20-22] have been caught much attention.

Eq. (1) describes a shallow water wave, however an unsmooth boundary will greatly affect the solitary properties, so the smooth space (X,T) should be replaced by a fractal space  $(X^{\beta}, T^{\alpha})$ , where  $\beta$  and  $\alpha$  are, respectively, fractal dimensions in space and time. In the fractal space Eq. (1) can be modified as

$$\frac{\partial u}{\partial T^{\alpha}} + au \frac{\partial u}{\partial X^{\beta}} + b \frac{\partial^2 u}{\partial X^{2\beta}} + c \frac{\partial^3 u}{\partial X^{3\beta}} = 0$$
<sup>(2)</sup>

where the fractal derivatives are defined as [23, 24]



$$\frac{\partial u}{\partial T^{\alpha}}(T_0, X) = \Gamma(1+\alpha) \lim_{\substack{T-T_0 \to \Delta T \\ \Delta T \neq 0}} \frac{u(T, X) - u(T_0, X)}{(T-T_0)^{\alpha}}$$
(3)

$$\frac{\partial u}{\partial X^{\beta}}(T,X_0) = \Gamma(1+\alpha) \lim_{\substack{X-X_0 \to \Delta X \\ \Delta X \neq 0}} \frac{u(T,X) - u(T,X_0)}{(X-X_0)^{\beta}}$$
(4)

We have the following chain rule

$$\frac{\partial^2}{\partial X^{2\beta}} = \frac{\partial}{\partial X^{\beta}} \frac{\partial}{\partial X^{\beta}}$$
(5)

$$\frac{\partial^3 u}{\partial X^{3\beta}} = \frac{\partial}{\partial X^{\beta}} \frac{\partial}{\partial X^{\beta}} \frac{\partial}{\partial X^{\beta}} \tag{6}$$

In the definitions given in Eqs. (3) and (4),  $\Delta X$  and  $\Delta T$  are, respectively, the smallest spatial scale for discontinuous boundary and the smallest temporal scale for watching the solitary wave. When the spatial scale is larger than  $\Delta X$ , the boundary is considered as a smooth one, and traditional continuum mechanics works, on the scale of  $\Delta X$ , the boundary is discontinuous, and it is considered a fractal curve. When we watch the solitary wave on a scale larger than  $\Delta T$ , a smooth wave morphology is predicted, however, when we observe the wave on the scale of  $\Delta T$ , discontinuous wave morphology can be found [24].

In the fractal space, all variables depend upon the scales used for observation and the fractal dimensions of the discontinuous boundary. For example, the velocity difference ( $\Delta u$ ) across a distance ( $\Delta X$ ) or a period ( $\Delta T$ ) can be written in the forms [24]

$$\Delta u \propto (\Delta X)^{\beta} \tag{7}$$

$$\Delta u \propto (\Delta T)^{\alpha} \tag{8}$$

The fractal derives are widely used in applications [24-30] for discontinuous media.

#### 2. Variation Principle

In a fractal space, the physical laws should be also be followed. Wang et al. [30] established a variational principle for traveling wave in a fractal space by the semi-inverse method [31].

According to the basic properties given in Eqs. (7) and (8), we have the following two-scale transform [32, 33]

$$t = T^{\alpha} \tag{9}$$

$$x = X^{\beta} \tag{10}$$

Eq. (2) becomes

$$u_t + auu_x + bu_{xx} + cu_{xxx} = 0, \qquad (11)$$

In order to use the semi-inverse method [31] to establish a variational formulation for Eq. (11), we write Eq. (11) in the form

$$u_t + (\frac{1}{2}au^2 + bu_x + cu_{xx})_x = 0$$
(12)

According to Eq. (12), we can introduce a function  $\varphi$  satisfying

$$\varphi_{\rm x} = u \tag{13}$$

Journal of Applied and Computational Mechanics, Vol. 6, No. 4, (2020), 735-740

Variational Principle for the Generalized KdV-Burgers Equation with Fractal Derivatives for Shallow Water Waves 737

$$\varphi_{t} = -(\frac{1}{2}au^{2} + bu_{x} + cu_{xx})$$
(14)

We want to establish a variational formulation for the problem

$$J(u,\varphi) = \iint L(u,u_t,u_x,u_{xx},u_{xxx},\varphi,\varphi_x,\varphi_{xx},\varphi_{xxx})dxdt$$
(15)

where L is the trial-Lagrange function.

By the semi-inverse method [31], we assume that the trial-Lagrange function can be written in the form

$$L = u\varphi_t + (\frac{1}{2}au^2 + bu_x + cu_{xx})\varphi_x + F$$
(16)

where F is an unknown function of u and/or  $\varphi$  and/or their derivatives. If F is free from  $\varphi$  and its derivatives, the stationary condition with respect to  $\varphi$  is Eq. (2). The semi-inverse method is a useful mathematical tool to establishment of a needed variational formulation from governing equations [8-11, 34-39].

The stationary condition with respect to u reads

$$\varphi_t + au\varphi_x - b\varphi_{xx} + c\varphi_{xxx} + \frac{\delta F}{\delta u} = 0$$
(17)

where  $\delta F / \delta u$  is the variational derivative defined as

$$\frac{\delta F}{\delta u} = \frac{\partial F}{\partial u} - \frac{\partial}{\partial t} \left(\frac{\partial F}{\partial u_t}\right) - \frac{\partial}{\partial x} \left(\frac{\partial F}{\partial u_x}\right) + \frac{\partial^2}{\partial t^2} \left(\frac{\partial F}{\partial u_t}\right) + \frac{\partial^2}{\partial t \partial x} \left(\frac{\partial F}{\partial u_{xx}}\right) + \frac{\partial^2}{\partial x^2} \left(\frac{\partial F}{\partial u_{xx}}\right) - \dots$$
(18)

In view of Eqs. (13) and (14), we have

$$\frac{\delta F}{\delta u} = -\varphi_t - au\varphi_x + b\varphi_{xx} - c\varphi_{xxx}$$

$$= \frac{1}{2}au^2 + bu_x + cu_{xx} - au^2 + bu_x - cu_{xx}$$

$$= -\frac{1}{2}au^2 + 2bu_x$$
(19)

From Eq. (19), we cannot identify F, so we have to modify the trial-Lagrange function in the form [37,38]

$$L = Au\varphi_t + B\varphi_x\varphi_t + (\frac{1}{2}au^2 + bu_x + cu_{xx})\varphi_x + F$$
<sup>(20)</sup>

The Euler-Lagrange equations are

$$-Au_{t} - 2B\varphi_{xt} - \left(\frac{1}{2}au^{2} + bu_{x} + cu_{xx}\right)_{x} + \frac{\delta F}{\delta\varphi} = 0$$
<sup>(21)</sup>

$$A\varphi_{t} + au\varphi_{x} - b\varphi_{xx} + c\varphi_{xxx} + \frac{\delta F}{\delta u} = 0$$
<sup>(22)</sup>

In view of Eqs. (13) and (14), we have

$$\frac{\delta F}{\delta \varphi} = Au_t + 2B\varphi_{xt} + (\frac{1}{2}au^2 + bu_x + cu_{xx})_x = (A+2B)u_t + (\frac{1}{2}au^2 + bu_x + cu_{xx})_x$$
(23)



$$\frac{\delta F}{\delta u} = -A\varphi_{i} - au\varphi_{x} + b\varphi_{xx} - c\varphi_{xxx}$$

$$= A(\frac{1}{2}au^{2} + bu_{x} + cu_{xx}) - au^{2} + bu_{x} - cu_{xx}$$

$$= (\frac{1}{2}A - 1)au^{2} + (A + 1)bu_{x} + (A - 1)cu_{xx}$$
(24)

Setting

$$\frac{\delta F}{\delta \varphi} = 0 \tag{25}$$

and

$$A + 2B = 1 \tag{26}$$

Eq. (21) turns out to be Eq. (12). Setting the coefficient of  $u_x$  to be zero in Eq. (24)

$$A + 1 = 0$$
 (27)

we obtain

$$\frac{\delta F}{\delta u} = -\frac{3}{2}au^2 - 2cu_{xx} \tag{28}$$

From Eq. (28), F can be identified as

$$F = -\frac{1}{2}au^3 + c(u_x)^2$$
<sup>(29)</sup>

Finally we obtain the following Lagrange function

$$J(u,\varphi) = \iint \left\{ -u\varphi_t + \varphi_x\varphi_t + \left(\frac{1}{2}au^2 + bu_x + cu_{xx}\right)\varphi_x - \frac{1}{2}au^3 + c(u_x)^2 \right\} dxdt$$
(30)

which is subject to Eq. (13).

Proof. The Euler-Lagrange equations of Eq. (30) are

$$u_t - 2\varphi_{xt} - (\frac{1}{2}au^2 + bu_x + cu_{xx})_x = 0$$
(31)

$$-\varphi_{t} + au\varphi_{x} - b\varphi_{xx} + c\varphi_{xxx} - \frac{3}{2}au^{2} - 2cu_{xx} = 0$$
(32)

In view of the constraint, Eq. (13), it is easy to prove that Eqs. (31) and (32) are equivalent to, respectively, Eq. (12) and Eq. (14).

In the fractal space (  $X^{\beta}$  ,  $T^{\alpha}$  ), the variational formulation can be written in the form

$$J(u,\varphi) = \iint \left\{ -u \frac{\partial \varphi}{\partial T^{\alpha}} + \frac{\partial \varphi}{\partial X^{\beta}} \frac{\partial \varphi}{\partial T^{\alpha}} + \left(\frac{1}{2}au^{2} + b\frac{\partial u}{\partial X^{\beta}} + c\frac{\partial^{2}u}{\partial X^{2\beta}}\right) \frac{\partial \varphi}{\partial X^{\beta}} - \frac{1}{2}au^{3} + c\left(\frac{\partial u}{\partial X^{\beta}}\right)^{2} \right\} dX^{\beta} dT^{\alpha}$$
(33)

which is subject to Eq. (13).

#### 3. Conclusion

This paper established a variational formulation for the generalized KdV-Burgers equation in a fractal space

Journal of Applied and Computational Mechanics, Vol. 6, No. 4, (2020), 735-740



 $(X^{\beta}, T^{\alpha})$  by the semi-inverse method. The variational principle suggested possible conservation laws and possible solution structures, and it provided a theoretical basis for both the numerical and analytical methods.

### **Conflict of Interest**

The author declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

# Funding

The author received no financial support for the research, authorship and publication of this article.

#### Nomenclature

| a, b, c | Constants                    | α         | Fractal dimension in time  |
|---------|------------------------------|-----------|----------------------------|
| (X,T)   | Coordinates on a large space | β         | Fractal dimension in space |
| (x,t)   | Coordinates on a small space | $\varphi$ | Potential function         |

#### References

[1] Mancas, S.C., Adams, R., Dissipative periodic and chaotic patterns to the KdV–Burgers and Gardner equations, *Chaos, Solitons & Fractals*, 126, 2019, 385-39.

[2] Gupta, A.K., Ray, S.S., On the solution of time-fractional KdV–Burgers equation using Petrov–Galerkin method for propagation of long wave in shallow water, *Chaos, Solitons & Fractals*, 116, 2018, 376-38.

[3] Cevikel, A.C., New exact solutions of the space-time fractional KdV-Burgers and non-linear fractional foam drainage equation, *Thermal Science*, 22, 2018, S15-S24.

[4] Kim, J.M., Chun, C.B. New Exact Solutions to the KdV-Burgers-Kuramoto Equation with the Exp-Function Method, *Abstract and Applied Analysis*, 2012, 892420.

[5] He, J.H., Exp-function Method for Fractional Differential Equations, *International Journal of Nonlinear Sciences and Numerical simulation*, 14(6), 2013, 363-366.

[6] He, J.H., Asymptotic Methods for Solitary Solutions and Compactons, Abstract and Applied Analysis, 2012, 916793.

[7] He, J.H., Wu, X.H., Exp-function method for nonlinear wave equations, *Chaos Solitons & Fractals*, 30(3), 2006,700-708.
[8] Biswas, A., Zhou, Q., Moshokoa, S.P., et al. Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations, *Optik*, 145, 2017, 14-17.

[9] El-Kalaawy, O.H., Variational principle, conservation laws and exact solutions for dust ion acoustic shock waves modeling modified Burger equation, *Computers and Mathematics with Applications*, 72, 2016, 1013-1041.

[10] El-Kalaawy, O.H., New Variational principle-exact solutions and conservation laws for modified ion-acoustic shock waves and double layers with electron degenerate in plasma, *Physics of Plasmas*, 24(3), 2017, 032308.

[11] He, J.H. A modified Li-He's variational principle for plasma, *International Journal of Numerical Methods for Heat and Fluid Flow*, 2019, DOI: 10.1108/HFF-06-2019-0523.

[12] He, J.H., Ji, F.Y., Taylor series solution for Lane-Emden equation, *Journal of Mathematical Chemistry*, 57(8), 2019, 1932–1934.

[13] He, J.H., The simplest approach to nonlinear oscillators, *Results in Physics*, 15, 2019, 102546.

[14] He, J.H., Homotopy Perturbation Method with an Auxiliary Term, Abstract and Applied Analysis, 2012, 857612.

[15] He, J.H., Homotopy perturbation method with two expanding parameters, *Indian Journal of Physics*, 88, 2014, 193-196.

[16] Adamu, M.Y., Ogenyi, P., New approach to parameterized homotopy perturbation method, *Thermal Science*, 22(4), 2018, 1865-1870.

[17] Ban, T., Cui, R.Q., He's homotopy perturbation method for solving time-fractional Swift-Hohenerg equation, *Thermal Science*, 22(4), 2018, 1601-1605.

[18] Liu, Z.J., Adamu, M.Y., Suleiman, E., et al. Hybridization of homotopy perturbation method and Laplace transformation for the partial differential equations, *Thermal Science*, 21, 2017, 1843-1846.

[19] Wu, Y., He, J.H., Homotopy perturbation method for nonlinear oscillators with coordinate dependent mass, *Results in Physics*, 10, 2018, 270–271.

[20] Anjum, N., He, J.H., Laplace transform: Making the variational iteration method easier, *Applied Mathematics Letters*, 92, 2019, 134-138.

[21] He, J.H., Some asymptotic methods for strongly nonlinear equations, *International Journal of Modern Physics B*, 20, 2006, 1141-1199.

[22] He, J.H., Kong, H.Y., Chen, R.X., Variational iteration method for Bratu-like equation arising in electrospinning, *Carbohydrate Polymers*, 105, 2014, 229-230.

[23] He, J.H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, *International Journal of Theoretical Physics*, 53(11), 2014, 3698-3718.



[24] He, J.H., Fractal calculus and its geometrical explanation, Results in Physics, 10, 2018, 272-276.

[25] Li, X.X., Tian, D., He, C.H., He, J.H., A fractal modification of the surface coverage model for an electrochemical arsenic sensor, *Electrochimica Acta*, 296, 2019, 491-493.

[26] Wang, Q.L., Shi, X.Y., He, J.H., Li, Z.B., Fractal calculus and its application to explanation of biomechanism of polar bear hairs, *Fractals*, 26(6), 2018, 1850086.

[27] Wang, Y., Deng, Q.G., Fractal derivative model for tsunami travelling, Fractals, 27(1), 2019, 1950017.

[28] Liu, H.Y., Yao, S.W., Yang, H.W., Liu, J., A fractal rate model for adsorption kinetics at solid/solution interface, *Thermal Science*, 23(4), 2019, 2477-2480.

[29] Wang, Y., Yao, S.W., Yang, H.W., A fractal derivative model for snow's thermal insulation property, *Thermal Science*, 23(4), 2019, 2351-2354.

[30] Wang, Y., An, J.Y., Wang, X.Q., A variational formulation for anisotropic wave traveling in a porous medium, *Fractals*, 27(4), 2019, 1950047.

[31] He, J.H., Variational principles for some nonlinear partial differential equations with variable coefficients, *Chaos Solitons & Fractals*, 19(4), 2004, 847-851.

[32] Ain, Q.T., He, J.H. On two-scale dimension and its applications, *Thermal Science*, 23(3B), 2019, 1707-1712.

[33] He, J.H., Ji, F.Y., Two-scale mathematics and fractional calculus for thermodynamics, *Thermal Science*, 23(4), 2019, 2131-2133.

[34] He, J.H., An alternative approach to establishment of a variational principle for the torsional problem of piezoelastic beams, *Applied Mathematics Letters*, 52, 2016, 1-3.

[35] He, J.H., Hamilton's principle for dynamical elasticity, Applied Mathematics Letters, 72, 2017, 65-69.

[36] He, J.H., Generalized equilibrium equations for shell derived from a generalized variational principle, *Applied Mathematics Letters*, 64, 2017, 94-100.

[37] He, J.H., Lagrange Crisis and Generalized Variational Principle for 3D unsteady flow, *International Journal of Numerical Methods for Heat and Fluid Flow*, 2019, DOI: 10.1108/HFF-07-2019-0577.

[38] He, J.H., Sun, C., A variational principle for a thin film equation, *Journal of Mathematical Chemistry*, 57(9), 2019, 2075–2081.

[39] Wang, K. L., He, C.H., A remark on Wang's fractal variational principle, *Fractals*, 2019, DOI: 10.1142/S0218348X19501342.

### ORCID iD

Ji-Huan He<sup>®</sup> https://orcid.org/0000-0002-1636-0559

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).



