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Abstract. The unsmooth boundary will greatly affect motion morphology of  a shallow water wave, and a 
fractal space is introduced to establish a generalized KdV-Burgers equation with fractal derivatives. The semi-
inverse method is used to establish a fractal variational formulation of  the problem, which provides 
conservation laws in an energy form in the fractal space and possible solution structures of  the equation. 
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1. Introduction 

This paper considers the following generalized KdV-Burgers equation [1-4] 

2 3

2 3
0

u u u u
au b c

T X X X

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
                                 (1) 

where a, b and c are constants. 

When a=1,b=0 and c=1, Eq. (1) is the KdV equation, and when a=1,b=1and c=0 , we obtain the Burgers equation. 

There are many analytical methods to solve Eq. (1), among which the exp-function method [5-7], the semi-inverse 

variational method [8-11], the Taylor series method [12], He’s frequency formulation for fast insight into the periodic 

property of  a nonlinear equation [13], the homotopy perturbation method [14-19] and the variational iteration method 

[20-22] have been caught much attention.  

Eq. (1) describes a shallow water wave, however an unsmooth boundary will greatly affect the solitary properties, so 

the smooth space (X,T) should be replaced by a fractal space ( X β ,T α ), where β  and α  are, respectively, fractal 

dimensions in space and time. In the fractal space Eq. (1) can be modified as  
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where the fractal derivatives are defined as [23, 24]  
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We have the following chain rule  

2

2
=

X X Xβ β β
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∂ ∂ ∂
                                        (5) 
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                                     (6) 

In the definitions given in Eqs. (3) and (4), XΔ and TΔ  are, respectively, the smallest spatial scale for discontinuous 

boundary and the smallest temporal scale for watching the solitary wave . When the spatial scale is larger than XΔ , the 

boundary is considered as a smooth one, and traditional continuum mechanics works, on the scale of  XΔ , the 

boundary is discontinuous, and it is considered a fractal curve. When we watch the solitary wave on a scale larger than 

TΔ , a smooth wave morphology is predicted, however, when we observe the wave on the scale of  TΔ , discontinuous 

wave morphology can be found [24]. 

In the fractal space, all variables depend upon the scales used for observation and the fractal dimensions of  the 

discontinuous boundary. For example, the velocity difference ( uΔ ) across a distance ( XΔ ) or a period ( TΔ ) can be 

written in the forms [24]  

( )u X βΔ Δ∝                                               (7) 

( )u T αΔ Δ∝                                               (8) 

The fractal derives are widely used in applications [24-30] for discontinuous media.   

 

2. Variation Principle 

In a fractal space, the physical laws should be also be followed. Wang et al. [30] established a variational principle for 

traveling wave in a fractal space by the semi-inverse method [31].  

According to the basic properties given in Eqs. (7) and (8), we have the following two-scale transform [32, 33] 

 

t T α=                                                  (9) 

x X β=                                                 (10) 

Eq. (2) becomes  

0t x xx xxxu auu bu cu+ + + = ,                                      (11) 

In order to use the semi-inverse method [31] to establish a variational formulation for Eq. (11), we write Eq. (11) in the 

form  

21
( ) 0
2

t x xx xu au bu cu+ + + =                                       (12) 

According to Eq. (12), we can introduce a function φ  satisfying  

x uφ =                                                   (13) 
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( )
2

t x xxau bu cuφ =− + +                                      (14) 

We want to establish a variational formulation for the problem  

, x xx( , ) ( , , , , , , , )t x xx xxx x x xJ u L u u u u u dxdtφ φ φ φ φ= ∫∫                             (15) 

where L is the trial-Lagrange function.  

By the semi-inverse method [31], we assume that the trial-Lagrange function can be written in the form  

21
( )
2

t x xx xL u au bu cu Fφ φ= + + + +                                   (16) 

where F is an unknown function of  u and/or φ  and/or their derivatives. If  F is free from φ  and its derivatives, the 

stationary condition with respect to φ  is Eq. (2). The semi-inverse method is a useful mathematical tool to 

establishment of  a needed variational formulation from governing equations [8-11, 34-39].  

The stationary condition with respect to u reads  

0t x xx xxx

F
au b c

u

δ
φ φ φ φ

δ
+ − + + =                                  (17) 

where /F uδ δ  is the variational derivative defined as  
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In view of  Eqs. (13) and (14), we have  
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From Eq. (19), we cannot identify F, so we have to modify the trial-Lagrange function in the form [37,38]  

21
+ ( )

2
t x t x xx xL Au B au bu cu Fφ φ φ φ= + + + +                           (20) 

The Euler-Lagrange equations are  

21
2 ( ) 0
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0t x xx xxx
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In view of  Eqs. (13) and (14), we have  
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Setting  

0
Fδ

δφ
=                                            (25) 

and 

2 1A B+ =                                           (26) 

Eq. (21) turns out to be Eq. (12). Setting the coefficient of  xu  to be zero in Eq. (24)  

1 0A+ =                                            (27) 

we obtain 

23
2

2
xx

F
au cu

u

δ

δ
=− −                                     (28) 

From Eq. (28), F can be identified as  

3 21
( )

2
xF au c u=− +                                     (29) 

Finally we obtain the following Lagrange function  

2 3 21 1
( , ) + ( ) ( )

2 2
t x t x xx x xJ u u au bu cu au c u dxdtφ φ φ φ φ

   = − + + + − +    
∫∫              (30) 

which is subject to Eq. (13).  

Proof. The Euler-Lagrange equations of  Eq. (30) are  

21
2 ( ) 0

2
t xt x xx xu au bu cuφ− − + + =                                (31) 

23
2 0

2
t x xx xxx xxau b c au cuφ φ φ φ− + − + − − =                           (32) 

In view of  the constraint, Eq. (13), it is easy to prove that Eqs. (31) and (32) are equivalent to, respectively, Eq. (12) and 

Eq. (14).  

In the fractal space ( X β ,T α ), the variational formulation can be written in the form   

2
2 3 2

2

1 1
( , ) + ( ) ( )

2 2

u u u
J u u au b c au c dX dT

T X T X X X X

β α

α β α β β β β

φ φ φ φ
φ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ = − + + + − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  
∫∫     (33) 

which is subject to Eq. (13).  

3. Conclusion 

This paper established a variational formulation for the generalized KdV-Burgers equation in a fractal space 
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( X β ,T α ) by the semi-inverse method. The variational principle suggested possible conservation laws and possible 

solution structures, and it provided a theoretical basis for both the numerical and analytical methods. 
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Nomenclature 

a, b, c 

(X,T) 

(x,t) 

Constants 
Coordinates on a large space 
Coordinates on a small space 

α  

β  

φ  

Fractal dimension in time  
Fractal dimension in space 
Potential function 

References 

[1] Mancas, S.C., Adams, R., Dissipative periodic and chaotic patterns to the KdV–Burgers and Gardner equations, 
Chaos, Solitons & Fractals, 126, 2019, 385-39. 

[2] Gupta, A.K., Ray, S.S., On the solution of  time-fractional KdV–Burgers equation using Petrov–Galerkin method for 
propagation of  long wave in shallow water, Chaos, Solitons & Fractals, 116, 2018, 376-38. 

[3] Cevikel, A.C., New exact solutions of  the space-time fractional KdV-Burgers and non-linear fractional foam drainage 
equation, Thermal Science, 22, 2018, S15-S24.  

[4] Kim, J.M., Chun, C.B.  New Exact Solutions to the KdV-Burgers-Kuramoto Equation with the Exp-Function 
Method, Abstract and Applied Analysis, 2012, 892420.  

[5] He, J.H., Exp-function Method for Fractional Differential Equations, International Journal of  Nonlinear Sciences and 

Numerical simulation, 14(6), 2013, 363-366. 

[6] He, J.H., Asymptotic Methods for Solitary Solutions and Compactons, Abstract and Applied Analysis, 2012, 916793.  

[7] He, J.H., Wu, X.H., Exp-function method for nonlinear wave equations, Chaos Solitons & Fractals, 30(3), 2006,700-708.  

[8] Biswas, A., Zhou, Q., Moshokoa, S.P., et al. Resonant 1-soliton solution in anti-cubic nonlinear medium with 
perturbations, Optik, 145, 2017, 14-17. 

[9] El-Kalaawy, O.H., Variational principle, conservation laws and exact solutions for dust ion acoustic shock waves 
modeling modified Burger equation, Computers and Mathematics with Applications, 72, 2016, 1013-1041.  

[10] El-Kalaawy, O.H., New Variational principle-exact solutions and conservation laws for modified ion-acoustic shock 
waves and double layers with electron degenerate in plasma, Physics of  Plasmas, 24(3), 2017, 032308. 

[11] He, J.H. A modified Li-He’s variational principle for plasma, International Journal of  Numerical Methods for Heat and 

Fluid Flow, 2019, DOI: 10.1108/HFF-06-2019-0523. 

[12] He, J.H., Ji, F.Y., Taylor series solution for Lane-Emden equation, Journal of  Mathematical Chemistry, 57(8), 2019, 

1932–1934. 
[13] He, J.H., The simplest approach to nonlinear oscillators, Results in Physics, 15, 2019, 102546.  

[14] He, J.H., Homotopy Perturbation Method with an Auxiliary Term, Abstract and Applied Analysis, 2012, 857612.   

[15] He, J.H., Homotopy perturbation method with two expanding parameters, Indian Journal of  Physics, 88, 2014, 193-

196. 
[16] Adamu, M.Y., Ogenyi, P., New approach to parameterized homotopy perturbation method, Thermal Science, 22(4), 

2018, 1865-1870. 

[17] Ban, T., Cui, R.Q., He’s homotopy perturbation method for solving time-fractional Swift-Hohenerg equation, 
Thermal Science, 22(4), 2018, 1601-1605.  

[18] Liu, Z.J., Adamu, M.Y., Suleiman, E., et al. Hybridization of  homotopy perturbation method and Laplace 
transformation for the partial differential equations, Thermal Science, 21, 2017, 1843-1846. 

[19] Wu, Y., He, J.H., Homotopy perturbation method for nonlinear oscillators with coordinate dependent mass, Results 

in Physics, 10, 2018, 270–271. 

[20] Anjum, N., He, J.H., Laplace transform: Making the variational iteration method easier, Applied Mathematics Letters, 

92, 2019, 134-138. 
[21] He, J.H., Some asymptotic methods for strongly nonlinear equations, International Journal of  Modern Physics B, 20, 

2006, 1141-1199. 
[22] He, J.H., Kong, H.Y., Chen, R.X., Variational iteration method for Bratu-like equation arising in electrospinning, 
Carbohydrate Polymers, 105, 2014, 229-230. 

[23] He, J.H., A Tutorial Review on Fractal Spacetime and Fractional Calculus, International Journal of  Theoretical Physics, 

53(11), 2014, 3698-3718.   



 

J.H. He, Vol. 6, No. 4, 2020 
 

Journal of  Applied and Computational Mechanics, Vol. 6, No. 4, (2020), 735-740   

740

[24] He, J.H., Fractal calculus and its geometrical explanation, Results in Physics, 10, 2018, 272-276. 

[25] Li, X.X., Tian, D., He, C.H., He, J.H., A fractal modification of  the surface coverage model for an electrochemical 
arsenic sensor, Electrochimica Acta, 296, 2019, 491-493. 

[26] Wang, Q.L., Shi, X.Y., He, J.H., Li, Z.B., Fractal calculus and its application to explanation of  biomechanism of  
polar bear hairs, Fractals, 26(6), 2018, 1850086. 

[27] Wang, Y., Deng, Q.G., Fractal derivative model for tsunami travelling, Fractals, 27(1), 2019, 1950017. 

[28] Liu, H.Y., Yao, S.W., Yang, H.W., Liu, J., A fractal rate model for adsorption kinetics at solid/solution interface, 
Thermal Science, 23(4), 2019, 2477-2480. 

[29] Wang, Y., Yao, S.W., Yang, H.W., A fractal derivative model for snow’s thermal insulation property, Thermal Science, 

23(4), 2019, 2351-2354. 
[30] Wang, Y., An, J.Y., Wang, X.Q., A variational formulation for anisotropic wave traveling in a porous medium, 
Fractals, 27(4), 2019, 1950047.  

[31] He, J.H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos 

Solitons & Fractals, 19(4), 2004, 847-851. 

[32] Ain, Q.T., He, J.H. On two-scale dimension and its applications, Thermal Science, 23(3B), 2019, 1707-1712. 

[33] He, J.H., Ji, F.Y., Two-scale mathematics and fractional calculus for thermodynamics, Thermal Science, 23(4), 2019, 

2131-2133. 
[34] He, J.H., An alternative approach to establishment of  a variational principle for the torsional problem of  
piezoelastic beams, Applied Mathematics Letters, 52, 2016, 1-3. 

[35] He, J.H., Hamilton's principle for dynamical elasticity, Applied Mathematics Letters, 72, 2017, 65-69. 

[36] He, J.H., Generalized equilibrium equations for shell derived from a generalized variational principle, Applied 

Mathematics Letters, 64, 2017, 94-100. 

[37] He, J.H., Lagrange Crisis and Generalized Variational Principle for 3D unsteady flow, International Journal of  

Numerical Methods for Heat and Fluid Flow, 2019, DOI: 10.1108/HFF-07-2019-0577. 

[38] He, J.H., Sun, C., A variational principle for a thin film equation, Journal of  Mathematical Chemistry, 57(9), 2019, 

2075–2081. 
[39] Wang, K. L., He, C.H., A remark on Wang's fractal variational principle, Fractals, 2019, DOI: 

10.1142/S0218348X19501342. 

ORCID iD 

Ji-Huan He  https://orcid.org/0000-0002-1636-0559 
  
 

© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under 
the terms and conditions of  the Creative Commons Attribution-NonCommercial 4.0 International (CC 

BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/). 

 


