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Abstract. In this article, the thermal buckling behavior of  orthotropic circular bilayer graphene sheets 
embedded in the Winkler–Pasternak elastic medium is scrutinized. Using the nonlocal elasticity theory, the 
bilayer graphene sheets are modeled as a nonlocal double–layered plate that contains small scale effects and 
van der Waals (vdW) interaction forces. The vdW interaction forces between the layers are simulated as a set 
of  linear springs using the Lennard–Jones potential model. Using the principle of  virtual work, the set of  
equilibrium equations are obtained based on the first-order shear deformation theory (FSDT) and nonlocal 
differential constitutive relation of  Eringen. Differential quadrature method (DQM) is employed to solve the 
governing equations for simply-supported and clamped boundary conditions. Finally, the effects of  the small 
scale parameter, vdW forces, aspect ratio, elastic foundation, and boundary conditions are considered in 
detail. 

Keywords: Thermal buckling; Bilayer graphene sheets; Elastic medium; Nonlocal elasticity; van der Waals forces; First-
order shear deformation theory; Differential quadrature method 

1. Introduction 

Throughout the past few years, graphene sheets have enticed researchers tremendously due to their extraordinary 
electronic, thermal and mechanical properties which make it a reliable candidate for pervasive applications in many 
fields such as superfast microelectronics, micro-electro-mechanical systems (MEMS), nano-electromechanical systems 
(NEMS), biomedical, bioelectrical, reinforcement role at composites and etc. [1-6]. Owing to their broad range of  
applications, predicting the mechanical behavior of  graphene sheets is of  great importance. However, compared to the 
mechanical analysis of  one-dimensional nanostructures such as nanobeams, nanorods and carbon nanotubes (CNTs), 
we cannot neglect the van der Waals interaction between the atoms and its inner distance in contrast with the main 
physics of  problem [7]. In recent years, various size-dependent continuum theories such as couple stress theory [8], strain 
gradient elasticity theory [9-12], modified couple stress theory [13-23], nonlocal elasticity theory [24-41] and nonlocal 
strain gradient theories (higher and lower-order) [42-48] are proposed. These theories are comprised of  information 
about the interatomic forces and internal lengths that are introduced as small scale effects in nonlocal elasticity theory 
[27]. Amidst them, it is proved that the nonlocal elasticity theory of  Eringen [24-27] in micro and nano-materials has 
outshined among the nanotechnology community owing to its simplicity, high reliability and close agreement with 
molecular dynamics (MD) simulations for mechanical analysis of  nanostructures. In recent years, a lot of  studies have 
been carried out to predict the vibrations, buckling and bending analyses [49-70] of  nanostructures with several 
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geometries based on nonlocal elasticity theory. In order to improve the stiffness and strength of  a graphene sheet, 
multilayers of  graphene sheets (MLGSs) have been produced. In order to make MLGSs, several SLGs are set on each 
other by weak van der Waals (vdW) bonds between the surface atoms [71]. Moreover, the bilayer graphene sheets 
(BLGS) can be modeled as a nonlocal double-layered plate which contains vdW interaction forces and the small scale 
effect. Owing to the superior advantages of  MLGS, some works have also been conducted to study their mechanical 
behaviors i.e. bending [71-72], vibration [73-76], and buckling [77-80]. According to the literature, some research works 
have been presented to analyze the mechanical behaviors of  rectangular MLGSs using nonlocal elasticity theory. 
However, in comparison with rectangular graphene sheets, research studies of  nanoplates with circular geometry are 
limited in number [81].  

This study considers the thermal buckling of  circular bilayer graphene sheets on a two-parameter elastic foundation 
using the first-order shear deformation theory (FSDT) and nonlocal differential constitutive relation of  Eringen. The 
governing equations are obtained in terms of  displacement variables and then solved using the differential quadrature 
method (DQM) for different boundary conditions. The obtained results of  the DQM are highly consistent with those of  
other works for simplified cases. Finally, influences of  small scale parameter, thickness and radius of  circular BLGS, 
elastic foundation and boundary conditions are studied on the thermal buckling load in detail. 

2. Governing Equations 

The geometry and coordinate system of  circular BLGS with thickness h and radius r are shown in Fig. 1.  

 

Fig. 1. The circular bilayer graphene sheets in an atomic schema bridged on an elastic foundation 

According to the FSDT, the displacement field can be defined as follows: 
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where u and w are the displacement components of  the mid-plane along the radial and vertical displacements, 
respectively. Also,   denotes the rotational function of  the transverse normal about the r-axis. The von Kármán strain 

fields are used as follows: 
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where εr and ε are the normal strains and rz is the shear strain. In nonlocal elasticity theory, the effects of  small scale 
and interatomic bonds are included in the constitutive equations as material parameters [24]. Eringen presented a 
differential form of  the nonlocal constitutive equation from nonlocal balance law as follows [26-27]: 

( ) ( ) ( )2 22
01 ,  NL L C nm e aμ σ σ ε μ− ∇ = = =  (3) 
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in which E1 and E2 are elasticity moduli along r and  directions, G23 is shear modulus, υ12 and υ21 are Poisson’s ratio for 
the orthotropic plate. Furthermore, index L defines local and index NL shows nonlocal components. Additionally, the 
parameters  and  represent the static stresses and strains. Also, a is an internal characteristic length and e0 is a material 
constant that should be defined by experiment. The parameter e0a is the small scale parameter revealing the small scale 
effect on the responses of  nanosize structures. The value of  the small scale parameter depends on boundary condition, 
chirality, mode shapes, number of  walls, and the nature of  motions. The nonlocal stresses can be defined by using eq. (3), 

in addition, 2∇ expresses the Laplacian operator which is defined for axisymmetric conditions as follows: 

2
2
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1d d

r drdr
∇ = +  (5) 

The nonlocal force, moment and shear force components, namely , , ,NL NL NL NL

r rN N M Mθ θ  and NL
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follows: 
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By substituting stress values into resultant forces, the following constitutive relations are obtained: 
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in which T

rN , TNθ , T

rM , and TMθ  are the thermal and moment stress resultants along the radius and angle of  the 

circular plate. Moreover, the stiffness parameters of  the material are as follows: 
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where k defines a factor in order to refine the distribution of  the shear stress along the thickness of  the sheet. By 
computing strains and substituting the values of  the stiffness matrix (Eq. (8)) in terms of  material constants, the 
following relations are obtained: 
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Using the principle of  minimum total potential energy, for a system to be in an equilibrium state, the variation of  total 
potential energy needs to be equal to zero as: 

0Sδ δ δΠ Ω= + =  (10) 

in which S and  denote the strain energy and the work done by the externally applied forces, respectively, which are 
defined as follows: 

( )r r rz rz
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In continuation, the work done by the external forces can be written in the following relations (Note that index 1 defines 
upper layer and index 2 is allocated for the lower layer): 
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where δ  is the variation symbol, also, wk , pk  and ok  are the Winkler and Pasternak stiffness coefficients of  the 

elastic foundation and van der Waals interaction forces, respectively. By using the nonlocal stress resultants in Eqs. (6) 
and energy relations in Eqs. (10-12), the nonlocal governing equations can be defined as follows in eqs. (13) and (14). It 
is noted that Eqs. (13) are corresponding to the upper layer and Eqs. (14) are related to the lower layer: 
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Using Eqs. (9, 13 and 14) leads to the following relations: 
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Then, the governing equations on the basis of  the adjacent equilibrium method are transformed to the linear stability 
equations as follows: 
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in which the thermal stress resultants along the radius and angle of  the circular plate can be presented as below: 

( ) ( )
1 1 1 21 2

12 21 12 211 1
th

r

E h E h
N T T

α ν α

ν ν ν ν
= ∆ + ∆

− −
 (23) 

( ) ( )
2 2 1 21 1

12 21 12 211 1
th E h E h

N T Tθ

α ν α

ν ν ν ν
= ∆ + ∆

− −
 (24) 

where T∆  is the linear change in the temperature as 2 1T T T∆ = −  ( 1T  denotes the room temperature as 300 Kelvin 

and 2T  represents the final temperature which makes the plate in a buckled form). In this paper, the increase in 

temperature is assumed to be linear and the temperature along the thickness is constant. Other parameters respectively, 

1α  and 2α  are the thermal expansion coefficients for the orthotropic plate, and the other ones are the elastic properties 

as defined before. 

3. Solution Process 

In this paper, the differential quadrature method (DQM) is employed in order to solve the equilibrium equations. This 
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method has proven to provide excellent accuracy, efficiency, convenience, and great potential in solving complicated 
partial differential equations [51]. Therefore, the DQM, as well as simple formulation, provides low computational cost 
unlike other numerical methods such as dynamic relaxation method (DRM), finite difference method (FDM), finite 
element method (FEM), and etc. The DQM was introduced by Bellman and Casti [82-83]. Many researchers have 
recently advocated the application of  the DQM for the investigation of  nanostructures [84-87]. The basic idea of  the 
DQM is based on the approximation of  partial derivative of  a function with respect to a space variable at a discrete point 
as a weighted linear sum of  the function values at all discrete points in the whole domain. Its weighting coefficients 
alone depend on the grid spacing. Therefore, every partial differential equation can be converted into a number of  
algebraic equations using these coefficients [64]. DQM can be subdivided into several subsets the applied function and 
satisfying types of  boundary conditions. In this paper, polynomial function and direct substitution techniques are utilized 
for this purpose. By using the DQM, derivatives of  a function fr at point ri is defined by: 
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in which, N is the number of  grid points along r direction. It is more offered to use the grid point distribution which is 
based on Chebyshev-Gauss-Lobatto points to gain more accurate results [64]. According to the Chebyshev-Gauss-
Lobatto grid point’s distribution, the coordinates of  the grid points are as follows: 
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With the implementation of  DQM into the Eqs. (21) and (22), the following equations can be obtained: 
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Here, the obtained equations are converted into a dimensionless schema using the following relations: 
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Finally, in order to solve the Eqs. (29) and (30), the boundary conditions should be defined. 

1- Simply-supported boundary conditions (S): 

0rw M= =  (32) 

2- Clamped boundary conditions (C): 

0w = =  (33) 

4. Results and Discussions 

To validate the outcomes of  the present research, Ref. [59] is employed in which the dimensionless strain at the 
buckling time was analyzed for a circular isotropic SLGS with clamped boundary conditions. In this reference, the 
classical plate theory was also applied. 

( )( )( )

2

22 2
0

14.6819

12 14.6189 1
b

h

R e a
ε

υ
=

+ −
,  0.3ν = , 0.335h nm=  (34) 

Table 1. Comparison of  the nondimensional strain at the buckling time of  circular SLGS with clamped boundary conditions 

The percent of  the strain of  buckling ( )( )%bε  

r (nm) Reference 
0e a (nm) 

2 1.5 1 0.5 0 

0.1968 0.3003 0.4800 0.7487 0.9205 
4 

Present work 

0.2019 0.3077 0.4918 0.7671 0.9430 Ref. [59] 
0.1576 0.2162 0.2945 0.3763 0.4146 

6 
Present work 

0.1593 0.2186 0.2977 0.3803 0.4191 Ref. [59] 
0.1222 0.1546 0.1906 0.2216 0.2343 

8 
Present work 

0.1229 0.1555 0.1918 0.2230 0.2358 Ref. [59] 
0.0947 0.1130 0.1311 0.1450 0.1503 

10 
Present work 

0.0951 0.1134 0.1316 0.1455 0.1509 Ref. [59] 

Table 2. Comparison of  the nondimensional strain at the buckling time of  circular SLGS and BLGS with clamped boundary 
conditions 

The percent of  the strain of  buckling ( )( )%bε  

r (nm) Reference 
0e a (nm) 

2 1.5 1 0.5 0 

0.1968 0.3003 0.4800 0.7487 0.9205 
4 

Present work-SLGS 

0.3434 0.4938 0.8575 1.1945 1.3871 Present work-BLGS 

0.1576 0.2162 0.2945 0.3763 0.4146 
6 

[SL] 
0.3989 0.5501 0.8480 1.1286 1.2454 [BL] 
0.1222 0.1546 0.1906 0.2216 0.2343 

8 
[SL] 

0.4330 0.5744 0.8283 1.0196 1.1160 [BL] 
0.0947 0.1130 0.1311 0.1450 0.1503 

10 
[SL] 

0.4658 0.5926 0.8189 0.9899 1.0499 [BL] 

As it is found from Table 1, the percent of  strain at the mechanical buckling for various nonlocal parameters and several 
radii are in good agreement with the literature. On the other hand, by Table 2, a comparison study is displayed for 
percent of  dimensionless strain at the time of  buckling between SLGS and BLGS whilst the edge conditions are clamped 
ones. 
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In this paper, thermal buckling of  the orthotropic circular BLGS embedded in an elastic matrix is investigated based on 
nonlocal first-order shear deformation theory and von Kármán nonlinear strains. Mechanical properties of  graphene 
sheets are dependent on some components such as atoms chirality and dimensions of  the sheet [76]. Moreover, the 
hexagonal arrangement of  Carbon’s atoms leads to different angles between C–C bonds with in-plane loads for different 
directions [61]. Thus, as mentioned it has been reported that the mechanical properties of  a graphene sheet are 
anisotropic so that the difference between elastic modulus of  a graphene sheet along the different directions is related to 
inter-atomic bond orientation. Therefore, for the precise prediction of  the thermal behaviors of  a circular nanoplate 
resting on two parameters elastic foundation the following orthotropic material properties and nondimensional 
definitions are used in this study, unless stated otherwise. 

1 1765E GPa= , 2 1584E GPa= , 12 0.3ν = , 21 0.25ν = , 5r nm= , 6
1 1.1 10α −= ×  

0.335h nm= , 2 /wk GPa nm= , 2 .pk Pa m= , 45 /C GPa nm= , 0 1e a nm=  
(35) 

Figures (2) and (3) represent the effects of  the radius of  the nanoplate on the critical buckling temperature for various 
nonlocal parameters for clamped and simply-supported boundary conditions, respectively. It can be observed that 
whatever the nonlocal parameter increases the critical temperature would be decreased. In addition to this, by the 
increase of  the radius and nonlocal parameter, the obtained critical temperatures are reaching each other. It should be 
noted that this trend for simply-supported boundary conditions is more visible than clamped ones. Moreover, at a radius 
of  14.9 nm, the difference between nonlocal and local cases at a nonlocal parameter value of  2 nm is in the greatest 
value and this difference decreases by an increase in radius from 14.9 to 74.6. It can be seen that for simply-supported 
boundary conditions, by the increase of  radius and nonlocal parameter from 0 to 1 the critical temperature initially 
decreases and then increases. But, at values of  1.5 and 2 nm, by the increase of  the radius, the critical temperature has 
been raised with a gentle slope in a continuous trend for both simple and clamped boundary conditions. Also, at clamped 
boundary conditions by an increase in radius, the difference between nonlocal and local analyses decreases compared to 
simply-supported boundary conditions. Furthermore, the difference percent of  critical temperature at nonlocal values of  
1.5 and 2 nm and also at the amplitude of  radius from 14.9 to 74.6 for the simple boundary is further than clamped one. 

 
Fig. 2. The variations of  thermal buckling load in terms of  dimensionless radius and several nonlocal parameters for clamped 

boundary conditions 

 
Fig. 3. The variations of  thermal buckling load in terms of  dimensionless radius and several nonlocal parameters for simple 

boundary conditions 
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Fig. 4. The variations of  thermal buckling load in terms of  dimensionless vdW coefficient and several nonlocal parameters for 
clamped boundary conditions 

 

Fig. 5. The variations of  thermal buckling load in terms of  dimensionless vdW coefficient and several nonlocal parameters for 
simply-supported boundary conditions 

 

Fig. 6. The variations of  thermal buckling load in terms of  dimensionless vdW coefficient and different radiuses for simply-
supported boundary conditions 

Figures (4) and (5) exhibit the effect of  variations of  the vdW coefficient on the critical temperature with several nonlocal 
parameters for clamped and simply-supported boundary conditions, respectively. As can be seen, whatever the nonlocal 
parameter is increased the critical temperature is decreased. As it is found, the difference between nonlocal and local 
results whilst e0a=0.5 nm for the pivot boundary is less than clamped one and the increase of  vdW forces does not affect 
considerably this difference. Furthermore, by increasing the vdW from 0.003 to 0.027, the critical temperature of  
buckling has not remarkable changes and this behavior can be seen at all boundary conditions. 
The impacts of  variations of  the vdW forces on the critical temperature of  buckling for different radiuses have been 
plotted and exhibited in Fig. (6) and (7) for simply-supported and clamped boundary conditions, respectively. It can be 
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seen that for the simple boundary, the change in radius of  15 to 20 nm does not affect considerably the critical 
temperature. Moreover, the value of  the difference in the critical temperature of  buckling for both boundary conditions 
in the radius of  15 to 20 nm is less than the difference in the critical temperature of  buckling in the radius of  25 nm to 
upward. Therefore, the variations of  vdW do not impress this trend. From Figs. (6) and (7), it can also be concluded that 
the increasing percentage of  the slope which originated from variations of  vdW, in the initial values of  this parameter is 
much more than its larger values. So that for a coefficient of  vdW with a value of  0.015 up to the next, it can be stated 
that the slopes of  the curves are almost zero and change in boundary conditions and radius of  nanoplate does not create 
a variation in this process. This means that after this value of  vdW, both nanoplates are converted into an SLGs model. 

 

Fig. 7. The variations of  thermal buckling load in terms of  dimensionless vdW coefficient and different radiuses for clamped 
boundary conditions 

 

Fig. 8. The variations of  thermal buckling load in terms of  shear correction factor and different dimensionless radiuses for simply-
supported boundary conditions 

 

Fig. 9. The variations of  thermal buckling load in terms of  shear correction factor and different dimensionless radiuses for 
clamped boundary conditions 
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Fig. 10. The variations of  thermal buckling load in terms of  dimensionless Winkler coefficient and different nonlocal parameter 
for simply-supported boundary conditions 

 

Fig. 11. The variations of  thermal buckling load in terms of  dimensionless Winkler coefficient and different nonlocal parameter 
for clamped boundary conditions 

 

Fig. 12. The variations of  thermal buckling load in terms of  dimensionless Pasternak shear coefficient and different nonlocal 
parameter for simply-supported boundary conditions 

The influences of  changes in the radius on the critical temperature of  buckling for various shear correction factors for 
simply-supported and clamped boundary conditions are shown by Figs. (8) and (9), respectively. As can be seen, in these 
problems, the variations in the shear correction factor from k=5/6 to k=1 do not affect the response and for both 
boundary conditions, this can be proved. It is interesting to note that in the clamped conditions with enlarging of  non-
dimensional radius up to 44.9, the critical temperature is reduced and for values of  greater than 44.9, the critical 
temperature would be increased. However, the changes of  non-dimensional radius from 14.9 to 74.9 do not affect this 
trend for simply supported boundary conditions. With a comparison of  both Figs. (8) and (9), this conclusion would be 
found that the difference percent in the critical temperature of  buckling, by varying the non-dimensional radius from 
14.9 to 74.9, is more significant in clamped boundary conditions compared to the simply-supported ones. 
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Fig. 13. The variations of  thermal buckling load in terms of  dimensionless Pasternak shear coefficient and different nonlocal 
parameter for clamped boundary conditions 

The Figs. (10) and (11) demonstrate the effects of  Winkler coefficient of  the elastic foundation on the critical 
temperature of  buckling in different nonlocal and local cases for simply-supported and clamped boundary conditions, 
respectively. As it is shown, whenever the nonlocal parameter is greater, the slope of  the curves decreased. Furthermore, 
for simply-supported boundary conditions unlike the clamped ones, in the case that the elastic foundation is removed, 
the variations of  nonlocal parameter do not affect remarkably the critical temperature. Also, with regards to the Figs. 
(10) and (11), it can be found that the elastic foundation does not affect significantly the critical temperature of  buckling. 
However, with increasing the Winkler parameter the critical temperature increased. It is worth mentioning that the slope 
of  this increasing trend for the initial values of  the Winkler parameter is more than the larger values of  this parameter. In 
addition, at simply-supported boundary conditions for the values of  the Winkler elastic foundation till 0.0006, the results 
of  nonlocal and local cases until the e0a=1 nm are approximately identical. Hence, it can be stated that in these 
conditions there is no need to analyze nonlocality and the simple local analysis is enough. This conclusion cannot be 
found for clamped boundary conditions like simply-supported ones. Moreover, by comparing Figs. (10) and (11), it is 
illustrated that the difference percent of  deflection resulted from an increase in Winkler parameter from 0 to 0.0024 for 
the simply-supported boundary condition is more than the clamped one. 
Figures (12) and (13) show the effects of  variations of  Pasternak medium on the critical buckling temperature for several 
nonlocal and local cases for simply-supported and clamped boundaries, respectively. It can be observed that with the 
increase in the stiffness value of  the Pasternak matrix and nonlocal parameter, the critical temperature increased for both 
boundary conditions. Furthermore, for simply-supported boundary conditions unlike clamped ones, in the system 
without any foundation, the changes in nonlocal parameter do not affect remarkably the critical buckling temperature.  

5. Conclusion 

 In this research, the thermal buckling behavior of  circular bilayer orthotropic nanoplates was presented. As far as 
the modeled plate is a size-dependent one, to apply the influences of  small scale behavior, the nonlocal elasticity theory 
of  Eringen was used. The nonlinear equilibrium equations were derived using the energy formulation based on the first-
order shear deformation theory and nonlinear strains of  von Kármán. The critical buckling temperature was obtained by 
utilizing the equilibrium adjacent method that is a method for linearizing the nonlinear equations. These equations were 
discretized based on the differential quadrature method for simply-supported and clamped boundary conditions. Then, 
by solving the determinant of  the matrix of  coefficients of  the algebraic linear equations system, the critical buckling 
temperature was calculated. In order to verify and validate the results of  the present work, the outcomes were compared 
with other papers. Finally, some effective parameters such as nonlocal factor, the ratio of  thickness-to-radius, the 
temperature of  the environment, boundary conditions, thickness of  the nanoplate and impacts of  the elastic matrix on 
the critical buckling temperatures were considered in which the following notable points are abbreviated: 
 By increase of  the radius, the critical temperature would be raised and with an increase in the small scale factor, the 

critical temperature decreased. Also, whatever the boundary conditions are flexible, the variations of  critical 
temperatures are smaller. 

 The percent of  changes in the critical temperature of  buckling on the basis of  vdW variations is more at lower vdW 
coefficients compared to the higher vdW ones. 

 For simply-supported boundary conditions, unlike the clamped ones, for the case that the elastic matrix does not 
exist, the variations of  the nonlocal parameter do not affect the critical temperature. 
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