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Abstract. The current paper aims to explain the peristaltic mechanism of a Bingham fluid with varying viscosity. The fluid is 
considered to flow within a porous medium and subjected to a magnetic field with significant inclination. Heat transfer 
characteristics are studied with convective conditions and variable thermal conductivity. The solution is obtained by the 
perturbation technique, where small values of variable liquid properties are utilized. The graphs plotted indicate that variation in 
viscosity as well as thermal conductivity actively contribute to reduce the pressure gradient. Further, for a higher radius of the plug 
flow region, a higher pressure rise occurs. The magnetic parameter and Grashof number influence the trapping phenomenon by 
reducing the dimensions of the bolus. 
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1. Introduction 

In the span of research concerning fluids, the peristaltic mechanism is well-studied owing to multiple applications in 
physiological as well as industrial fields. Peristalsis facilitates the flow of fluid within the corresponding system through a 
progressive expanding and contracting wave, moving along the tube/channel carrying the fluid. Within biological systems, 
peristalsis is responsible for phenomena including but not limited to the movement of food particles within the esophagus, motion 
of chyme within the intestine and other such biological processes. Initial investigations focusing on peristaltic transport have 
considered the Newtonian fluid model to hold true. However, subsequent research has proven that a majority of physiological fluids 
exhibit non-Newtonian behavior, which has led to a re-examination of the peristaltic mechanism with non-Newtonian 
considerations. One of the first investigations on this front was conducted by Srivastava and Srivastava [1], who considered a power-
law model to study the peristalsis through both uniform as well as non-uniform channels. Two-layer fluid models have been studied 
by Narahari and Sreenadh [2] in their attempt to investigate the peristaltic mechanism of a Newtonian fluid in contact with a 
Bingham fluid. In order to analyze the flow behavior in the unyielded plug region, Frigaard and Ryan [3] developed an asymptotic 
solution for the Poiseuille flow of Bingham fluid through a two-dimensional channel with very small variations in width. An in-
depth study on Bingham fluid flow was carried out by Fusi [4] in which the yield stress and viscosity were considered to be 
dependent on pressure as well as temperature. The influence of heat during peristaltic mechanism is an important component of 
research in multiple applications, some of which include blood pumps within heart lung machines, transport of sanitary fluid and 
the movement of corrosive fluids without contact with the machinery parts. Thus, while studying peristalsis, especially within 
biological systems, it is important to take heat transfer effects into account. To that end, many studies on peristalsis have been 
conducted on non-Newtonian fluids with heat transfer considerations. Recently, Vaidya et al. [5] formulated the effects of the 
transfer of heat on peristalsis for a Bingham fluid. They also investigated the heat transfer of a Rabinowitsch fluid flowing through 
a complaint channel with porous walls [6]. Several investigations have been carried out for heat transfer mechanisms with various 
configurations and flow geometries [7-9].  
   With recent developments in science and technology, biological systems are increasingly being exposed to various magnetic 
fields. In order to set exposure limits for these technologies, it becomes imperative to review the effects of magnetic field on 
physiological processes. Erythrocytes, a major constituent of blood, are known to exhibit biomagnetic properties and thus, magnetic 
fields are proven to have a substantial effect on peristaltic transport of blood. For this reason, attempts have been made to explain 
the peristalsis of fluid when exposed to magnetic fields. The effect of a magnetic field, applied with ion and hall slip, on the 
peristaltic mechanism of an electrically conducting hyperbolic tangent fluid was researched by Abdelsalam et al. [10]. From the 
study, it could be inferred that the slip and hall parameters play a major role in boosting the velocity before a critical point. Akram 
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et al. [11], in their heat and mass transfer studies on Bingham fluid, considered a magnetic field with inclination. Sinha et al. [12] 
studied the peristaltic mechanism of a magnetohydrodynamic (MHD) fluid within an asymmetric channel. In addition to the 
magnetohydrodynamic studies, ferromagnetic studies are also found to have wide applications in industries. Inspired by this, Akbar 
et al. [13, 14] have extensively studied the peristalsis of nanofluid models with heat transfer characteristics. In the recent past, many 
such studies have been done on peristaltic mechanism to investigate the effects of magnetic field for various fluid model 
configurations [15-21]. 
   Another consideration of equal importance, especially for biological systems, is the permeability of the medium of transport. 
Investigations have been conducted on peristaltic mechanism within a porous medium by Kothandapani and Srinivas [22] to study 
the impact of elastic properties of the wall on peristalsis of an MHD fluid with heat transfer considerations. Taking porous medium 
into account, Srinivas et al. elucidated on the peristalsis in a rigid asymmetric vertical channel [23] and the impact of wall 
characteristics and heat transfer on peristalsis [24]. Further, Eldesoky et al. [25] carried out theoretical investigations on the 
magnetohydrodynamics and heat transfer mechanism of peristaltic motion of a particle-fluid suspension through a porous channel. 
In their studies, the temperature was found to rise with Reynolds number irrespective of the presence or absence of suspension. 
These studies considered the Newtonian fluid model. However, investigations in this dimension have also extended to cover non-
Newtonian fluid behavior. Ramesh and Devakar [26] investigated a couple stress fluid undergoing peristalsis under the influence of 
magnetic field in an asymmetric channel. Mahmoud et al. [27] investigated the impact of magnetism and porous medium on the 
movement of a Jeffrey fluid. While Rathod and Laxmi [28] elucidated on the impact of transfer of heat on the flow of an MHD 
Bingham fluid within porous medium, Laxminarayana et al. [29] extended upon the study to assess the impact of slip and wall 
characteristics on the peristalsis of a conducting Bingham fluid. Several investigations were carried out to analyze the impact of 
porous medium on the non-Newtonian flow through different geometries [30-33]. 
   Investigations conducted to explain the flow of blood within biological systems must take into account the variation in its 
viscosity. This is because the viscosity of blood has been observed to vary with the thickness of the conducting arteries. Specifically, 
the viscosity of the blood flowing close to the periphery is found to be lower than that of the blood flowing close to the centre. 
Experiments to investigate the impact of variable viscosity have been conducted with both Newtonian [34] and non-Newtonian [35] 
fluid model considerations. Fusi et al. [36] carried out rigorous studies on a bi-viscous model and showed that Bingham model is 
ultimately obtained from the bi-viscous model when one viscosity tends to infinity and the other is bounded. In addition to variable 
viscosity, blood has also shown to exhibit variable thermal conductivity depending on the temperature. Studies considering both 
variable viscosity as well as thermal conductivity has been conducted for non-Newtonian fluid models. Models investigated include 
Bingham [37], Rabinowitsch [38] and Jeffrey [39] fluid models. 
   In the present paper, the authors have attempted to explain peristalsis for a Bingham fluid through the length of a channel with 
significant inclination and porous medium considerations. During the investigation, the impact of transfer of heat with convective 
boundary conditions has been taken into account. The conducting fluid is considered to show variable thermal conductivity as well 
as variable viscosity. Additionally, to investigate the impact of exposure to magnetic field, MHD fluid flow assumptions have been 
considered. The magnetic field under consideration is assumed to be inclined. The obtained perturbed solution to the system is 
graphed and the impact of relevant parameters have been discussed. In the course of our research, we have found that no work has 
been reported yet that considers the variable viscosity and thermal conductivity of a peristaltically induced Bingham fluid motion 
through a porous media under the impact of a magnetic field with inclination.  

2. Formulation of the Problem 

   In order to formulate the problem, the electrically conducting Bingham fluid is considered to flow in a two-dimensional channel 
with porous medium. The peristaltic wave train, moving at a uniform speed c, induces the flow of the fluid. The fluid motion is also 
considered to be subjected to a magnetic field with magnitude denoted by B0 in the transverse direction. An inclination of γ and φ

is considered for the channel and magnetic field respectively. The channel is considered to be symmetric about the axis. Moreover, 
as the Reynolds number is considered to be very small, it makes it possible for us to neglect the induced magnetic field. The plug 
flow region refers to the portion of the channel between the axis y = 0 and y = yp, where | xyτ | 0τ≤ . For the region encapsulated by 

yp and H', | xyτ | 0τ> . The problem is modelled as shown in Fig. 1. The deformation in the channel walls due to the peristaltic waves 

is given by: 

( )2
'( , ) ' 'H X t a b sin X ct

π

λ

 
 = + −
  

 (1) 

  

Fig. 1. Geometry of the problem. 
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The flow is unsteady in the laboratory frame (X, Y ). Thus, with the assumptions of constant pressure difference across the channel 

ends and that the channel length is an integral multiple of the wavelength λ , the flow becomes steady in the wave frame of 
reference (x, y). The wave frame is moving away from the fixed frame at a constant speed c. The transformations between these 
two frames is as follows: 

, , , and ( , ) ( , , ).x X ct y Y w W c v V p x y P X Y t= − = = − = =  (2) 

where W, w are the axial velocity component in the laboratory and wave frames respectively, V and v  are the components of 
velocity in the transverse direction in the fixed and wave frames respectively. The equations which govern the fluid flow in the 
wave frame are given by  

0,
w v

x y

∂ ∂
+ =

∂ ∂
 (3) 

( )2
0 0cos ( )cos sin ( ) sin ( ),xyxxw w p

w v B w c v w c g T T
x y x x y k

ττ µ
ρ σ φ φ φ ρ β γ
  ∂∂ ∂ ∂ ∂  ′+ =− + + − + − − + + −   ∂ ∂ ∂ ∂ ∂ 

 (4) 

( )2
0 0sin ( )cos sin cos ( ),xy yyw w p

w v B w c v v g T T
x y y x y k

τ τ µ
ρ σ φ φ φ ρ β γ
  ∂ ∂∂ ∂ ∂  ′+ =− + + + + − − + −   ∂ ∂ ∂ ∂ ∂ 

 (5) 

*
0( ) ( .)p

T T T T
C w v k k T k T Q

x y x x y y
ρ

     ∂ ∂ ∂ ∂ ∂ ∂    + = + +       ∂ ∂ ∂ ∂ ∂ ∂     
 (6) 

in which ijτ  represents the stress tensors of the Bingham fluid given by [28]: 

0
0, for ,ij ij

τ
τ µ γ τ τ

γ

  = + ≥   
ɺ

ɺ
 (7) 

00,  for ,ij ijτ γ τ τ= = <ɺ  (8) 

where the rate of strain tensor ijγɺ  is 

,ji
ij

j i

ww

x x
γ

∂∂
= +
∂ ∂

ɺ  (9) 

21
,

2 ijτ τ=  (10) 

2 22

21
,

2ij ij

w v w v

x y y x
γ γ

    ∂ ∂ ∂ ∂    = = + + +         ∂ ∂ ∂ ∂   
ɺ ɺ  (11) 

and 

( )1 2
1 1( ) 1yy e y Oξ

µ µ ξ ξ
−= = = − +  (12) 

is the variable viscosity with the variable viscosity coefficient 1 1ξ << . We now use the following non-dimensional quantities: 

2
* * * * * *0

1 0

'
, , , , , , , , , , , , ,p

y y p

yy T Tx w v ct H a a b ca a
x y w v t h Re p p y

a c c a a T T c a

ρ
τ τ δ ε θ

λ δ λ λ λ µ λµ

′′ ′ ′ ′ ′ − ′= = = = = = = = = = = = =
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22
1 00

0* 2 *
1 0

' ( )'
, , , , '.

( ) '
pC ga T TQ a k

Da Pr Gr M B a
k T T a k c

µ ρβ σ
β

µ µ

′ −
= = = = =

−
 

(13) 

 
Incorporating the above quantities into Eqs. (3)-(6), we obtain (after dropping the asterisks), 

0,
w v

x y

∂ ∂
+ =

∂ ∂
 (14) 

( )2 2 2 21
Re cos 1 sin cos sin ,xyxxw w p

w v M w M v Gr
x y x x y Da

φ
ττ

δ δ φ δ φ θ γ
  ∂  ∂ ∂ ∂ ∂ + =− + + − + + + +     ∂ ∂ ∂ ∂ ∂ 

 (15) 

( )( )
2

3 2 2Re cos sin 1 cos sin ,xy yyw w p
w v v Gr M w v

x y y x y Da

τ τ δ
δ δ δ δ θ γ δ φ φ δ φ
  ∂ ∂∂ ∂ ∂ + =− + + − + + + −   ∂ ∂ ∂ ∂ ∂ 

 (16) 
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2
0( ) ( ) ,RePr w v k k Q

x y x x y y

θ θ θ θ
δ δ θ θ
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 (17) 

where 

0
0for ,ij ij

τ
τ µ γ τ τ

γ

  = + ≥   
ɺ

ɺ
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2 22 ,
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ɺ  (22) 

2 2 .xy xxτ τ τ= +  (23) 

By considering the assumptions of long wavelength and low Reynolds number approximations, Eqs. (14)-(16) become 

0,
p

y

∂
=

∂
 (24) 

( )2 2 1
cos 1 sin ,xyp

M w Gr
x y Da

φ
τ

θ γ
∂  ∂ = − + + +  ∂ ∂

 (25) 

( ) 0,k
y y

θ
θ β

 ∂ ∂  + = ∂ ∂ 
 (26) 

with the variable thermal conductivity 

( ) ( )2 2
2 21 ,k e Oξ θθ ξ θ ξ= = + +  (27) 

where 2 1ξ <<  being the coefficient of variable thermal conductivity. The non-dimensional constitutive equation of Bingham fluid 

is given by 

( ) 0 0 for ,xy

w
y

y
τ µ τ τ τ

 ∂  = − − ≥   ∂ 
 (28) 

0.0 forxyτ τ τ= <  (29) 

The boundary conditions in the non-dimensional form are 

[ ]0 at 0, 1at 1 2 ( ) ,
w

y w y h x t
y

τ ε π
∂
= = =− = = + −

∂
 (30) 

0 at 0, 0 at .y Bi y h
y y

θ θ
θ

∂ ∂
= = + = =

∂ ∂
 (31) 

The volume flux through each cross-section of the channel in the wave frame is 

0
.

p

p

y h

p
y

q w dy w dy= +∫ ∫  (32) 

The instantaneous volume flow rate in the laboratory frame between the channel center and the wall is given by 

'

0 0
( , ) ( 1) .

H h

Q X t W dy w dy q h= = + = +∫ ∫  (33) 

3. Perturbation Solution to the Problem 

   The solution to temperature equation given by Eq. (26) along with the boundary conditions (Eq. (31)) is obtained by the 
perturbation method up to the first order for small values of 2ξ  as 
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22 2
2

2 3 22 .
2 2 2

y y
c c c

βξ
θ β

    =− + + − −     
 (34) 

The solution for Eq. (25) with the boundary conditions given by eq. (30) is found by the perturbation solution up to the first order 
for small values of 1ξ  as 

 
Zeroth Order Solution: 

( )2 2
2 42

0 4 5 6 7 82 2 2 4

12sin 24
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8
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E E E E
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β
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 (35) 

 
First Order Solution: 
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2
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 (36a) 

where 

2 2 2 1
, cos .

dp
P E M

dx Da
φ= = +  (36b) 

Hence, we obtain the solution for velocity in the axial direction as 

0 1 1.w w wξ= +  (37) 

Having the velocity expression, we now find the upper limit of the plug flow region with the help of the following boundary 
condition: 

0 at .p

w
y y

y

∂
= =

∂
 (38) 

Using the above condition, we obtain 

( )

( )
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0 182
15 16
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.
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   + − −     = +
+

 
(39) 

Considering py y=  in Eq. (37), we get the plug flow velocity as 

( )2
6 7 8 2 21 1 22 19 202 2

sin
cos sin 1 .p p p p

Gr P
w c c c y c c c Ey c Ey

E E

γ
β ξ ξ = + + − + + + − −    (40) 

The volume flux through each cross-section in the wave frame is 
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Rearranging the terms in the above, we obtain 

27 30 39 44 45

26 29 38 432

cos sin sin ( ) cos ( )
.

cos sin sin ( ) cos ( )
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= =

−
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(42) 

We have the relationship between the stream function and axial velocity as 

, ,w v
y x

ψ ψ∂ ∂
= =−
∂ ∂

 (43a) 

and the boundary condition is 

0 at 0.yψ = =  (43b) 

Using the above, the stream function is obtained as 

3 5 3
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 (44) 
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Fig. 2. Temperature profiles for different values of (a) β , (b) Bi and (c) 2 .ξ  

    

Fig. 3. Heat transfer coefficient for different values of (a) β , (b) Bi, (c) 2ξ and (d) ε . 

 
The pressure rise and frictional force over one wavelength is given by 

1

0
,

dp
p dx

dx
∆ = ∫  (45a) 

1

0
.

dp
F h dx

dx
=−∫  (45b) 

The above integrals are calculated numerically and graphed using MATLAB. 

4. Results and Discussion 

   In the present section, we attempt to explain the influence of important parameters on temperature profiles, coefficient of heat 
transfer, pressure gradient, pressure rise, frictional force and streamline patterns for the trapping phenomenon. Graphical 
representations through MATLAB are presented to observe the behavioral patterns. The physical parameters of interest are  

Hartmann number (M ), Darcy number (Da), heat generation parameter ( )β , variable thermal conductivity ( 2ξ ), Biot number (Bi ), 

variable viscosity 1( )ξ , inclination of the magnetic field ( )φ , plug flow radius (yp), Grashof number (Gr) and angle of inclination of the 

channel ( )γ . The values of the fixed parameters are: 

2 10.25, 0.1, 0.1, 1, 1, 0.1, 2, , 0.5, 0.2, 3,  and 0.1.
6 6pt x Bi M Da y Gr
π π

ε β ξ φ γ ξ= = = = = = = = = = = = =  (46) 
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Fig. 4. Variation in the plots of pressure gradient for different values of (a) M , (b) φ , (c) Da , (d) 1ξ , (e) 2ξ , (f) β , (g) Gr , (h) py and (i) γ . 

4.1 Heat Characteristics 

   Figure 2 shows the variation in temperature profiles for varying physical parameters. From the figure, it can be seen that the 
temperature profiles display a parabolic form, with the peak occurring in the central part of the channel. The significance of β on 

the temperature of the fluid is shown in Fig. 2(a), where it can be seen to have an increasing effect on temperature. In the flow of 
blood through arterioles, this behavior is reasonable due to the thickening of the boundary layer as heat is generated, which results 
in an appreciable rise in the layer temperature. An opposite behavior is observed for increasing values of Bi (see Fig. 2(b)). However, 
Fig. 2(c) shows an enhancement in the fluid temperature with the increasing variable thermal conductivity. 
The nature of heat transfer coefficient Z is graphed in Fig. 3. Due to sinusoidal wave behavior, it suffices to consider the graph over 
only one wavelength. For demonstration purpose, we have considered the wavelength over the interval [0, 1]. Moreover, it can be 
noticed that Z changes its sign from the left to the right of the mean value 0.5. It can be observed that the peristaltic waves define 
the oscillatory action of the heat transfer coefficient. Also, from Fig. 3(a), it can be noticed that the amplitude of these oscillations 

increase with the values of β . A similar nature of Z is seen in Fig. 3(b) for increasing values of Bi . The maximum value of Z is found 

to decrease for higher values of 2ξ  and smaller values of ε (see Figs. 3(c) and 3(d)). 

 
4.2 Pumping Characteristics 

   This subsection attempts to describe the pressure gradient, pressure rise and frictional force for various pertinent parameters 
through graphs plotted in Figs. 4 - 6. The pressure gradient is plotted against the axial distance in Fig. 4. It is interesting to notice 

that for [0,0.3]x ∈  and [0.3,1]x ∈ , not much pressure gradient needs to be imposed for the fluid to flow easily, whereas for 

[0.3,0.6]x ∈ , especially 0.5x = , the required pressure gradient is comparatively higher to regulate the same fluid flux to pass 

through. From Fig. 4(a), it can be seen that as the magnetic field becomes stronger, the pressure gradient is seen to increase in the 
central portion of the channel. This observation suggests the importance of the strength of the magnetic field that can be applied 
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to regulate the flow. Hence, it finds applications in the field of medicine and surgery where a magnetic field of suitable strength can 
be used to control excessive bleeding. The influence of the angle in which the magnetic field is applied, φ  can be observed in Fig. 

4(b). As the magnetic field increases in inclination, a reduction in the pressure gradient is observed in the central part. However, on 
the contrary, the influence of porosity of the medium is depicted in Fig. 4(c), wherein, the pressure gradient needed to maintain the 
same fluid flux through the channel in its center decreases with increasing porosity. Figures 4(d)-4(e) show that the variable viscosity 

1ξ  as well as thermal conductivity 2ξ  have a decreasing effect on the pressure gradient. The increasing values of β  and Gr  are seen 

to increase the pressure gradient in the channel (see Figs. 4(f)-4(g)). Figures 4(h)-4(i) are plotted for the impacts of py and γ  on the 

pressure gradient.  

Fig. 5. Variation in the plots of pressure rise for different values of (a) py , (b) Da , (c) φ , (d) M , (e) 1ξ , (f) 2ξ , (g) β , (h) Gr and (i) γ . 

Plots for pressure rise per wavelength Pλ∆  versus the volumetric flow rate Q  is shown in Fig. 5. This property of peristaltic pumping 

in opposition to the pressure rise is significant to the peristaltic study. The plane of graph can be divided into four regions, namely 
peristaltic pumping, free pumping, retrograde pumping and augmented pumping/co-pumping regions. For the free pumping region, 

0Pλ∆ =  and the fluid flow occurs solely by the peristaltic movement of the walls. The peristaltic pumping region of the graph is 

where 0Pλ∆ >  and 0Q > . In this region, the fluid flows in the forward direction after the peristalsis of the walls overcome the 

resistance offered by the pressure gradient. When 0Pλ∆ >  and 0Q < , we have the region of retrograde pumping, where fluid flows 

opposite to that of the peristaltic waves and the flow happens due to the pressure gradient. In the augmented pumping region,  

0Pλ∆ <  and 0Q > . The negative pressure gradient of this region aids the fluid flow caused by the peristaltic motion of the walls. 

The influence of ,py Da  and φ  are depicted in Figs. 5(a)-5(c). It can be noticed that these parameters increase the pumping rate in 

the retrograde region and decrease it in the augmented region. However, in the peristaltic region, a decrease in the pumping rate 
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can be seen till a critical value of Q , and increases thereafter. A trend opposite to this is observed in Figs. 5(d)-5(e) for Hartmann 

number M  and variable viscosity parameter 1ξ . However, for increasing values of 2ξ , the pumping rate decreases significantly in 

augmented, peristaltic as well as retrograde pumping regions (see Fig. 5(f)). Figures 5(g)-5(i) show that the rate of pumping across 
all regions rises for higher values of , Grβ and γ . To observe the impacts of the various parameters on the plots of frictional force 

versus the flow rate, we have Fig. 6. These plots indicate that when compared to pressure rise, frictional forces have an exactly 
opposite behavior.  
 
4.3 Trapping Phenomenon 

   A study of the trapping phenomenon is an integral part of the peristaltic mechanism. During peristalsis, few of the streamlines 
get closed, resulting in the formation of bolus which circulates internally and moves forward with the speed of the peristaltic waves. 
This phenomenon is called trapping. Few important typical physical examples include the formation of food bolus in the 
gastrointestinal tract and thrombus in the blood. This section attempts to study this interesting phenomenon of trapping through 

the plots of streamline function. Figure 7 gives the pictorial representation of the variation in bolus formation for varying .M  A 

reduction in the bolus size is clearly seen as the value of M  increases. Similar observation is made in Fig. 8 for increasing values of 

Gr . However, the porous parameter Da  is seen to increase the size of the bolus trapped during peristalsis (see Fig. 9). To study the 

influence of variable viscosity on the bolus size, Fig. 10 is plotted, in which it can be noticed that 1ξ  contributes to a decrease in the 

bolus size.  

Fig. 6. Variation in the plots of frictional force for different values of (a) py , (b) Da , (c) φ , (d) M , (e) 1ξ , (f) 2ξ , (g) β , (h) Gr and (i) γ . 
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Fig. 7. Streamlines for (a) 2M = and (b) 2.2M = . 

  

Fig. 8. Streamlines for (a) 3Gr = and (b) 3.1Gr = . 

  

Fig. 9. Streamlines for (a) 0.3Da= and (b) 0.35Da = . 

  

Fig. 10. Streamlines for (a) 1 0.05ξ = and (b) 1 0.1ξ = . 
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5. Conclusions 

    The work done in this article intends to investigate the impact of variable thermal conductivity and convective boundary 
conditions on the transfer of heat within a Bingham fluid possessing a variation in viscosity. The fluid flows through a porous 
medium and is exposed to an inclined magnetic field. The two-dimensional channel through which the fluid flows is considered to 
be inclined at a certain angle with the horizontal surface. The results for a horizontal channel and magnetic field can be obtained 
by considering 0γ =  and 0φ=  respectively. The governing equations are solved for temperature and velocity by the semi-analytical 

technique of perturbation for small values of 1ξ (variable viscosity) and 2ξ (variable thermal conductivity). The pressure rise and 

frictional force are numerically evaluated using MATLAB. The results obtained in the present study are in good agreement with 
those of Rathod and Laxmi [28]. The functioning of heart lung and dialysis machines depend on the mechanism of peristaltic 

pumping. The results of the current work help in determining the variation required in the parameters like , ,  and M Da φ γ  so as to 

create/maintain a particular pressure rise or pressure gradient. Few of the important results are as follows: 
 Higher values of Biot number decreases the temperature of the fluid but increases the oscillations of the heat transfer coefficient. 
 An increase in the variable thermal conductivity rises the fluid temperature and lowers the heat transfer coefficient. 
 Pumping rate increases for Grashof number, magnetic parameter and variable viscosity. 
 Best pumping is obtained for lower values of Darcy number and variable thermal conductivity. 
 Pumping performance is better for inclined channel and non-inclined magnetic field. 
 Frictional force and pressure rise behave in opposite ways. 
 The size of the trapped bolus reduces for higher values of magnetic parameter and variable viscosity. 
 The porous parameter aids in increasing the size of bolus formed during trapping. 
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Nomenclature 

'a  Undeformed radius of the channel 
py  Radius of plug flow region 

'b  Wave amplitude Greek symbols 

0B  Strength of magnetic field β  Heat generation parameter 

c  Wave speed 'β  Linear thermal expansion parameter 

pc  Specific heat at constant pressure ε  Amplitude ratio 

Da  Porosity parameter (Darcy number) δ  Wave number 

g  Acceleration due to gravity γ  Angle of inclination of the channel 

Gr  Grashof number 
ijγɺ  Strain tensors 

*k  Thermal conductivity of the fluid λ  Wavelength 

M  Magnetic parameter (Hartmann number) ( )yµ  Varying fluid viscosity 

p  Pressure φ  Angle of inclination of the magnetic field 

Pr  Prandtl number ψ  Streamline function 

0Q  Constant heat absorption or addition ρ  Constant fluid density 

Re  Reynolds number σ  Electrical conductivity of the fluid 

t  Time 
ijτ  Stress tensors 

v  Radial velocity 
0τ  Yield stress 

w  Axial velocity θ  Non-dimensional temperature 

x  Non-dimensional axial distance 
1ξ  Coefficient of variable viscosity 

y  Non-dimensional radial distance 
2ξ  Coefficient of variable thermal conductivity 
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