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Abstract. In the present work, the effect of  various discontinuities like voids, soft inclusions and hard inclusions 
of  the mixed-mode stress intensity factor (MMSIF), crack growth and energy release rate (ERR) of  an edge 
crack isotropic plate under different loading like tensile, shear, combine and exponential by various numerical 
examples is investigated. The basic formulation is based on the extended finite element method (XFEM) 
through the M interaction approach using the level set method. The effect of  single and multi voids and 
inclusions with position variation on MMSIF and crack growth are also investigated. The presented results 
would be applicable to enhancing the better fracture resistance of  cracked structures and various loading 
conditions.  

Keywords: XFEM, MMSIF, Void/Inclusion, Edge Crack, Crack Propagation, ERR. 

1. Introduction 

Materials with different desired properties are being widely used for various engineering applications as automotive, 
shipbuilding, aerospace and medical equipment, etc. In spite of  the advanced production technology and machining 
process, it is impossible to make a defect-free component for various engineering applications. Materials can have various 

defects like crack, inclusion, void, hole, flaw and due to this strength of  materials drastically degraded which leads to the 
sudden failure of  components. So, it is essential to find large stress at the crack tip and the behavior of  crack growth so as 
to avoid the catastrophic failure of  various components. 

Furthermore, structures are always subjected to various types of  implant loadings such as tensile, shear, combine (a 
combination of  tensile and shear) and exponential loadings. Under the action of  such loadings crack propagation behavior 

is abnormal. Hence the evaluation of  crack behavior under such loading conditions is one of  the areas of  research for 
higher safety and strength. 

The interaction between a crack and inclusion in the material is very important for understanding the fracture behavior 
and improving the fracture resistance. The crack tip in various engineering materials is affected by the geometry and the 
stiffness of  near second phase inclusions and/or voids. The density and geometry of  inclusion, the stiffness ratio between 

inclusion and voids and materials play a major role to enhance or reduce the stress at the crack tip. Crack-inclusion, 
interaction studies have great importance to understand the near crack-tip field for the fracture behavior of  the material. 
In this direction, Sih [1] proposed energy field-based theory, where field amplitude is measured as “energy-density factor”, 
S as stress-intensity factor K in classical fracture mechanics. The critical value of  S gives information on crack initiation 
and fracture toughness of  materials. The strain energy density theory is also capable to handle a variety of  mixed-mode 

crack problems. Ke and Liu [2] presented strain at the crack tip as fracture criteria for ductile material and is compared to 



Numerical Analysis of  an Edge Crack Isotropic Plate with Void/Inclusions 1363 

 

Journal of  Applied and Computational Mechanics, Vol. 7, No. 3, (2021), 1362-1382 

J-integral and crack surface opening displacement (CSOD) and it is confirmed that CSOD can be used as one of  the 
fracture criteria but the correlation of  these criteria with stress intensity factor has not been established. Chien et al [3] 

applied the superposition of  the conventional finite element method on singularity at the crack tip. In this study stress 
intensity factor at the crack tip of  a single edge, the crack plate is calculated and found better accuracy in the results. 

Due to some limitations in the conventional finite element, many researchers started giving more interest in XFEM to 
analyze fracture problems. In this direction, Belytschko et al. [4] developed a better methodology to handle discontinuity 
by XFEM where discontinuity is incorporated without remeshing and this method is successfully implemented to analyze 

crack growth in the material under loading. The result obtained from this new methodology is very near to the experimental 
results. Sukumar and Prevost [5] implemented computer program Dynaflow based on the finite element method, where 
the 2-D crack in isotropic and biomaterial plate is analyzed by implementing XFEM in finite element code. This method 
provided a simple platform where discontinuous fields by the partition of  unity framework are incorporated in a standard 
finite element package. 

Bellec and Dolbow [6] represented the limitations of  XFEM for the representation of  discontinuities near the crack tip. 
Here, they proposed a modified enrichment method in XFEM by using a ramp function. This study has been carried out 
for the special case where crack approaches the local nodal spacing. Belytscho et al [7] presented the importance of  XFEM 
with level set methods and its applications, especially for complicated geometry, crack growth and moving interface. 
XFEM has increased the capability of  the finite element method to solve the fracture mechanics problems which are very 
difficult for the conventional finite element method. Asadpoure [8] et al used XFEM for modeling and analysing of  2D 

orthotropic media where crack–tip displacement fields are added to enrich the finite element with the partition of  unity. 
Here, crack growth is implemented without remeshing and MMSIF is calculated by interaction integral (M-integral). LI 
and Chen [9] developed formulations for the prediction of  the variations of  stress intensity factors, where transformation 
toughening theory is used for the formulation. Mousavi and Sukumar [10] presented the Gaussian integration method to 
evaluate weak form integrals in XFEM. Here, a point elimination algorithm is adopted, where quadrature has a minimal 

number of  Gauss points. Kumar et al [11] presented a method for investigating dynamic response, where three crack tip 
enrichment functions are used in XFEM. Here, the Heaviside function with ramp function is utilized and dynamic stress 
intensity factor is calculated by interaction integral approach. Belytschko and Gracie [12] studied a method to calculate 
Peach-Koehler force which is based on XFEM where discontinuities have been modeled by Volterra dislocation model for 
a more complex problem. Sukumar et al [13] presented work on modeling holes and inclusions by level set in XFEM, 

where they described the modeling the internal boundaries where local enrichment functions in the generalized finite 
element method for modeling corners in two dimensions are used. Wiroj et al [14] presented adaptive finite element 
method to determine stress intensity factors KI and KII of  the crack plate with different inclusions where a single edge 
crack plate of  polycarbonate with different discontinuities are considered where it is confirmed that the adaptive finite 
element method provides a better result as compared to photoelastic technique. Jiang et al [15] discussed the simulation 

technology by XFEM the component with multiple discontinuities as cracks, voids, and inclusions and predicted the crack 
path when it interacts with hard and soft inclusions.  

Natrajan et al [16] presented a numerical analysis of  inclusion crack interaction by XFEM where both inclusion and 
crack are modeled within the XFEM framework and found better accuracy and flexibility in the results. Sharma [17] 
studied the crack interaction with discontinuities by XFEM in the solution domain where remeshing is not required. Stress 
intensity factor (SIF) is calculated by the interaction integral method and the effect of  crack orientation under mechanical 

loading is also considered and it is observed that SIF at the crack tip is decreased with the interaction of  hard inclusion. 
Shedbale based on[18] presented a nonlinear analysis of  a plate with crack and multiple discontinuities in-plane stress 
condition, by considering Von-Mises yield criteria for the elasto-plastic behavior of  the plate where it is observed that 
fatigue life of  the plate is drastically affected due to the presence of  holes. 

Gresa et al. [19] described XFEM as a powerful tool to handle fracture mechanics problems. Here, uncertainty 

associated with different variables as material properties, external load and geometry are also being considered by the 
perturbation method and the result obtained by the present method is compared with the Monto Carlo simulation. Khatri 
and Lal [20] presented stochastic XFEM for fracture analysis and crack propagation in an anisotropic plate with a hole 
and emerging crack under different in-plane loadings where fracture response is described by means of  mean and 
coefficient of  variance. In this study, it is observed that even shorter cracks on the edge of  the hole are very sensitive due 

to high-stress concentration on the crack tip. Khatri and Lal [21] described the stochastic fracture response in an isotropic 
plate with a circular hole and emerging crack under biaxial loading and mean and coefficient of  variance of  MMSIF is 
calculated second-order perturbation technique and it is found that crack propagation direction is much influenced by the 
applied loadings.  

Ebrahimi et al. [22] presented Discrete Crack Dynamics which is based on Multipole Method (MPM) for arbitrarily 

oriented cracks and inclusions in the brittle material and this method is validated with the result of  experimental data and 
finite element analysis. In this study, it is observed that the present method provides an accurate result for the displacement 
field, MMSIF and energy release rates of  cracks. Huang et al. [23] developed domain-independent interaction integral for 
the evaluation of  dynamic stress intensity factors in bi-materials with crack and inclusion and here it is observed that the 
present method is more sensitive to the elastic modulus than the density of  the inclusion. Yu and Bui [24] presented an 

effective computational approach based on XFEM for the numerical simulation of  material with strong and weak 
discontinuities and this study has been carried out for multiple crack and inclusion in the material. The results obtained 
from this method are found to be more accurate, better performance and have low cost for the simulation of  2-D cracks 
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and inclusions. Zhang et al. [25] presented a distributed dislocation method for the interaction between cracks and 
inclusions, this method has integral equations with Cauchy kernels and are solved by Gauss–Chebyshev quadrature. The 
results found from this method are compared and confirmed with finite element analysis results. Singh et al. [26] evaluated 
the fatigue life of  homogeneous plate with multiple discontinuities as cracks, holes, and inclusions under cyclic loading by 
XFEM and fatigue life is estimated by Paris fatigue crack growth law. Lal et al. [27] evaluated normalized MMSIF by 

XFEM with second-order perturbation technique (SOPT) and independent Monte Carlo Simulation (MCS) for crack 
propagation and reliability analysis. In this study it is observed that crack angle, crack length, load, fiber orientation, and 
lamina thickness are more sensitive than other random system properties for the evaluation of  MMSIF. Kumar et al. [28] 
proposed virtual node XFEM for the analysis of  kinked cracks, where the actual tip element is divided into two virtual 
split and virtual tip element. The proposed method is suitable for the analysis of  crack growth in homogeneous and bi-
materials. Bui and Zhang [29] presented the stationary dynamic crack analysis through XFEM for 2D homogeneous and 

piezoelectric material. 
Teng et al. [30] investigated the effect of  micro cracks on the macro crack propagation by XFEM with adaptive mesh 

refinement method. It is observed that the present method can accurately calculate SIF for both macro and micro crack 
tip. Han et al. [31] investigated the Mode I crack propagation under tensile strength through the discrete element method 
(DEM) bonded particle model and Brazilian indirect tension test. Zhao [32] presented the comparative study among 

peridynamics (PD) and XFEM by taking various types of  crack to study the crack growth. Sun et al. [33] investigated the 
crack propagation in a reactor pressure vessel by inducing thermal shock by implementing XFEM. Sim and Chang [34] 
investigated crack growth in the nuclear pipe though XFEM under the thermal aging effect. Wilson et al. [35] proposed 
the microstructural sensitivity and driving force for crack growth using XFEM and experimental method. M. Surendran 
et al. [36] investigated the crack propagation using edged based smoothed finite element method (ESFEM) and scaled 

boundary finite element method (SBFEM). Sun et al. [37] used the cracking element method (CEM) to analyze the 
behavior of  complex crack growth. Funari et al. [38] implemented to predict crack growth by implementing a moving 
mesh methodology established on Arbitrary Lagrangian Formulation (ALE) strategy. Sosa et al. [39] investigated the 
energy release rate using XFEM for composite laminates. Roberto and Ma [40] presented the energy release rate for 
moving circular crack using the M-integral approach. Mesa et al. [41] proposed a “local” hypercomplex-variable finite 

element method, (L-ZFEM) to determine the energy release rate (ERR) through the stiffness derivative equation. 
Patil et al. [42] proposed the multiscale finite element method (MsFEM) with XFEM to evaluate the elastic properties 

of  heterogeneous materials. Feng and Li [43] presented the combined approximations (CA) approach combined with 
XFEM to evaluate the fatigue crack growth. Feng and Han [44] formulated the multigrid (MG) algorithm combined with 
XFEM for the fatigue crack growth analysis. Pu and Zhang [45] investigated the generalized dynamic intensity factor, 
though the XFEM for crack magnetoelectroelastic material. Zhang and Bui [46] presented the combination of  XFEM and 

fictitious crack model to analyze the cohesive crack growth in concrete. Kang et al. [47] proposed an extended 4-node 
quadrilateral element (XCQ4) for the linear elastic problem of  fracture mechanics. Wang et al. [48] presented the 3D 
inclusions/voids numerical modeling by XFEM. Kang et al. [49] analyzed the dynamic stationary crack for an isotropic 
and anisotropic material. Kang et al. [50] investigate the quasi-static crack propagation for a plate with crack and hole by 
finite element method. Wang et al. [51] presented a 3D approach for planar straight and curved crack using the hexahedron 

element by XFEM. Gu et al. [52] investigated the multi inclusions problems through the extended isogeometric analysis 
(XIGA) combined with locally refined (LR) B-spline and level set method.     

From the above literature review, it is observed that researchers are showing great interest in XFEM based fracture 
mechanics with the interaction of  crack and inclusions/voids. Many researchers had investigated the SIF and crack growth 
for crack with a void or/and inclusion problem under tensile and shear loading. The scope of  work is found for this kind 

of  work under combine and exponential loading to analyze MMSIF, crack growth and Energy Release Rate (ERR) for 
interaction with crack and single or/and multi voids/inclusions. The contribution of  this work is, Investigate the MMSIF, 
crack growth and ERR study for an edge crack plate with single or/and multi voids/inclusions and by position variation 
of  single or/and multi voids/inclusions under various types of  in-plane loadings such as tensile, shear, combine 
(combination of  tensile and shear) and exponential. Evaluate the effect of  different loading conditions for the interaction 

of  an edge crack with single or/and multi voids/inclusions for safety and strength of  the structure.  
In this present work, the main focus is (a) numerical investigation of  various discontinuities like crack, voids, soft and 

hard inclusions interaction in an isotropic plate with an edge crack through implementing XFEM under different loading 
(tensile, shear, combine and exponential). It is investigated the MMSIF in various case studies, like with a single 
void/inclusion, multi voids/inclusions and by position variation of  voids/inclusions. (b) The analysis of  crack propagation 

behavior with different positions of  void/inclusion under different loading. Also (c) investigate the Energy release rate 
(ERR) with voids/inclusion under different loading for an edge crack isotropic plate. 

The paper is organized as follows: section 1 is elaborating on the motivation and literature review related to the fracture 
behavior of  edge crack plate with the interaction of  various discontinuities under different loading. In section 2, XFEM 
formulation of  an isotropic plate with edge crack, void, and inclusion and crack growth behavior is given and the MMSIF 
is calculating for above mention various cases. Then in section 3, the deterministic validation example is performed for 

MMSIF and ERR. And analyzing some case studies of  single/multi void/inclusion, by changing the position of  
void/inclusion, crack growth behavior and ERR for an edge crack isotropic plate under different loading. At last, in section 
4 is providing the conclusion of  the present work. 
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Fig. 1. An arbitrary body with crack and inclusion, subjected to traction t and displacement u , having global 

Cartesian coordinates (X, Y), local polar coordinates (r, θ) defined at the crack-tip surrounded by contour Γ  and 

its interior area A with arbitrary boundary conditions 

2. XFEM Formulation 

2.1 XFEM Formulation of an edge crack isotropic plate with various discontinuities 

Modeling of  crack growth in the finite element method is time-consuming and here it’s necessary to update meshing 
at every step of  crack growth. In XFEM remeshing is not required during crack growth and discontinuities are modeled 
by enrichment functions. Sukumar et al. [53] and Stolarska et al. [54] represented the displacement vector in the XFEM 

framework is given below: 
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where iu , ia , 1

ibα , 2

ibα and ic  are the conventional degrees of  freedom (dofs), and extra dofs is added to crack face, 

crack tip and for inclusion/void. A body is considered whose area is denoted by Ω and its outer boundary Γ  containing 

a crack and inclusion indicated by cΓ , as in Fig. 1. The body is experiencing uniform volume/ body loads b, and the surface 

load or forces are applied at the boundary tΓ . Over the boundary surface, boundary conditions are applied, uΓ , where

u t cΓ Γ Γ Γ= + + . The parameter u is the displacement and t  is the tractions. It is assumed that a surface with crack and 

inclusion is traction free. 
Here, a set of  nodes in FEM mesh, enrichment due to fully cut the elements by crack, enrichment for the elements at the 

crack tip, and enrichment for the inclusion are denoted by n , cn , tn  and hn respectively. The total dofs is represented as 

[21]: 

t t1 t2( ) ( ) ( ) ( ) where,  n =n +n  c t hdofs size n size n size n size n= + + +  (2a) 

The parameters ( )H x and ( )xχ denote the Heaviside function for the enrichment of  crack and inclusion/void which values 

are +1 or -1. Crack tips asymptotic functions are represented by 1

αΦ and 2

αΦ . The displacement function or asymptotic 

function near the crack tip is represented as: 
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The relationship between MMSIF and J-integral for mixed-mode problems in 2D can be represented as: 

2 2
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The J  integral for the body with crack is given in Eq. (4), where Γ area inside contour W is the strain energy density, 

1 jδ  is Kronecker delta, 
jn is the outward unit normal to Γ  for thj component, 

ijσ  is stress tensor and iu  is 

displacement field vector. A crack body is denoted by two states and the summation of  two states is represented in Eq. (5). 
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On further solving, get 
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By comparing the Eqs. (3) and (6) get, 
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where, I(1, Mode I) and I(1, Mode II) are interaction integrals. The SIFin XFEM for two states 
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2.2 Modeling of crack growth 

The maximum circumferential (hoop) stress criteria are commonly used for crack growth criteria, which is based on 

the calculation of  MMSIF. In these criteria, it is assumed that the crack initiation starts when hoop stress reaches the 

critical value and crack propagates in the direction cθ where θθσ  is maximum. The hoop stress in the direction of  crack 

propagation is found by taking shear stress equal to zero presented by Stolarska et al. [34]. 
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The angle of  crack propagation θc in the tip coordinate system is defined as: 

IK = sin( ) (3cos( ) 1) 0c II cKθ θ+ − =  (11) 

By solving the Eq. (11),  

( )21
= 2arctan / ( / ) 8

4
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The magnitude of  the crack growth da is user-defined and the new coordinates of  the crack tips can be written as presented 

by K. Khatri et al [21], 

new ini= X cos( ) and sin( )c new ini cX da Y Y daθ θ+ = +  (13) 

3. Results and Discussion 

3.1 Validation study 

3.1.1 An edge crack isotropic plate under uniaxial tensile loading 

An edge crack isotropic plate is considered for the validation study. The geometry of  an edge crack isotropic plate under 

uniaxial tensile loading is shown in Fig. 2. The geometry dimension of  this plate is taken 72 mm x 36mm (L x W), crack 

length ratio a/W = 0.3, 0.4, 0.5, 0.6 (10.8≤ a ≤ 21.6), polycarbonate material (PSI) is taken with E = 2.50 GPa, ν = 0.38, 

tensile stress σ = 1.1 MPa as taken by Wiroj et al. [14].  

For validation purposes, a standard single-edge crack isotropic plate under uniaxial tensile loading is taken with mesh size 

45 x 90 and a total of  3916 Q4-elements. By applying XFEM Mode-1 KI is determined for a/W = 0.3, 0.4, 0.5, 0.6 and 

compare with the result of  Wiroj et. al. [14] and the analytical result as shown in Fig. 3. Analytically SIF can be calculated 

as given by Mohammadi [55], 

2 3 4
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 (14) 
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Fig. 2. An edge crack isotropic plate under uniaxial tensile loading 

 

Fig. 3. A validation graph of  SIF K1 Vs. a/W for an edge crack plate with inclusion under uniaxial tensile loading 

    

(a) (b) (c) (d) 

Fig. 4. An edge crack plate with a single inclusion/void under different loading (a-d) Geometry (a) Tensile (b) Shear 
(c) Combine (d) Exponential 

A validation graph shows, results of  the present work are very close to the analytical result [55]. The present result is also 

improved as compared to Wiroj et al. [14] result as shown in Fig. 3. Some cases are solved by using this XFEM mixed-

mode, numerical solution for an edge crack isotropic plate with inclusion/void under different loadings. 

3.2 Some case studies of an edge crack isotropic plate with inclusion/void under different loadings 

3.2.1 An edge crack isotropic plate with a single inclusion/void under different loading  

Figs. 4 (a)-(d) show the geometry of  an edge crack isotropic plate with a single inclusion/void under different loading. 

S
IF

, 
K

I
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The geometry dimensions are taken 72 mm x 36 mm (L x W), crack length ratio a/W = 0.2, 0.3, 0.4, 0.5, 0.6 (7.2 ≤ a ≤ 

21.6), polycarbonate material (PSI) is taken with E = 2.50 GPa, ν = 0.38. A circular void/soft and hard inclusion is 

considered with a radius of  6 mm. The position of  a void/inclusion is taken at L/4 and W/4 for all cases as shown in Figs. 

4 (a)-(d). The soft inclusion is made of  Teflon with Esoft/EPSI ratio = 0.24 and hard inclusion has taken of  AZ61 with 

Ehard/EPSI ratio = 18, tensile stress σ = 1.1 MPa as taken by Wiroj et al. (2011). The shear stress τ = 1.1 MPa considered 

and in combine stress tensile and shear both are subjected on the plate as shown in Fig. 4 (c). The exponential loading is 

considered with p = σ x ecx, x (0 ≤ x ≤ W) and c = 0.02778. 

The same meshing and elements are taken as the above validation problem. MMSIF KI and KII are determined by XFEM 

method for various crack length ratios a/W = 0.2, 0.3, 0.4, 0.5, 0.6 as shown in Fig. 5. It is observed that MMSIF KI and 

KII increase by the increasing crack length ratio (a/W) for all cases under different loadings. For void, It is found that the 

MMSIF KI has increased near to 10% in exponential loading, around 3 times under shear loading and around 4 times 

under combine loading as compare to tensile loading. For soft inclusion, the MMSIF KI is found in the same nature and 

decreases near to 15% as compared to void under different loading. For hard inclusion, the MMSIF KI is found in the 

same nature and decreases near to 22% as compared to soft inclusion under different loading, which is due to the strength 

of  the plate increase with the interaction with hard inclusion whereas decreases with the interaction with soft inclusion 

and void. The SIF KII is found near to zero for tensile and exponential loadings whereas for shear and combined loadings 

is higher. It is concluded that maximum SIF KI is found for void and minimum in hard inclusion. So the plate strength is 

decreased in XFEM fracture behavior for void and it is increasing in XFEM fracture behavior for hard inclusion. 

  

(a) (b) 

Fig. 5. MMSIF (a) KI (b) KII for an edge crack isotropic plate with a single inclusion/void under different loading 

 

Fig. 6. An edge crack plate with 2 inclusions/voids outside under different loading Geometry [Tensile (σ), 

Shear (τ), Combine (σ and τ both), Exponential (p)] 

3.2.2 An edge crack isotropic plate with 2 inclusions/voids outside under different loading  

An edge crack isotropic plate with 2 inclusions/voids outside under different loading is shown in Fig. 6. The geometry 

dimensions (L x W), a/W iterations, meshing and material properties of  the plate and inclusions are considered the same 
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as the previous case with circular void/inclusion of  radius 6 mm. The voids/inclusions position is kept outside to crack 

tip at (L/4, W/4) from the crack tip as shown in Fig. 6. MMSIF through the XFEM is determined under tensile (σ), shear 

(τ), combine (a combination of  σ and τ) and exponential (p) loading. The exponential loading is considered with p = σ ecx, 

where x varies from 0 ≤ x ≤ W of  the plate and c = 0.02778. 

MMSIF KI and KII are determined by XFEM method for various crack length ratios a/W = 0.2, 0.3, 0.4, 0.5, 0.6 as shown 

in Fig. 7. It is observed that MMSIF KI and KII are increased by increasing crack length ratio (a/W) for all cases under 

different loading. For void, It is found that the SIF KI has increased 15% in exponential loading, around 4 times under 

shear loading and around 5 times under combine loading as compare to tensile loading. For soft inclusion, the SIFKI is 

found in the same nature and decreases near to 5% as compared to void under different loading. For hard inclusion, the 

SIF KI is found in the same nature and decreases near to 12% as compared to void under different loading. The SIF KII is 

found near to zero under tensile and exponential loading, it is found positive increasing mode under shear and combined 

loading for all cases. It is concluded that maximum SIF KI is found in the void and minimum in hard inclusion. SIF KI is 

also decreased near to 13% as compared to a single void/inclusion case in all cases. Higher SIF KI is observed for the 

interaction of  plate with a void, this is due to the strength of  the plate gets reduced. 

  

(a) (b) 

Fig. 7. MMSIF (a) KI (b) KII for an edge crack isotropic plate with 2 inclusions/voids outside under different loading 
 

 
Fig. 8. An edge crack plate with 2 inclusions/voids outside under different loading Geometry [Tensile (σ), 

Shear (τ), Combine (σ and τ both), Exponential (p)] 

3.2.3 An edge crack isotropic plate with 2 inclusions/voids inside under different loading  

An edge crack isotropic plate with 2 inclusions/voids inside under different loading is shown in Fig. 8. The geometry 

(L x W), a/W iterations, circular voids/soft and hard inclusions, radius, meshing and material properties of  the plate are 

considered the same as the previous study. The voids/inclusions position is kept inside at L/4, W/4 from the crack tip as 

shown in Fig. 8. MMSIF KI and KII are determined by XFEM for various crack length ratio a/W = 0.2, 0.3, 0.4, 0.5, 0.6 

as shown in Fig. 9. It is observed that MMSIF KI and KII are found in the same nature and increase near to 8% at a/W = 

0.2 then it decreased up to a/W = 0.6 as compared to 2 inclusions/voids outside under different loading for all cases.   
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(a) (b) 

Fig. 9. MMSIF (a) KI (b) KII for an edge crack isotropic plate with 2 inclusions/voids inside under different loading 

 

Fig. 10. An edge crack plate with 4 inclusions/voids under different loading Geometry [Tensile (σ), Shear (τ), 

Combine (σ and τ both), Exponential (p)] 

  

(a) (b) 

Fig. 11. MMSIF (a) KI (b) KII for an edge crack isotropic plate with 4 inclusions/voids under different loading 

3.2.4 An edge crack plate with 4 inclusions/voids under different loading  

An edge crack isotropic plate with 4 inclusions/voids inside under different loading is shown in Fig. 10. The geometry 

dimensions (L x W), a/W iterations, circular voids/soft and hard inclusions radius, meshing and material properties of  

the plate and inclusions are considered the same as the previous case. The voids/inclusions position is kept outside and 

inside to crack tip at L/4 and W/4 as shown in Fig. 10. 

MMSIF KI and KII are determined by XFEM method for various crack length ratios a/W = 0.2, 0.3, 0.4, 0.5, 0.6 as shown 
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in Fig. 11. It is observed that MMSIF KI and KII are found in the same nature and increase near to 12% at a/W = 0.2 then 

it decreased near to 3% up to a/W = 0.6 as compared to 2 inclusions/voids outside under different loading for all cases. 

3.3 Some case studies of an edge crack isotropic plate by position variation of inclusions/voids under different loading  

3.3.1 An edge crack isotropic plate by position variation of inclusions/voids along with length (L) of the plate 

An edge crack isotropic plate with 2 inclusions/voids outside under different loading is shown in Fig. 12. The geometry 

dimensions (L x W), circular voids/soft and hard inclusions radius, meshing and material properties of  the plate and 

inclusions are considered the same as the previous case. In this case, the MMSIF is determined for a/W = 0.4 and position 

variation of  voids/inclusions L/3, L/4, L/6 and L/9 at W/4 as shown in Fig. 12.  

 

Fig. 12. An edge crack isotropic plate by position variation of  2 inclusions/voids along with length (L) and 

width (W) under different loading Geometry [Tensile (σ), Shear (τ), Combine (σ and τ both)] 
 

  

(a) (b) 

Fig. 13. MMSIF (a) KI and (b) KII for an edge crack isotropic plate by position variation of  inclusions/voids along with length (L) 

of  the plate 

From Fig. 13, it is observed that MMSIF KI and KII are increased by for L/3 to L/9 under tensile, shear loading and 

decrease under combine loading. For void, it is found that the MMSIF KI has first increased near to 9% up to L/6 and 

then becomes stable at L/9in tensile, shear and combined loading. For soft inclusion, the MMSIF KI has first increased 

near to 4% up to L/6 and then becomes stable at L/9 in tensile, shear and combined loading. For hard inclusion, the SIF 

KI has decreased near to 4% for L/3 to L/9 in tensile loading, decreased near to 5% in shear loading and 6% in combine 

loading. MMSIF KII is found near to zero under tensile loading for all cases, it is found positive increasing mode under 

shear and combine loading for void and soft inclusion and decrease under shear and combine loading for hard inclusion. 

It is concluded that maximum SIF KI is found in the void under combine loading and minimum in tensile loading.  

3.3.2 An edge crack plate by position variation of inclusion/void along with width (W) of plate  

An edge crack isotropic plate with 2 inclusions/voids outside under different loading is shown in Fig. 12. The geometry 

dimensions (L x W), circular voids/soft and hard inclusions radius, meshing and material properties of  the plate and 
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inclusions are considered the same as the previous case. In this case, the MMSIF is determined for a/W = 0.4 and position 

variation of  voids/inclusions W/3, W/4, W/6 and W/9 at L/4 as shown in Fig. 12. 
From Fig. 14, it is observed that MMSIF KI and KII remain stable form W/4 to W/9 under tensile, shear and combine 

loading. For void, the SIF KI has found maximum at W/3 and then becomes stable from W/4 to W/9 in shear, combine 

loading and minimum at W/3 then increase and become stable in tensile loading. For soft inclusion, the SIF KI has 

observed in the same nature as compared to the void, but in this case maximum, KI is less as compare to void. For hard 

inclusion, the MMSIF KI has observed little decreased up to W/4 and then becomes near to linear under tensile, shear and 

combined loading. The SIF KII is found in the zigzag mode under tensile loading and decreasing mode under shear and 

combine for the void. It is found increasing mode up to W/6 and then decreases under tensile loading for soft inclusion. 

And observed decreasing mode under shear and combine loading for soft inclusion and hard inclusion. It is concluded 

that maximum SIF KI is found in the void under combine loading and minimum in tensile loading.  

 

  
(a) (b) 

Fig. 14. MMSIF (a.) KI (b.) KII for an edge crack isotropic plate by position variation of  inclusions/voids along with width (W) 

of  the plate 
 

    

(a) (b) (c) (d) 

Fig. 15. Crack propagation in an edge crack plate under tensile loading for the aligned position of  

(a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

        

(a) (b) (c) (d) 

Fig. 16. Crack propagation in an edge crack plate under shear loading for the aligned position of     

(a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

3.4 The crack growth behavior of an edge crack isotropic plate without and with single inclusion/void under different 

loading 

In this case, analyze the crack propagation behavior and determine the MMSIF KI and KII using XFEM for an edge 
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crack isotropic plate for the position of  one void and inclusion is aligned, above and below with respect to edge crack. 

Edge crack plate without void and inclusion is also evaluating the same and compare others. These cases are evaluated 

under tensile, shear, combine (tensile and shear) and exponential loading conditions. The plate dimensions, material 

properties, and mashing are taken the same as the validation problem. A circular void, soft and hard inclusion is taken 

with radius 6 mm. The material properties for soft inclusion and hard inclusion is Esoft/Eplate= 0.24 and Ehard/Eplate = 18 

respectively, load value for tensile σ = 1.1 MPa and shear τ = 1.1 MPa is considered. Edge crack length ratio a/w = 0.5 is 

taken for all cases.To check the behavior of  the crack growth path and direction, go up to 6 iterations with a growth step 

increment of  2 mm. 

    

(a) (b) (c) (d) 

Fig. 17. Crack propagation in an edge crack plate under combine loading for the aligned position of  

(a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

   

    

(a) (b) (c) (d) 

Fig. 18. Crack propagation in an edge crack plate under exponential loading for the aligned position 
of  (a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

3.4.1 Without and with single inclusion/void aligned with edge crack under different loading  

3.4.1.1 A single inclusion/void aligned the edge crack under tensile loading  

Figs. 15 (a)-(d) shows the crack propagation path behavior for an edge crack isotropic plate under tensile loading for 

without void and inclusion and for the aligned position of  a void, soft inclusion and hard inclusion respectively. It is seen 

that crack growth direction is found linear line along with x-axis in all four cases under tensile loading.  

Figs. 19 (a)-(b) present the crack propagation behavior in an edge crack plate with-it and with void and inclusion under 

different loading for various positions through the MMSIF KI and KII. It is observed that under tensile loading for without 

void and inclusion case crack propagation is going continuously liner and SIF KI is increased for each growth step and 

maximum can get at the last step. Same crack growth behavior found for soft inclusion. For void, SIF KI value is a very 

minor decrease after 1st crack growth step and from the 3rd step it’s found zero due to the distance between the crack tip 

and void periphery is 3mm. In hard inclusion, SIF KI gets maximum at 3rd crack growth step than decrease and again it 

will increase gradually. SIF KII is settled on nearest to zero for all cases under tensile loading.   

3.4.1.2 A single inclusion/void aligned the edge crack under shear loading  

Figs. 16 (a)-(d) shows the crack propagation path behavior for an edge crack isotropic plate under shear loading for 

without void and inclusion and for the aligned position of  the void, soft inclusion, and hard inclusion respectively. It is 

seen that crack propagation is deviate gradually downward in linear shape for without void and inclusion case, for void 

and soft inclusion downward in curve shape and for hard inclusion closer curve shape observed under shear loading.  

As per Figs. 19 (a)-(b), it is determined that under shear loading for without void and inclusion case SIF KI is increased for 

each growth step. For void, SIF KI value is increased and from the 3rd step, it’s found zero due to the distance between the 

crack tip and void periphery is 3mm. For soft inclusion, SIF KI gets maximum at 2nd crack growth step than decrease and 

again it will increase gradually. In hard inclusion, SIF KI suddenly increases at 2nd crack growth step than decreases and 

again from the 5th step increase and gets maximum at the 6th step. SIF KII is gradually decreased for without void and 

inclusion and for soft inclusion, increase for the void, in hard inclusion decreasing and increasing type zigzag pattern got 

and at 3rd step suddenly increased and 6th step decreased due to get hard material after 2nd crack growth step. 
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(a) (b) 

Fig. 19. Crack propagation behavior in an edge crack plate without and with void and inclusion under different 

loading for an aligned position through the MMSIF (a) KI  (b) KII 

 

    

(a) (b) (c) (d) 

Fig. 20. Crack propagation in an edge crack isotropic plate under tensile loading for the above 

position of  (a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

    

(a) (b) (c) (d) 

Fig. 21. Crack propagation in an edge crack isotropic plate under shear loading for the above 

position of  (a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

    
(a) (b) (c) (d) 

Fig. 22. Crack propagation in an edge crack isotropic plate under combine loading for the above 

position of  (a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 
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3.4.1.3 A single inclusion/void aligned the edge crack under combined loading  

Figs. 17 (a)-(d) shows the crack propagation path behavior for an edge crack isotropic plate under combine loading for 

without void and inclusion and for the aligned position of  the void, soft inclusion, and hard inclusion respectively. It is 

observed that crack propagation behavior gets very nearer to shear loading because the combined load is considered as a 

combination of  tensile and shear loading.  

As per Figs. 19 (a)-(b), it is determined that under combine loading nearest behavior of  shear loading is found for MMSIF 

KI and KII of  all above cases only numerical value of  MMSIF KI and KII is decreased as compared to shear loading due to 

tensile loading is also subjected with shear loading in combine loading. 

3.4.1.4 A single inclusion/void aligned the edge crack under exponential loading  

Figs. 18 (a)-(d) shows the crack propagation path behavior for an edge crack isotropic plate under exponential loading 

for without void and inclusion and for the aligned position of  the void, soft inclusion and hard inclusion respectively. It is 

observed that crack propagation behavior gets very near to tensile loading. 

As per Figs. 19 (a)-(b), it is determined that under exponential loading nearest behavior of  tensile loading is found for 

MMSIF KI and KII of  all the above cases the only numerical value of  SIF KI and KII is increased as compared to tensile 

loading. 

As shown in Figs. 19 (a), in hard inclusion under shear loading, SIF KI suddenly increases at 2nd crack growth step due 

to crack is just trying to penetrate in hard inclusion than once crack propagate outside to hard inclusion then decrease and 

again from 5th step increase and get maximum at the 6th step 

3.4.2 A single inclusion/void above the edge crack under different loading  

3.4.2.1 A single inclusion/void above the edge crack under tensile loading  

Figs. 20 (a)-(d) shows the crack propagation path behavior for an edge crack isotropic plate under tensile loading for 

without void/ inclusion, above the position of  the void, soft inclusion, and hard inclusion respectively. It is seen that the 

crack propagates, to the horizontal linear path in without void/inclusion, to curve path towards the above crack propagate 

in the void, too little curve towards the above and again linearly crack propagation in soft inclusion, to little curve towards 

the below and again linearly crack propagate in hard inclusion. 

Figs. 24 (a)-(b) present the crack propagation behavior in an edge crack isotropic plate without and with void/ inclusion 

under different loading for its above position through the  MMSIF KI and KII. It is observed that under tensile loading for 

without void and inclusion SIF KI is gradually increased for each growth step and maximum can get at the last step. Same 

crack growth behavior found for soft and hard inclusion. For void SIF KI is increased up to 4th step and after that suddenly 

decreases and reaches up to zero. SIF KII is settled on nearest to zero in zigzag mode for without void/inclusion and hard 

inclusion, its increase up to 3rd step, then suddenly decrease (minimum) at the 4th step, then again get zero for remaining 

step for void, minimum at beginning then increase get the maximum at 4th step and again decrease in soft inclusion. 

3.4.2.2 A single inclusion/void above the edge crack under shear loading  

Figs. 21 (a)-(d) shows the crack propagation behavior for an edge crack isotropic plate under shear loading for without 

void/ inclusion and for the above position of  the void, soft inclusion, and hard inclusion respectively. It is seen that crack 

growth is deviated gradually downward in linear shape for without void and inclusion, soft inclusion and hard inclusion. 

And crack propagates to upward in little curve shape and downward in the linear shape void.  

As per Figs. 24 (a)-(b), it is observed that under shear loading SIF KI is increased for each growth step and found maximum 

at the last step in all cases. SIF KII gradually decreases at each step without void/inclusion, soft and hard inclusion and 

found maximum at the beginning and minimum at the end. While for the void first increase then after the 3rd step decreases 

up to end and found maximum at 3rd step and minimum at the 6th step. 

3.4.2.3 A single inclusion/void above the edge crack under combined loading  

Figs. 22 (a)-(d) shows the crack propagation behavior for an edge crack isotropic plate under combine loading for 

without void and inclusion and for the above position of  the void, soft inclusion, and hard inclusion respectively. It is 

observed that crack propagation behavior gets very nearer to shear loading because the combined load is considered a 

combination of  tensile and shear loading.  

As per Figs. 24 (a)-(b), it is determined that under combine loading nearest behavior of  shear loading is found for MMSIF 

KI and KII of  all above cases only numerical value of  SIF KI and KII is increase, as compared to shear loading due to tensile 

loading, is also subjected with shear loading in combine loading. 

3.4.2.4 A single inclusion/void above the edge crack under exponential loading  

Figs. 23 (a)-(d) shows the crack propagation path behavior for an edge crack isotropic plate under exponential loading 

for without void/inclusion and for the above position of  the void, soft inclusion and hard inclusion respectively. It is seen 

that crack propagation behavior gets very near to tensile loading. 
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(a) (b) (c) (d) 

Fig. 23. Crack propagation in an edge crack isotropic plate under exponential loading for the above 

position of  (a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

 

  

(a) (b) 

Fig. 24. Crack propagation behavior in an edge crack isotropic plate without and with void and inclusion under 
different loading for the above position through the MMSIF, (a) KI (b) KII 

 

    

(a) (b) (c) (d) 

Fig. 25. Crack propagation in an edge crack isotropic plate under tensile loading for below position 
of  (a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

    

(a) (b) (c) (d) 

Fig. 26. Crack propagation in an edge crack isotropic plate under shear loading for below position 
of  (a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 
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(a) (b) (c) (d) 

Fig. 27. Crack propagation in an edge crack isotropic plate under combine loading for below 

position of  (a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

As per Figs. 24 (a)-(b), it is observed that under exponential loading nearest behavior of  tensile loading is found for MMSIF 

KI and KII of  all the above cases the only numerical value of  SIF KI and KII is increased as compared to tensile loading. 

As shown in Fig. 24 (a), in the void under exponential loading, SIF KI increasing up to 4th crack growth, from the 5th step 

SIF KI is reach at zero due to crack is penetrated in the void.  

3.4.3 A single inclusion/void below the edge crack under different loading  

3.4.3.1 A single inclusion/void below the edge crack under tensile loading  

Figs. 25 (a)-(d) shows the crack propagation behavior for an edge crack isotropic plate under tensile loading for without 

void/ inclusion, below the position of  the void, soft inclusion, and hard inclusion respectively. It is seen that the crack 

propagate, to the horizontal linear path in without void/inclusion, to curve path towards the below crack propagate in the 

void, to little curve towards the above and again linearly crack propagate in soft inclusion, to little curve towards the above 

and again linearly crack propagate in hard inclusion. 

Figs. 29 (a)-(b) present the crack propagation behavior in an edge crack isotropic plate without and with void/ inclusion 

under different loading for it's below position through the MMSIF KI and KII. It is observed that under tensile loading for 

without void/ inclusion SIF KI is gradually increase for each growth step and maximum can get at the end. Same crack 

growth behavior found in soft and hard inclusion. For void SIF KI is increased and decrease in zigzag mode and found 

minimum at the 5th step and suddenly increase and get maximum at the end. SIF KII is settled on nearest to zero in zigzag 

mode for without void/inclusion and hard inclusion, its decrease up to 3rd step than increase (maximum) at 5th step again 

suddenly decrease (minimum), minimum at beginning, then increase get maximum at 4th step and again decrease for void, 

maximum at beginning than decrease and get minimum at 4th step and again decrease in soft inclusion. 

3.4.3.2 A single inclusion/void below the edge crack under shear loading  

Figs. 26 (a)-(d) shows the crack propagation behavior for an edge crack isotropic plate under shear loading for without 

void/ inclusion and for below position of  the void, soft inclusion and hard inclusion respectively. It is seen that crack 

growth is deviated gradually downward in linear shape for without void and inclusion, soft inclusion and hard inclusion. 

And crack propagates to downward in little curve shape and upward in linear shape for the void.  

As per Figs. 29 (a)-(b), it is observed that under shear loading SIF KI is increased for each growth step and found maximum 

at the last step for without void/inclusion, soft and hard inclusion. In the void, it’s increasing and get the maximum at 4th 

step, then again decreases up to the end. SIF KII gradually decreases at each step without void/inclusion, soft and hard 

inclusion and found maximum at the beginning and minimum at the end. While for the void first decrease up to 4th than 

increase up to the last step. 

3.4.2.3 A single inclusion/void above the edge crack under combined loading  

Figs. 27 (a)-(d) shows the crack propagation behavior for an edge crack isotropic plate under combine loading for 

without void and inclusion and for below position of  the void, soft inclusion and hard inclusion respectively. It is observed 

that crack propagation behavior gets very nearer to shear loading because the combined load is considered a combination 

of  tensile and shear loading. 

As per Figs. 29 (a)-(b), it is determined that under combine loading nearest behavior of  shear loading is found for MMSIF 

KI and KII for without void/inclusion and hard inclusion. It is decreasing up to 3rd step than increase and get the maximum 

at 4th step, then again decrease for the void, maximum at the beginning than decrease (minimum) at the 4th step and again 

increase in soft inclusion. 

3.4.3.4 A single inclusion/void below the edge crack under exponential loading  

Figs. 28 (a)-(d) shows the crack propagation path behavior for an edge crack isotropic plate under exponential loading 

for without void/inclusion and for the above position of  the void, soft inclusion and hard inclusion respectively. It is seen 

that crack propagation behavior gets very near to tensile loading. 
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(a) (b) (c) (d) 

Fig. 28. Crack propagation in an edge crack isotropic plate under exponential loading for the above 

position of  (a) without inclusion/void (b) void (c) soft inclusion (d) hard inclusion 

 

  

(a) (b) 

Fig. 29. Crack propagation behavior in an edge crack isotropic plate without and with void and inclusion under 

different loading for below position through the MMSIF (a) KI (b) KII 

 

 

Fig. 30. Isotropic square plate with edge crack and 

inclusion under tensile loading 

Fig. 31. Validation study of  NERR w.r.t. a/W for 

tensile loading 

As per Figs. 29 (a)-(b), it is observed that under exponential loading nearest behavior of  tensile loading is found for MMSIF 

KI and KII of  all below cases the only numerical value of  MMSIF KI and KII is increased as compared to tensile loading. 
As shown in Fig. 29 (a), in the void, under shear loading, SIF KI is increasing and get the maximum at 4th step due to 

crack is trying to deviate toward the void but not penetrating and reach near to void so SIF KI is suddenly decreased at 5th 

step and again its increase up to end. 

3.5 The energy release rate (ERR) study of an edge crack isotropic plate without and with 2 inclusions/voids under 

different loading 

The energy release rate Go is the rate at which energy is consumed as the material under fracture without 

Crack Growth Step

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
-2000

-1500

-1000

-500

0

500

1000

1500

2000

Without Inclusion/Void (Tensile)

Void (Tensile)

Soft Inclusion (Tensile)

Hard Inclusion (Tensile)

Without Inclusion/Void (Shear)

Void (Shear)

Soft Inclusion (Shear)

Hard Inclusion (Shear)

Without Inclusion/Void (Combine)

Void (Combine)

Soft Inclusion (Combine)

Hard Inclusion (Combine)

Without Inclusion/Void (Exponential)

Void (Exponential)

Soft Inclusion (Exponential)

Hard Inclusion (Exponential)

G
/G

0



Numerical Analysis of  an Edge Crack Isotropic Plate with Void/Inclusions 1379 

 

Journal of  Applied and Computational Mechanics, Vol. 7, No. 3, (2021), 1362-1382 

inclusion/void, and is expressed as energy-per-unit-area. It is understood as the decrement in total potential energy as an 

increment in fracture. Fig. 30 shows an edge crack isotropic plate with inclusions/voids under different loadings. 

Normalized energy release rate (NERR) is defined as the ratio of  energy released of  the crack plate with inclusion and 

without inclusion and/or void represented as (G/Go). Mathematically, the energy release rate is defined as: 

( )( )2 2
1

 = 
8

I II

k
G K K

μ

+
+  (15) 

where, k (kolosov coefficient) = (3 - 4�), for plane strain, and μ= E (2+2�). The ERR is examined for an isotropic square 

plate with edge crack and two inclusions under tensile loading as shown in Fig. 30. 

Here, W=100, E=1 (Plate), E=104 (Inclusion), R=W/20 (Radius of  Inclusion), Xc=L/2 (Centre of  inclusion along the 

width) and s/W= 0.125 are considered for the validation study for NERR. Fig. 31 shows the validation study of  the 

isotropic plate with edge crack and inclusions under tensile loading for NERR with respect to (w.r.t.) a/W, and the result 

of  the present work is very close to the reference [16] with a maximum variation of  11%.  

  

Fig. 32. Variation of  NERR w.r.t. a/w for tensile loading Fig. 33. Variation of  NERR w.r.t a/w for shear loading 

In the present work G/Go for an edge crack plate with inclusions/voids under different loadings is investigated. In Fig. 32 

G/Go is calculated for an edge crack plate with inclusions/voids under tensile loading. It is observed that for hard inclusion 

G/Go decreases as a/w increases up to 0.3 and further increases as a/w increases, whereas for an edge crack isotropic 

plate with soft inclusion G/Go increases as a/w increases up to 0.3 and further decreases. A similar nature of  G/Go is 

observed for void as for soft inclusion and maximum G/Go ERR is observed at a/w = 0.4. For an edge crack isotropic 

plate with hard inclusion, as crack advances, it comes near to hard inclusion and due to this G/Go decreases and for 

further increment, crack deviates its path from hard inclusion and due to this ERR increases. A similar study is carried out 

for an edge crack isotropic plate with inclusion/void under shear, combined and exponential loading which are as shown 

in Fig. 33, 34 and 35 respectively. 

In Fig. 32, the maximum deviation in G/Go is about 32% and 47% from mean line is observed at a/w=0.3 for an edge 

crack isotropic plate with hard inclusion and soft inclusion respectively under tensile loading, whereas for cracked plate 

with void the deviation is more, this is due to the progress of  the crack into the void where elastic modulus is negligible.  

In Fig. 33, G/Go is calculated for an edge crack isotropic plate with inclusion/void under shear. Here, the maximum 

deviation in G/Go is about 16%, 21% and 48% from the mean line is observed for hard inclusion, soft inclusion, and void 

respectively at a/w =0.2. Fig. 34 shows the change of  G/Go with respect to a/w for an edge crack isotropic plate with 

inclusion/void under combined (tensile and shear) loading. Here, the maximum deviation in G/Go is about 18%, 24%, 

  

Fig. 34. Variation of  NERR w.r.t. a/w for combine (Tensile 
and shear) loading 

Fig. 35. Variation of  NERR w.r.t. a/w for exponential 
loading 
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and 56% is observed for hard inclusion, soft inclusion and void respectively at a/w=0.2. 

In Fig. 35, a similar study is carried out for the variation of  G/Go with respect to a/w of  an edge crack isotropic plate 

with inclusion/void under exponential loading. From this study, it is observed that the maximum deviation in G/Go is 

about 40% and 59% from the mean line at a/w= 0.3 for hard and soft inclusion respectively, whereas the maximum 

deviation in G/Go is more from the mean line at a/w= 0.4 is observed.  

4. Conclusions 

In the present work, mixed-mode SIF and Energy release rate (ERR) of  isotropic edge cracked plate with various 

discontinuities like crack, voids, soft and hard inclusions numerical were evaluated using XFEM under different loadings. 

The crack growth with different discontinuities under different loadings (tensile, shear, combine and exponential) was also 

evaluated. The following observations were found during this numerical investigation study:  

 With the increase of  crack length, MMSIF increases for voids and/or inclusions under different loadings.   

 An isotropic plate with discontinuities like edge crack, void and inclusion are found more sensitive under shear and 

compound loading. 

 The Fracture behavior of  the plate with crack and voids/inclusions at near to crack tip is more sensitive. 

 With the increase of  the number of  voids, the MMSIF increases, while decreases for hard inclusions under different 

loadings. 

 The MMSIF is more affected by the position variation of  voids/inclusions along the length as compared to the width. 

 Crack propagation is straight when void/inclusion is aligned with crack for tensile and exponential loading. Crack 

propagation is getting deviated downward for the plate without void/inclusion under shear and combined loading. 

 The crack propagation is getting deviated towards the hole and soft inclusion and away from hard inclusion. When the 

crack is get interacted with hard inclusion, the first mode SIF decrease as crack reaches near to it and then increases as 

crack goes away from it under different loadings. It is because of  the hard inclusion is having to harden material 

properties as compared to plate material.  

 As the crack reaches near to hard inclusion NERR decreases and further increases as crack goes away from hard 

inclusion. When the crack is getting interacted with void reverse nature is observed as of  hard inclusion. 

 This analysis is helpful to predict the material strength in design the structure with the presence of  various 

discontinuities under different loading conditions. 
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