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Abstract. In this work, we obtained the numerical solution for the system of nonlinear time-fractional order advection-reaction-
diffusion equation using the homotopy perturbation method using Laplace transform method with fractional order derivatives in 
Liouville-Caputo sense. The solution obtained is very useful and significant to analyze many physical phenomenons. The present 
technique demonstrates the coupling of homotopy perturbation method and the Laplace transform technique using He’s 
polynomials, which can be applied to numerous coupled systems of nonlinear fractional models to find the approximate 
numerical solutions. The salient features of the present work is the graphical presentations of the numerical solution of the 
concerned nonlinear coupled equation for several particular cases and showcasing the effect of reaction terms on the nature of 
solute concentration of the considered mathematical model for different particular cases. To validate the reliability, efficiency and 
accuracy of the proposed efficient scheme, a comparison of numerical solutions and exact solution are reported for Burgers’ 
coupled equations and other particular cases of concerned nonlinear coupled systems. Here we find high consistency and 
compatibility between exact and numerical solution to a high accuracy. Presentation of absolute errors for given examples are 
reported in tabulated and graphical forms that ensure the convergence rate of the numerical scheme.  

Keywords: Fractional Calculus, Homotopy Perturbation, He’s Polynomials, Sub-diffusion, Porous Media. 

1. Introduction 

The theory fractional calculus is as old as ordinary calculus. Fractional order derivatives and integral are the more general 
case of integer order derivatives and integral and can be defined by replacing the integer order by fractional order. Numerous 
physical models in recent studies in engineering and science are being modeled by the means of fractional derivatives. In the last 
few decades, fractional derivatives have been widely studied by researchers in many important aspects viz., chemical [1], signal 
theory [2, 3], fluid [4, 5] etc. Finding the exact solution of numerous nonlinear fractional derivatives model is still a tough task for 
researchers, therefore numerical solution of these fractional models are of significant interest. The applications of fractional 
calculus can be successfully modeled by different types fractional differential equations (FDEs) like linear or non-linear. The 
applications of different kinds of FDEs in mathematical model are increasing due to extensive applications of fractional calculus 
and a number of numerical schemes for their solutions. It has helped fractional calculus to become a very significant and 
attractive research field. 

Several techniques have been discovered which provide the approximate numerical solution for fractional order ordinary 
differential equations (ODEs) and partial differential equations (PDEs) viz., finite difference method (FDM)[6, 7], predictor-corrector 
method, fractional differential transform [8], Adomain decomposition [9], eigenvector expansion, generalized block pulse 
operational matrix method [10] and the method given in [42-48] etc. Some numerical methods based upon operational matrices of 
fractional differentiation and integration with Legendre wavelets [11], Gegenbauer wavelet [12], Chebyshev wavelets [13-15], sine 
wavelets [16], Haar wavelets [17] have been developed for finding the numerical solutions of fractional order differential 
equations, integro-differential equations. Here one can notice that several physical phenomenas can be modeled by using FPDEs 
and their systems[18, 19,41]. Coupling of various physical phenomenons by some mathematical model is global in applied 
sciences.  

Commonly, it is known that diffusion process is a physical process where a substance move from a high concentration zone to 
a low concentration zone, the "Diffusion" is taken from the Latin word diffundere which means spreading of molecule from high to 
low concentration area. The process of diffusion mainly occurs in gases or liquid because their molecules randomly moves from 
one place to other. Diffusion type equation is a kind of PDE which portrays density profile dynamics in the process of diffusion of 
a substance [20]. Approximate numerical solution of the reaction-diffusion equation has become a center of wide research due to 
its nature and have been applied in modeling of oil reservoir simulations, flow of fluids in porous media, global water production 
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and many numerous natural phenomenon. Fractional reaction-diffusion equations (FRDEs) are widely used in demonstrating 
abnormal slowly diffusion process for non-conservative system viz., the FRDEs are the mathematical modeling of the change in 
time and space of the concentration of one or more molecules of a substance. 

In the study of nonlinear physical problems, fractional order reaction-diffusion model plays a significant role, therefore 
authors are motivated to find the approximate numerical solution of space-time fractional order reaction-diffusion equation and 
to analyses their physical behavior in porous media associated with Liouville-Caputo fractional order derivatives. In the present 
scientific contribution, the author analyzed the mathematical form of a physical problem. Here author traces the behavior of two 
interacting solute species under the influence of reaction, diffusion, and advection in porous media. During the fluid flow, there is 
no. of affecting factors viz., nonlinearity, transient nature, and coupling of mathematical models that produce the complexity to 
tackle the physical problem. In the porous medium, two solute species interact, and the phenomenon of diffusion occurs. Our 
main goal is to find the long-term behavior of the considered nonlinear system. Here we present a fractional nonlinear 
mathematical model of such a physical problem containing two solute variables. In this paper, author consider the fractional 
porous media equation as 
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where 0 1x≤ ≤ , 1 20 < , 1α α ≤  , 0 1t≤ ≤ , 1 21 < , 2,β β ≤ with initial conditions 

0 0( ,0) = ( ), ( ,0) = ( ).v x v x u x u x  (2) 

In the above expressions, 1 2,D D  denotes the diffusion coefficient, 1 2,γ γ  be the advection coefficients, 1 2,k k  denotes the reaction 

coefficient, ' , 'i iB s C s  are constants and ( , ), ( , )g x t f x t  represents the force terms.. 

The authors of [21, 22] discussed the some particular cases of our concerned model. By putting some appropriate value to the 
arbitrary constants, equation (1) is reduces to the famous Burgers’ equations. The Cole-Hopf transformation is the most common 
approach to encounter Burgers’ equations [21, 23]. The role of nonlinear FPDEs viz., Burgers’ equation, Huxley equation, Fisher 
equation is very important to understand the fluid flow through a porous medium. 
For the living things water pollution is a big problem, the FRDEs provides an important water quality mathematical model in 
environmental science. Ground water contamination, e.g., wastage of man made products directly pollutes the ground water 
through porous medium and can have serious effects on health and also harms the wildlife. The authors of [24], discussed the 
importance of mathematical models of ground water resources management. Many scientists and engineers are studying the 
contamination of the environmental subsurface, which have excellent effect on the progress of research in process of solute 
transport in the porous media [25-27].  

If ground water is contaminated overall, then the rehabilitation is deemed to be too difficult and expensive. Solute transport 
through the groundwater is topic encountered in the interdisciplinary branch of science and engineering, called hydrology. The 
following equation represent solute transport in aquifiers 

2

2
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= .

u x t u u
d v

t x x

∂ ∂ ∂
−

∂ ∂ ∂
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Here, ( , )u x t  is solute concentration, > 0v , represents average velocity of fluid and d  represents the coefficient of dispersion. The 

above equation is also called advection dispersion equation. This equation also describes probability density function in a 
continuum for location of particles . The equation can be used in the groundwater hydrology in which the movement of the 
passive tracers is picked by the flow of the fluid in the porous media. 

In this article, we studies new iterative Laplace transform technique to find the approximate numerical solution of considered 
nonlinear coupled system space-time fractional advection-reaction-diffusion equation. This particular mehtod is an authenticate 
extension from the the method to find the approximate analytical solution for differential equation[28] to the coupled system of 
nonliner fractional PDEs. This new iterative Laplace transform technique is basically a coupling of three methods of Laplace 
transform technique, He’s polynomials and homotopy perturbation technique. Integral transform methods viz., Hilbert, Fourier, 
Stieltjes or Laplace transforms have very significant role to study the ODEs and PDEs. By use of the Laplace transform, ODEs and 
PDEs system have been transforms to algebraic systems. He’s polynomials provides a refined series solution which is primarily 
due to Ghorbani [29] and Ghorbani and Nadjafi [30]. Numerous researchers have been continuously worked on the homotopy 
method over many years [31, 32]. Homotopy perturbation method (HPM)has been shown to solve accurately, easily and effectively 
a wide range of nonlinear physical problems and in general, iterations converges to exact solution rapidly after one or two 
iterations. A brief discussion and analysis of HPM method are given in this article. 

The paper is organized in following ways. Some fundamental concepts for Laplace transform and fractional derivatives are 
given. In section 3, Homotopy perturbation and He’s polynomials are discussed. In Section 4, homotopy perturbation Laplace 
transform method is utilized for fractional order derivative to solve our proposed model. Few example are given in section 5 to 
validate the efficiency of proposed scheme. Numerical simulation of model is given in section 6. Achievements of this scientific 
research is discussed in Conclusion. 

2. Basic definitions of Laplace transform and fractional derivatives 
2.1 Fractional Derivative  

We have given some basic definitions and some notations of the Laplace transform and fractional derivatives which are 
important for establishing the results in the article.  

Definition 1. 

The fractional order derivative operator D α  of the given order > 0α  in the Liouville-Caputo sense is given by [33, 34] 
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Here z  is integer. Some properties of Liouville-Caputo derivatives are given as:  
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where K is an arbitrary constant.  
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Here α   and α   are floor and ceiling function respectively. 
 

2.2 Laplace Transform 

We know that Laplace transformation project the considered time fractional reaction diffusion equation from time domain to 

Laplacian domain. Let ( )u t  be the usual time domain function of the variable 0t ≥  and ( )u s  is the image of ( )u t  under the 

Laplace operator in the Laplacian domain. The definition of Laplace transform can be given as 

0
( ) = £[ ( )] = ( ). .stu s u t u t e dt

∞
−∫  (7) 

In the above expression s  is the Laplacian parameter. The Laplace transformation of the Liouville-Caputo fractional order 
derivative is [35]  
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3. Homotopy Perturbation Theory and Basic of He’s Polynomials 

3.1 Homotopy Perturbation Method 

The homotopy perturbation method (HPM) is a coupling of the homotopy concept and classical perturbation technique as 
applied in topology. To brief analysis of HPM for the numerical solution of nonlinear physical problems, we consider following a 
nonlinear system of PDE 
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 where F  and F ′  is a general fractional partial differential operator, P  and P ′  is a boundary operator, ( , )f x t  and ( , )f x t′  is a 

known analytic function, Γ  is boundary of Ω  and /u η∂ ∂ , /v η∂ ∂  denotes the derivatives along the normal drawn from 

outwards of the Ω . 
Above mentioned fractional partial differential operator can be further divided in to four parts viz., linear parts ( , )A u v , ( , )A u v′  

and nonlinear parts ( , )B u v , ( , )B u v′  therefore equation (9) become  
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By applying homotopy technique, we present the homotopy ( , , ), ( , , ) [0,1]u x t v x tρ ρ Ω′ ′ ∈ ×  with embedding parameter [0,1]ρ ∈  as 
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above equation can be transformed as 
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From the equation (12), it follows that 
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Thus the process of varying ρ  from zero to one is same that of 0( , )u x t  to ( , )u x t  and 0( , )v x t  to ( , )v x t . This process is called 

deformation in topology and 0 0( , ) ( , ), ( , ) ( , )A u v A u v F u v f x t′ ′ − −  and 0 0( , ) ( , ), ( , ) ( , )A u v A u v F u v f x t′ ′ ′ ′ ′ ′− −  are called homotopic. 

Assuming the solution of (12) or (13) in a power series of ρ  and embedding parameter ρ  as small quantity: 
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 Choosing = 1ρ , we get the approximate numerical solution of (9): 
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The coupling of homotopy method and perturbation method is called as the homotopy perturbation method, which has aborted 
the limitations of usual perturbation technique. The author of [36] has been proved the convergence of the series (17).  

3.2 He’s Polynomials 

Ghorbani [29] has provided the following definitions and properties of He’s polynomials. 
 
Definition: The He’s polynomial is defined as follows [29]:  
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Proof. See [29].  

4. Application on Considered Model 

In this section of the article, iterative Laplace scheme is applied to concerned coupled system of fractional advection-reaction-
diffusion equation using HPM and He’s polynomials. In general our considered model become 
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with initial conditions  

0 0( ,0) = ( ), ( ,0) = ( ).v x v x u x u x  (21) 

In the above equation, fractional derivative is in Liouville-Caputo sense, 1 2 1 2, , ', 'M M M M  denotes the general linear operator, 

1 2,N N  stands for general nonlinear differential operator and ( , ), ( , )f x t g x t  represents the force terms.  

Operating the Laplace transformation on the equation (20), we get 
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Using equation (8) and properties of Laplace transform, we get 
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Using inversion of Laplace transform on equation (23), we get 
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In the above equation, 2 1( , ), ( , )K x t K x t  are the terms arises due to source terms and initial conditions. Further, we apply the HPM, 

we find the numerical solution in the power series of ρ :  
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Also, the nonlinear term occurring in method can be disintegrated in terms of He’s polynomials as:  
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In the above equation ( ), '( )n nH Hρ ρ  are the He’s polynomials as defined in equation (18). Now using equation (18) and (26) in 

equation (24), we get  
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Above equation is coupling of Laplace transform technique, HPM and He’s polynomials. Now comparing coefficients of identical 
powers of ρ , we find the approximate solution of concerned nonlinear problem as  
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Using th above approximation and recurrence relation, we can easily find the remaining terms ( , ), ( , )j ju x t v x t  and hence we find 

desired solution in form of series. In this way we approximate the exact solution ( , ), ( , )v x t u x t  as  
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The above series solution converges to the exact solution very fast after few terms.  

5. Numerical Examples 

In this section of the article, we will apply Laplace transform homotopy method for the fractional order differentiation to solve 
some fractional order coupled system of PDEs (linear/non-linear) to illustrate the accuracy and applicability of the proposed 
scheme and compared the obtained results with the exact solutions of the given examples. For the numerical commutations, 
Mathematica 11.3 software is used.  
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Example 1. Coupled Burgers’ Equation 

Let us consider a nonlinear fractional order system of coupled Burgers’ equation which have mainly use in describing the 
nature of sedimentation or evolution of two solute species concentration under the gravitational force in the fluid suspension or 
colloids phenomenon[37] etc. Coupled Burgers’ equation is presented by using some appropriate value of constants in (1), given 
by  

2

2

2

2

( , ) ( , ) ( , ) ( ( , ) ( , ))
= 2 ( , ) ,

( , ) ( , ) ( , ) ( ( , ) ( , ))
= 2 ( , ) ,

u x t u x t u x t v x t u x t
u x t

t x x x

v x t v x t v x t v x t u x t
v x t

t x x x

∂ ∂ ∂ ∂ + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + − ∂ ∂ ∂ ∂ 

 (30) 

with the initial conditions (2) as 

( ,0) = sin( ), ( ,0) = sin( ).v x x u x x  (31) 

Under the assumption of above conditions the exact solution of above equation is given as ( , ) = exp( )sin( ),v x t t x−  

( , ) = exp( )sin( ).u x t t x−  Applying Laplace transform on the above nonlinear PDE together with initial conditions, we have  

2

2

2

2

( , ) ( , ) ( , ) ( ( , ) ( , ))
£[ ] = £ [ 2 ( , ) ],

( , ) ( , ) ( , ) ( ( , ) ( , ))
£[ ] = £ [ 2 ( , ) ].

t

t

u x t u x t u x t u x t v x t
u x t

t x x x

v x t v x t v x t u x t v x t
v x t

t x x x

∂ ∂ ∂ ∂ + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + − ∂ ∂ ∂ ∂ 

 (32) 

Now, using equation (8) and (42) in above equation, we get, 

2
1

2

2
1

2

( , ) ( , ) ( ( , ) ( , ))
( , ) sin( ) = £ [ 2 ( , ) ],

( , ) ( , ) ( ( , ) ( , ))
( , ) sin( ) = £ [ 2 ( , ) ].

t

t

u x t u x t v x t u x t
s u x s x s u x t

x x x

v x t v x t v x t u x t
s v x s x s v x t

x x x

α α

α α

−

−

∂ ∂ ∂ − + − ∂ ∂ ∂ ∂ ∂ ∂ − + − ∂ ∂ ∂ 

 (33) 

It can also be written as 

2

2

2

2

sin( ) ( , ) ( , ) ( ( , ) ( , ))1
( , ) = £ [ 2 ( , ) ],

sin( ) ( , ) ( , ) ( ( , ) ( , ))1
( , ) = £ [ 2 ( , ) ].

t

t

x u x t u x t u x t v x t
u x s u x t

s s x x x

x v x t v x t v x t u x t
v x s v x t

s s x x x

α

α

∂ ∂ ∂ + + − ∂ ∂ ∂ ∂ ∂ ∂ + + − ∂ ∂ ∂ 

 (34) 

Applying inverse of Laplace transform and its properties in above equation we get 

2
1

2

2
1

2

( , ) ( , ) ( ( , ) ( , ))1
( , ) = £ { £ [ 2 ( , ) ]} sin( ),

( , ) ( , ) ( ( , ) ( , ))1
( , ) = £ { £ [ 2 ( , ) ] sin( ).

s t

s t

u x t u x t v x t u x t
u x t u x t x

s x x x

v x t v x t v x t u x t
v x t v x t x

s x x x

α

α

−

−

∂ ∂ ∂ + − + ∂ ∂ ∂ ∂ ∂ ∂ + − + ∂ ∂ ∂ 

 (35) 

Further, using HPM and He’s polynomial for nonlinear term as 

=0

=0

( , ) = ( , ),

( , ) = ( , ),

j
j

j

j
j

j

u x t u x t

v x t v x t

ρ

ρ

∞

∞



∑

∑
 (36) 

and for nonlinear term, we have  

1
=0

2
=0

( ) = ( , ),

'( ) = ( , ).

j
j

j

j
j

j

H N v x t

H N u x t

ρ ρ

ρ ρ

∞

∞



∑

∑
 (37) 

In general He’s polynomial is given by equation (18) and few He’s polynomials for the coupled Burgers’ equation for = 1α  can be 
found as 

2
0 0 0 0 0 0

2
0 0 0 0 0 0

1 0 1 1 0 0 1 0 1 0 1

1 0 1 0 1 1 0 1 0 0 1

( ) = ( ) .( ) ( ) . ,

'( ) = ( ) .( ) .( ) ,

( ) = (2 ) .( ) .( ) ( ) . .( ) ,

'( ) = (2 ) ( ) . ( ) . .( ) .( ) ,

.

.

.

x x x

x x x

x x x x x

x x x x x

H u u v u v u

H u v u v v u

H u u u v u v u v u u v

H u v v v u v u v u v u

− −

− −

− − − −

− − − −  (38) 

Susbstituting equations (36)-(38) into (35) and comparing like power of ρ  we have the approximation and recurrence relation as 
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 (39) 

Thus from equation (36) we get the series solution as 

2

2

1
( , ) = sin( ) sin( ) sin( ) ,

2
1

( , ) = sin( ) sin( ) sin( ) .
2

u x t x x t x t

v x t x x t x t

− + + − + + 

⋯

⋯

 (40) 

The approximate series solution in (40) rapidly converges to exact solution after few approximation. 
Absolute errors between the approximate solution and exact solution is given in Figures 1-2 for the different values of x  and .t  

These figures clearly confirm that the approximate solution of ( , )v x t  and ( , )u x t  are very close to the exact solution, which 

ensure the accuracy of numerical technique and ensure the method is accurate and effective to find the solution of NPDEs.  

 
Fig. 1. Error graph between the numerical and exact solutions of ( , )u x t  vs. t and x. 

 
 

 
Fig. 2. Error graph between the numerical and exact solutions of ( , )v x t  vs. t and x. 
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Table 1. Comparison of L∞  and 2L  errors for ( , )u x t  

t 
Proposed Method Pandey et al.[19] Mittal et al.[38] 

2L
          

L∞  2L
          

L∞  2L
            

L∞  

0.01 1.04 1610−×   1.11 1610−×  5.62 810−×   1.13 710−×  3.49 410−×     2.90 410−×  

0.1 1.09 1610−×   1.11 1610−×  1.38 710−×   1.89 710−×  3.78 410−×    2.65 410−×  

0.5 2.43 1510−×   1.59 1410−×  6.62 810−×   1.19 710−×  4.47 410−×    1.07 410−×  

1 4.38 1310−×  1.26 1210−×  4.22 810−×   7.07 810−×  7.87 410−×    3.76 410−×  

Table 2. Comparison of L∞  and 2L  errors for ( , )v x t  

t 
Proposed  Method Pandey et al.[19] Mittal et al.[38] 

2L
           

L∞  2L
         

L∞  2L
            

L∞  

0.01 1.04 1610−×   1.10 1610−×  5.62 810−×   1.13 710−×  3.49 410−×     2.90 410−×  

0.1 1.06 1610−×   1.11 1610−×  1.38 710−×   1.89 710−×  3.78 410−×     2.65 410−×  

0.5 2.84 1510−×   1.59 1410−×  6.62 810−×   1.19 710−×  4.47 410−×     1.07 410−×  

1 4.84 1310−×   1.27 1210−×  4.22 810−×   7.07 810−×  7.87 410−×     3.76 410−×  

Table 3. Comparison of L∞  and 2L  errors for ( , )u x t  

t 
Proposed Method Pandey et al.[19] Oruc et al.[39] 

2L
         

L∞  2L
        

L∞  2L
        

L∞  

0.5 2.76 1410−×  2.91 1410−×  2.53 610−×  3.88 510−×  6.79 410−×  4.15 510−×  

1 3.9 1510−×   2.40 1410−×  2.59 510−×  3.96 510−×  1.33 310−×  8.21 510−×  
 

The 2L  and L∞  errors of example 1 for different t  for ( , )v x t  and ( , )u x t  for our proposed numerical scheme and the method 

proposed in [19, 38] are given in the Table 1 and 2. And on the observation of these tables we can strongly says that proposed 
numerical technique is better than method proposed in [19, 38].  

Example 2.  Another form of Coupled Burgers’ Equation 

Let us consider a another form of nonlinear fractional order system of coupled Burgers’ equation. This form of Coupled 
Burgers’ equation is also presented by using some appropriate value of constants in (1), given by 

2

2

2

2

( , ) ( , ) ( , ) ( ( , ) ( , ))
= 2 ( , ) 0.1 ,

( , ) ( , ) ( , ) ( ( , ) ( , ))
= 2 ( , ) 0.3 ,

u x t u x t u x t v x t u x t
u x t

t x x x

v x t v x t v x t v x t u x t
v x t

t x x x

∂ ∂ ∂ ∂ + − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + − ∂ ∂ ∂ ∂ 

 (41) 

with the initial conditions (2) as  

( ,0) = 0.05(0.5 tanh(0.0275(20( 0.5)))), ( ,0) = 0.05(1 tanh(0.0275(20( 0.5))))v x x u x x− − − −  (42) 

Under the assumption of above conditions the exact solution of above equation is given as: 
( , ) = 0.05(0.5 tanh(0.0275(20( 0.5) 0.055 ))),v x t x t− − − ( , ) = 0.05(1 tanh(0.0275(20( 0.5) 0.055 ))).u x t x t− − − Using the proposed scheme 

in the above system we find the approximate numerical solution of example 2. Absolute error between the approximate solution 
and exact solution is given in Figures 3-4 for the different values of x  and .t  These figures clearly confirm that the approximate 

solution of ( , )v x t  and ( , )u x t  are very close to the exact solution, which ensure the efficiency of our proposed method and ensure 

the method is accurate and effective.  
The analysis of errors for example 2 for various values of ,x t  for ( , )v x t  and ( , )u x t  for our proposed numerical scheme and the 

method proposed in [19] are given in the Table 3 and 4. And on the observation of these tables we can strongly says that 
numerical method is efficient than method proposed in [19].  

Example 3.  

Let us consider a system of coupled linear homogeneous PDE which can be found by giving some particular values to the 
constants in our concerned coupled system (1) as 

1 1

1 1

2 2

2 2

( , ) ( , )
= 0,

( , ) ( , )
= 0,

u x t v x t

t x

v x t u x t

t x

α β

α β

α β

α β

∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂ 

 (43) 

with the given initial condition ( ,0) = , ( ,0) =x xv x e u x e− . For the value 1 2 1 2= = = = 1α α β β , the exact solution for above 

homogeneous coupled system is [40] 

( , ) = cosh( ) sinh( ) , ( , ) = cosh( ) sinh( ) .x x x xu x t t e t e v x t t e t e− −+ −  (44) 

Using the proposed scheme in the above system we find the approximate numerical solution of example 3. Absolute error 
between the approximate solution and exact solution is given in Figures 5-6 for the different values of x  and .t  These figures 

clearly confirm that the approximate solution of ( , )v x t  and ( , )u x t  are very close to the exact solution, which ensure the 

efficiency of our proposed method and ensure the method is accurate and effective.  
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Fig. 3. Error graph between the numerical and exact solutions of ( , )u x t  

vs. t and x. 
Fig. 4. Error graph between the numerical and exact solutions of ( , )v x t  

vs. t and x. 
 

 

Fig. 5. Error graph between the numerical and exact solutions of ( , )u x t  vs. t and x. 

 

Fig. 6. Error graph between the numerical and exact solutions of ( , )v x t  vs. t and x. 
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Table 4. Comparison of L∞  and 2L  errors for ( , )v x t  

t 
Proposed Method Pandey et al.[19] Oruc et al.[39] 

        2L             L∞          2L             L∞          2L             L∞  

0.5 1.1 1410−×   1.73 1410−×  1.21 610−×  2.04 610−×  2.03 410−×  9.39 610−×  

1 1.1 1410−×   1.27 1410−×  1.25 610−×  2.10 510−×  9.85 410−×  4.12 510−×  

Table 5. Comparison between the absolute errors for ( , )u x t  for different x at = 0.1t  

x 
Proposed Method Method given in [40] 

| ( , ) ( , ) |exact numu x t u x t− | ( , ) ( , ) |exact numu x t u x t−

0.1 162.22 10−×  101.9 10−×  

0.3 162.21 10−×  82.6 10−×  

0.5 163.28 10−×  78.4 10−×  

0.7 164.44 10−×  73.8 10−×  

0.9 163.86 10−×  65.4 10−×  

Table 6. Comparison between the absolute errors for ( , )v x t  for different x at = 0.1t  

x 
Proposed Method Method given in[40] 

| ( , ) ( , ) |exact numu x t u x t− | ( , ) ( , ) |exact numu x t u x t−

0.1 161.11 10−×  91.0 10−×  

0.3 161.11 10−×  82.0 10−×  

0.5 161.28 10−×  77.8 10−×  

0.7 161.09 10−×  76.5 10−×  

0.9 175.55 10−×  62.9 10−×  

Table 7. Comparison between the absolute errors for ( , )u x t  and ( , )v x t  for different x at = 1t  

x 
Proposed Method Proposed Method 

| ( , ) ( , ) |exact numu x t u x t− | ( , ) ( , ) |exact numv x t v x t−  

0.1 155.59 10−×  154.01 10−×  

0.3 156.07 10−×  153.18 10−×  

0.5 158.08 10−×  152.46 10−×  

0.7 159.18 10−×  151.82 10−×  

0.9 141.19 10−×  151.28 10−×  

The analysis of errors for example 3 for various values of ,x t  for ( , )v x t  and ( , )u x t  for our proposed numerical scheme and the 

method proposed in [40] are given in the Table 5, 6 and 7. And on the observation of these tables we can strongly says that 
numerical method is more efficient than method proposed in [40].  

6. Results and Simulations for Proposed Model 

In the previous section the accuracy and efficiency of the proposed scheme is justified. The excellent efficiency of this method 
motivated the authors to solve the system of coupled time fractional order advection-diffusion equation. The diffusive nature of 
approximate numerical solutions ( , )v x t  and ( , )u x t  vs the soil column length x  at = 0.5t  are given in the Figures 7-10 for 

various value of fractional parameter in the non-conservative systems.  
In Figures 7-10, the variation in solute concentration for various particular cases of time fractional parameters are given. The 
solution profile decreases as the coupled system approaches to fractional order from integer order. Damping nature of solute 
profiles are easily justified for the source terms ( 1 2= = 1k k ) in comparison of sink terms ( 1 2= = 1k k − ). 

 

 

Fig. 7. Graph of the solute species ( , )u x t  vs. x  for different 1α  and 1 2 2= = 1, = 1k k α  at = 0.5t . 
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Fig. 8. Graph of the solute species ( , )u x t  vs. x  for different 1α  and 1 2 2= = 1, = 1k k α−  at = 0.5t . 

 

 

Fig. 9. Graph of the solute species ( , )v x t  vs. x  for different 2α  and 1 2 1= = 1, = 1k k α  at = 0.5t . 

 

 

Fig. 10. Graph of the solute species ( , )v x t  vs. x  for different 2α  and 1 2 1= = 1, = 1k k α−  at = 0.5t . 

7. Conclusion 

In this article, an efficient numerical technique has been proposed by using homotopy perturbation method and He’s 
polynomials for the approximate numerical solution of nonlinear multiterm time fractional order advection-reaction-diffusion 
equation. The proposed method have been justified on some particular cases of concerned coupled system which shows the high 
efficiency and accuracy of numerical scheme. The present scientific contribution has achieved three important consequences, 
which is the demonstration of the convergence of given numerical technique for the solute species ( , )v x t  and ( , )u x t  for different 

fractional time derivatives, the graphical presentation of effect of reaction term on solute profiles with respect to the soil column 
length at = 0.5t  and last one is demonstration of damping behavior of solute profile in effect of reaction term as the coupled 
system goes to fractional order from integer order. The future scope of the author is to find the numerical solution of wide range 
of mathematical models of physical phenomenas viz., 2D-3D problems. 
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