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Abstract. An important equation usually used in modeling neuronal dynamics is cable equation. In this work, a numerical method 
for the fractional cable equation which involves two Riemann-Liouville fractional derivatives is proposed. Our computational 
technique is based on collocation idea where a combination of Bernoulli polynomials and Sinc functions are used to approximate 
the solution to this problem. The constructed approximation by our method convert the fractional cable equation into a set of 
algebraic equations. Also, we provide two numerical examples to confirm the accuracy and effectiveness of the present method. 

Keywords: Fractional cable equation, Bernoulli polynomials, Riemann-Liouville fractional derivative, Sinc function, Numerical 
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1. Introduction  

During the last few decades, a lot of attention has been paid to the fractional differential equations (FDEs) because of their 
extensive engineering applications. For example, these equations frequently appear in modeling many areas of fluid mechanics, 
viscoelasticity, biology, pharmacy, and control systems [16, 24]. Today, different numerical methods have been used to solve FDEs 
(see for example [2, 3, 4, 5, 13, 24, 26, 27, 28, 32-34] and references therein). 

The standard model that explains electrodiffusion of ions in nerve cells is given by the following Nernst–Planck equation [17], 

 ∂ ∂ ∂ ∂ = + −  ∂ ∂ ∂ ∂

2

,2

4
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where kC  is the concentration of ionic species with diffusivity kD  and charge kz . Also, iV  is the membrane voltage. We refer to [17] 

for more details. If we consider slowly varying ionic concentrations along the axial direction, ∂ ∂ ≈/ 0,kC t  then the standard cable 

equation (SCE) is obtained. To cover the anomalous diffusion in the movement of the ions, SCE needs to be modified. In recent 
years, to model anomalous electrodiffusion of ions in spiny dendrites, the fractional cable equation (FCE) from the fractional Nernst-
Planck equation is derived (see [17, 36] and references therein). 

In this study, we consider the following FCE [35]: 

γ γκ µ− −
 ∂ ∂  = − +  ∂ ∂ 
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( , ) ( , )
( , ) ( , ),t t

u x t u x t
D D u x t g x t

t x
  ∈Ω×( , ) [0, ],x t T  (1) 

with initial and boundary conditions 

              θ=( ,0) ( ),u x x   ∈Ω,x  (2) 

               =( , ) 0,u x t    ∈ ∂Ω×( , ) [0, ].x t T  (3) 

Here γ γ κΩ= < < >1 2(0, );0 , 1; 0L  and µ2
 are constants. Also, ( , )g x t  is a given function and ( , )u x t  is an unknown function. In 

Equation (1) the fractional derivatives are Riemann-Liouville type and are defined by: 
 

Definition 1.1. Suppose that ( )u t  be in  [ , ]C a b  and  γ− < <1n n , then the Riemann-Liouville fractional derivative of order γ  is 

defined by [23] 
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where, Γ  denoting the Gamma function and we have [16, 23] 

γ γ γτ τ τ τ+ = +1 1 2 2 1 1 2 2( ( ) ( )) ( ) ( ),t t tD u t u t D u t D u t  τ1(  and τ2 are constants), (4) 

γ γ

γ

−Γ +
=
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,
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n n
t

n
D t t

n
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In recent years, a lot of numerical methods to solve problem (1)-(3) have been devised such as homotopy analysis method [12], 
implicit numerical methods [19], finite element method [35], implicit compact difference scheme [11], Galerkin finite element 
method [36], finite difference/ Legendre spectral schema [18], meshless method [8], explicit numerical method [25], and 
discontinuous Galerkin finite element method [33]. We also refer the interested reader to [21, 31].  

The main purpose of this work is to solve problem (1)-(3) by the Sinc-Bernoulli collocation method. In our method, ( , )u x t  is 

approximated by the Bernoulli polynomials in time direction and the Sinc functions in space direction. Our method has the 
advantage of converting the solution of FCE given (1)-(3) into the solution of algebraic equations. Therefore, the computation 
becomes very simple and the corresponding algorithm is computer-oriented. Numerical methods related to the Sinc functions was 
developed as an efficient method in [20, 30]. These methods are widely used for solving many problems arising in applied sciences. 
Also, these methods are used as an efficient and effective tool for solving fractional or ordinary differential equations, the main 
reason being two: first, their desirable behavior towards singularity problems associated with the simple implementation of the 
method, and second, because of their exponential convergence rate [20, 30]. For some recently published papers on Sinc methods, 
we refer the interested reader to [1, 6, 9, 22, 23, 27, 28, 29] and references therein. 

This paper is organized as follows: The next section is devoted to the some basic definitions and results of Bernoulli polynomials 
and Sinc functions. In Section 3, we construct the Sinc-Bernoulli collocation method for solving the problem (1)-(3). In Section 4, we 
obtain the error bound. Numerical simulations are reported in Section 5.  

2. Mathematical Preliminaries 

2.1 Sinc functions 
 
The Sinc function is defined by [30]   

π

π
= ∈ ℝ

sin( )
Sinc( ) , .

x
x x

x
  

Also, for a given > 0h  and = ± ±0, 1, 2,...,i  the i th Sinc functions are defined as  

 − =   
( , )( ) Sinc

x ih
S i h x

h
.  

Let > 0h . Then ( ),g x  which is defined on ℝ ,  has the cardinal series representation of the form 

∞

=−∞

= ∑( , )( ) ( , )( ),i
i

C g h x g S i h x  = ( ),ig g ih   

whenever this series converges. ( , )( )C g h x  is called the whittaker cardinal expansion of g  and its properties have been broadly 

studied in [20]. Our aim in this paper, is to construct the approximation overΩ . For this aim, we use the conformal one-to-one map 

φ
 =   −

( ) log ,
z

z
L z

  

which maps ( ){ }π= ∈ − < ≤ℂ, arg / / 2D z z L z d ,  onto the strip 

{ }ξ= ∈ <ℂ : ( ) .dD z z d   

Note that, φ φΩ = =−∞ℝ  ( ) , (0)   and φ =∞( )L .  The Sinc basis functions on (0, )L  are defined as  

φ
οφ

 − = =   
( )

( ) ( , ) ( ) Sinc .i

x ih
S x S i h x

h
  

Here οφ( , ) ( )S i h x  is defined by φ( , )( ( )).S i h x  

Also, for > 0,h  a set of Sinc points rx  on Ω  is defined by 

φ−= =
+

1 exp( )
( ) ,

1 exp( )r

L rh
rh

rh
x  = ± ±0, 1, 2,....r  (6) 

Definition 2.1. ([30]). The space α( )L D  is the family of all analytic functions u  in D ,  such that 
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where 1C  is a constant and 

φρ = ( )( ) xx e . 

The following theorem tells us that Sinc interpolation on α( )L D  converge exponentially.  

Theorem 2.2. ([30]). Let ( )u x  be in α( )L D , α< ≤0 1  and > 0d ,  let m
 
be a positive integer, and let π α= /h d m , then there 

exists a constant 2C , which is independent of m  such that 

( )π α∈Ω
=−

− ≤ −∑ 2sup ( ) ( ) ( ) exp
m

x i i
i m

u x u x S x C d m .  

Also, we need the following relationships [30]. 
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2.2 The shifted Bernoulli polynomials 

The Bernoulli basis polynomials of order i  are defined as [15] 

( )
β −

=

=
−∑

0

!
( ) .

! !

i
i l

li
l

i
x B x

l i l
 ∈ [0,1],x   

Here, β= =(0), 0,1,2,...,  l lB l i  are called the Bernoulli numbers. These numbers can be obtained by using the generating function 

∞

=

=
− ∑

01 !

l

lx
l

x x
B

e l
,  

where + =2 1 0lB  for ∈ℕl  (for more details see [15]). As mentioned in [14], the Bernoulli polynomials belong to the space of 

2[0,1]L  

and { }β β= 0( ),..., ( )nY span x x  is a complete subspace of 

2[0,1]L . Now suppose that  ∈ 2( ) [0,1]f x L , since Y  is a finite subspace of 

2[0,1]L , according to the best approximation, there exist the unique coefficients { } =0

n

i i
c  such that [14] 

β
=

≈ =∑
0

( ) ( ) ( ).
n

n i i
i

f x f x c x  (10) 

In fact, ( )nf x  is the best approximation to f  out of .Y  

In the following theorem, an explicit formula for Bernoulli numbers is given. This formula specifies the relationship between 
Bernoulli numbers and Striling numbers.  

Theorem 2.3. ([10]). For ∈ℕ,l  the Bernoulli numbers 2lB  can be computed by 
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where  

( )
−

=

= −
−∑

1

1 !
( , ) ( 1) ,

! ! !

s
s k r

k

s
S r s k

s k s k
 ≤ ≤1 ,s r   

 

are Striling numbers of the second kind.  

To apply the Bernoulli polynomials β ( )i x  on [0, ]T , we use the change of variable =t xT . Then the shifted Bernoulli polynomials

β β=ɶ ( ) ( / )i it t T , for ∈ [0, ]t T , are obtained as: 

( )
β

−
−

=

 =   −∑ɶ

0

! 1
( ) .

! !

i li
i l

li
l

i
t B t

l i l T
 (11) 

Now, we obtain the Riemann-Liouville fractional derivative of βɶ ( )i t . 
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Theorem 2.4. Assume that βɶ ( )i t  is a shifted Bernoulli polynomial of degree i  as (11) and also let γ > 0 , then 

γγ γβ − −
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Proof. Using Equations (4), (5) and (11), the proof is straightforward. 

It is worth to mention here that, the ordinary first-order derivative of βɶ ( )i t  can be determined as  

β − −

=

=∑
ɶ

(1) 1

1

( )
,

i
i li

il
l

d t
Z t

dt
  = .1,2,... i  (12) 

3. The Sinc-Bernoulli Collocation Method  

To solve the FCE as given in (1)-(3), we use +( 1)n  terms of shifted Bernoulli polynomials, in time, and +(2 1)m  terms of Sinc 

functions, in space, to approximate ( , )u x t . Thus, we have 

β
=− =

≈ = ∑ ∑ ɶ
,

0

( , ) ( , ) ( ) ( ),
m n

m n ij i j
i m j

u x t u x t u S x t  (13) 

where { }iju  are + +( 1)(2 1)n m  unknown coefficients. Note that , ( , )m nu x t  satisfies the boundary conditions in (3), since when x  tend 

to 0  and L  then ( )iS x  tend to zero.  

Theorem 3.1. Let ( , )u x t  is approximated by , ( , )m nu x t  as (13). Also, let γ γ< <1 20 , 1  and rx  be Sinc points. Then we have 
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where φ δ φ δ= +(1) (2)" ' 2
, ,( ) ( ( )) .r rir i r i rE x x  

 
Proof. Using Equations (7), (12) and (13), we obtain 
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Similarly, by using Theorem 2.4 and Equation (7), we have 
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Finally, employing Equations (8), (9) and Theorem 2.4 we obtain 
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The proof is complete. 

We now describe the numerical collocation scheme to problem (1)-(3). By substituting , ( , )m nu x t  into (1) we have  
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Next, we collocate (14) at the Sinc points { } =−

m

r r m
x  and the shifted Legendre roots { } =0

n

l l
t  of ( )( )+ −1 2 / 1nL t T . Here ( )nL t , 

− ≤ ≤1 1t  is the well-known Legendre polynomial of order n  (see[4]). Then by applying Theorem 3.1, for =− ,...,r m m  and = 1,...,l n , 

we obtain 
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Moreover, by substituting , ( , )m nu x t  into (2) we have 

β θ
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0

( ) (0) ( ).
m n

ij i j
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u S x x   

Collocating the above equation at { } =−

m
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x  and using (7) we obtain  

β θ
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=∑ ɶ

0

(0) ( ),
n

rrj j
j

u x   =− ,...,r m m . (16) 

Finally, the FCE (1)-(3) is reduced to linear algebraic equations (15) and (16) which can be solved for the unknown coefficients

{ }iju . So by using (13), , ( , )m nu x t  can be found. The results of this section can be summarized in the following algorithm. 

 
BEGIN 
Input  m

 
and .n  

Step 1:  Choose the roots of order +1n
 
of shifted Legendre polynomials as +1n

 
collocation points: { } =0

n

l l
t

 
Step 2:  Select the +2 1m  Sinc collocation points { } =−

m

r r m
x  by (6). 

Step 3:  Create the + ×(2 1)m n  equations by (15). 

Step 4:  Create the +2 1m  equations by (16). 

Step 5:  Solve the + × +(2 1) ( 1)m n  linear algebraic equations given in step 3 and step 4 for the unknown coefficients { }iju . 

Step 6: Find the numerical solution as β
=− =

= ∑ ∑ ɶ
,

0

( , ) ( ) ( ).
m n

m n ij i j
i m j

u x t u S x t  

END.  

4. Error Bounds 

In this section, we will find an upper bound for the truncated Sinc-Bernoulli series of  ( , )u x t . For simplicity, we set = 1.T  

Lemma 4.1. ([7]). Suppose ψ +∈ ( 1)( ) [0,1]nt C  and ψ ( )n t  is the approximation of ψ( )t  by using Bernoulli polynomials as given in (10), 

then, we have 
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where α ∈ ∈ ℕ(0,1], ,  r  and = ×[0,1] [0,1].I  

Theorem 4.2. Suppose 

α∈( , ) ( )ru x t H I  and , ( , )m nu x t  is the approximation of ( , )u x t  as in Equation (13). Also, suppose π α= /h d m , 

then 
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where K  is a constant.  

Proof. Employing triangle inequality, we get 
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0 022 2

( , ) ( ) ( ) ( , ) ( , ) ( ) ( , ) ( ) ( ) ( ) .
m n m m m n

ij i j i i i i ij i j
i m j i m i m i m j

u x t u S x t u x t u x t S x u x t S x u S x t  (17) 

 



Numerical Solution of Time Fractional Cable Equation via the Sinc-Bernoulli Collocation Method 1921 
 

Journal of Applied and Computational Mechanics, Vol. 7, No. 4, (2021), 1916-1924 

Since 

α∈( , ) ( )ru x t H I , we obtain 
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According to Theorem 2.2, one obtains 
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where ζ =, 1,..., ,  l l r  are constant. Also, since [ ]( )∈( ) 0,1 ,lw t C  there exist real numbers { } =1
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l l
W  such that <( )l lw t W . Thus, from (18), 
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where { }≤ ≤= 1max l r lW W  and { }ζ ζ≤ ≤= 1max l r l . Now, since 

∞
≤( ) 1iS x , we get 

β β
=− =− = =− =

− ≤ −∑ ∑ ∑ ∑ ∑ɶ ɶ

0 02 2

( , ) ( ) ( ) ( ) ( , ) ( ) .
m m n m n

i i ij i j i ij j
i m i m j i m j

u x t S x u S x t u x t u t  (20) 

Also, using Lemma 4.1 we have 

η
β

=

− ≤
+ +∑ ɶ

0 2

( , ) ( ) ,
( 1)! 2 3

n
i

i ij j
j

u x t u t
n n

     =− ,..., .i m m  (21) 

where η =−, ,... ,i i m m  are constant. Finally, by using (20) and (21), we have 

( )
( )

η
β

=− =− =

+
− ≤

+ +∑ ∑ ∑ ɶ

0 2

2 1
( , ) ( ) ( ) ( ) ,

1 ! 2 3

m m n

i i ij i j
i m i m j

m
u x t S x u S x t

n n
 (22) 

where { }η η= − ≤ ≤max , .i m i m  Let { }ζ η= max , .K rW  The desired result can be achieved by inserting (19) and (22) into (17). 

5. Numerical Examples 

In this section, we show the effectiveness of our method with two numerical examples. We report the results based on the 

following discrete 

∞ −l error  and −2l error , which are defined respectively as: 

( ) ( ){ }∞ − = − − ≤ ≤ ≤ ≤,max , , , , 0 ,exact m ni j i jl error u x t u x t m i m j n  

( ) ( )( )
=− =

  − = −   
∑∑

1

22
2

,
0

, , .
m n

exact m ni j i j
i m j

l error u x t u x t  

 

Here, { },i jx t  are the collocation points as given in Section 3. Also, in all examples we choose π= /h m . It is worth mentioning 

that all the numerical calculations of this paper are done by Maple software. 
 
Example 5.1. Consider the following FCE [12, 8, 35] 

( ) ( )
( )

( ) ( )
( )

γ γ
γ γ π

π
γ γ

+ +
− −

  ∂ ∂    − + = + +     ∂ ∂ Γ + Γ +   

1 2

1 2

2 2 1 1
1 1

2
1 2

, ,
, 2 sin ,

2 2t t

u x t u x t t t
D D u x t t x

t x
  

with the initial condition ( )=,0 0u x  and homogeneous conditions. Its exact solution is given as ( ) ( )π= 2, sin .u x t t x  This problem 

is solved with the Sinc-Bernoulli collocation method described in Section 3. Surface of the error function ( ) ( )− ,, ,exact m nu x t u x t  with 

= 2n  and = 50m  is shown in Figure 1. Also, Table 2 shows the discrete 

∞ −l error  and −2l error  for = 2n  and various γ1, ,  m  and 

γ2 . It is found that in Table 2, as m  increases, 

∞ −l error  and −2l error  decreases.  
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Fig. 1. Surface of the error function obtained for Example 5.1 with γ= = =
1

2, 50, 0.2     n m  and γ =
2

0.7.  

 

Fig. 2. Surface of the error function obtained for Example 5.2 with γ γ= = = =
1 2

   . ,  3 50, 0.5n m  

Table 1. Values of 

∞ −l error  and −2l error  with = 2,n  for Example 1.  

m 
γ γ= =

1 2
0.5   γ γ= =

1 2
0.8   γ γ= =

1 2
0.1, 0.9  

∞ −l error   −2l error   ∞ −l error   −2l error   ∞ −l error   −2l error  

5 9.34 × 10
�	  2.57 × 10

�
  9.30 × 10
�	  2.56 × 10

�
  9.47 × 10
�	  2.59 × 10

�
 
10 1.01 × 10

�	  2.08 × 10
�	  9.94 × 10

��  2.06 × 10
�	  1.06 × 10

�	  2.11 × 10
�	 

15 1.17 × 10
��  3.67 × 10

��  1.15 × 10
��  3.66 × 10

��  1.21 × 10
��  3.70 × 10

�� 
20 2.40 × 10

��  6.68 × 10
��  2.38 × 10

��  6.67 × 10
��  2.48 × 10

��  6.73 × 10
�� 

25 5.32 × 10
��  1.87 × 10

��  5.26 × 10
��  1.87 × 10

��  5.49 × 10
��  1.88 × 10

�� 
30 1.45 × 10

��  4.77 × 10
��  1.44 × 10

��  4.76 × 10
��  1.49 × 10

��  4.79 × 10
�� 

40 1.39 × 10
��  5.07 × 10

��  1.38 × 10
��  5.07 × 10

��  1.42 × 10
��  5.09 × 10

�� 
70 4.86 × 10

���  2.17 × 10
��  4.83 × 10

���  2.16 × 10
��  4.96 × 10

���  2.17 × 10
�� 

Table 2. Values of 

∞ −l error  and −2l error  with = 3,n  for Example 2. 

m 
γ γ= =

1 2
0.5   γ γ= =

1 2
0.8   γ γ= =

1 2
0.1, 0.9  

∞ −l error   −2l error   ∞ −l error   −2l error   ∞ −l error   −2l error  

5 3.02 × 10
�	  9.22 × 10

�	  3.32 × 10
�	  1.07 × 10

�
  2.00 × 10
�	  5.35 × 10

�	 
10 1.09 × 10

��  3.53 × 10
��  1.21 × 10

��  4.12 × 10
��  7.28 × 10

��  2.04 × 10
�� 

15 1.58 × 10
��  7.42 × 10

��  1.74 × 10
��  8.66 × 10

��  1.06 × 10
��  4.30 × 10

�� 
20 1.32 × 10

��  5.86 × 10
��  1.45 × 10

��  6.84 × 10
��  8.60 × 10

��  3.31 × 10
�� 

25 4.36 × 10
��  2.58 × 10

��  4.81 × 10
��  3.01 × 10

��  2.93 × 10
��  1.49 × 10

�� 
30 5.69 × 10

��  2.80 × 10
��  6.28 × 10

��  3.27 × 10
��  3.73 × 10

��  1.61 × 10
�� 

40 4.21 × 10
��  2.25 × 10

��  4.65 × 10
��  2.63 × 10

��  2.77 × 10
��  1.30 × 10

�� 
70 7.54 × 10

��
  5.33 × 10
���  8.33 × 10

��
  6.21 × 10
���  5.00 × 10

��
  3.07 × 10
��� 
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Example 5.2. Consider the problem (1)-(3) with κ µΩ= = = =(0,1), 1      T  and 

( ) ( )
( ) ( ) ( ) ( )

( )
γ γ γ γ

γ γ γ γ

+ − + −  = − − − + + − Γ + Γ Γ + Γ 

1 1 2 22 1 2 1
2 2 2

1 1 2 2

12 2 6
, 3 ,

3 3

t t t t
g x t t x x x x   

θ = −2( ) .x x x   

This problem has exact solution  ( ) ( )( )= + −3 2, 1 .u x t t x x  Surface of the error function ( ) ( )− ,, ,exact m nu x t u x t  with = 3n  and 

= 50m  has been shown in Figure 2. Also, Table 2 represents the 

∞ −l error  and −2l error  for = 3n  and various γ1, ,  m  and γ2.  This 

table shows that the errors decrease as m  increases.  

6. Conclusion 

In the present work, the combination of shifted Bernoulli polynomials and Sinc functions together with the collocation method 
were used to reduce the solution of time FCE which involves two fractional derivatives to the solution of a set of algebraic equations. 
This method was very easy to implement and our numerical results showed that the Sinc-Bernoulli collocation method can solve 
FCE effectively. 
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