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Abstract. In this work, a generalized higher-order time-derivatives model with phase-lags has been introduced. 
This model is applied to study the thermal heat problem of  a homogeneous and isotropic long cylinder due to 
initial stress and heat source. We use the Laplace transform method to solve the problem. The numerical 
solutions for the field functions are obtained numerically using the numerical Laplace inversion technique. The 
effect of  the higher-order parameters, the initial stress, the magnitude of  the heat source and the instant time 
on the temperature field, the displacement field, and the stress fields have been calculated and displayed 
graphically and the obtained results are discussed. The results are compared with those obtained previously in 
the contexts of  some other models of  thermoelasticity.  

Keywords: Generalized thermoelasticity, Phase-lags, Higher-order, Initial stress. 

1. Introduction 

The theory of thermoelasticity deals with the effect of mechanical and thermal disturbances on an elastic body. It is 
concerned with the interaction among deformation and thermal fields. In the nineteenth century, Duhamel [1] and 
Neumann [2] announced the theory of uncoupled thermoelasticity. An important shortcoming of this theory is that the 
mechanical state of the elastic body does not affect the temperature which is not following true physical experiments. To 

surmount this paradox, Biot [3] in 1956 formulated the theory of coupled thermoelasticity by including inertia terms in 
the equation of motion. Also, to eliminate the contradiction in the coupled thermoelasticity theory (infinite speed of heat 

propagation), Cattaneo [4], Vernotte [5], Lord and Shulman [6], Green and Lindsay [7], Green and Naghdi [8-10] and 
others formulated generalized theories of thermoelasticity. Tzou [11-13] in 1995 formulated the theory of dual phase-lag 

(DPL), which describes the thermal interactions between the phonons and the electrons on the microscopic level as 
delaying sources causing the response delay on the macroscopic scale. The importance of the DPL model is that it can be 
applied to experimental results. Recently, many authors solved numerous problems in the context of the dual-phase-lag 
model [14-24].  

As applications of  thermoelasticity, Banerjee et al. [25] proved experimentally that thermoelastic instabilities occur in 

the presence of  a liquid lubricant between two sliding solid surfaces. Also, Wong et al [26] demonstrated that the residual 
stress within a material can be detected and measured using the thermoelastic effect. Marin et al [27] studied the theory of 
micropolar thermoelastic bodies whose micro-particles possess microtemperatures. Marin and Craciun [28] proved, under 
weak restrictions, the unicity of solution for a boundary value problem in dipolar thermoelasticity to model composite 
materials. 
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Studying the dynamic interaction of thermoelastic materials with additional parameters is very useful in investigating 
several concrete applications. For example, the effect of initial stresses regarding the thermal and mechanical state of a 
thermoelastic solid has been discussed as given in [29-37] for various reasons involving the variation of gravity, the 

temperature difference, the quenching process, etc. Likewise, the influence of a heat source in an elastic body was 
extensively studied [38-43] owing to its numerous engineering applications, such as materials processing, cutting and 
pulsed laser welding, case hardening, etc. 

The objective of the current article is to introduce and investigate a new thermoelasticity model with higher-order time-
derivatives and two-phase delays. This modified model can be denoted as the HDPL model. Recently, Abouelregal [44-

46] constructed three new general thermoelastic heat conduction models including higher-order time-derivatives and two 

phase-lags. Zampol [47] proved the continuous dependence of the solution of suitable initial-boundary value problems 
with respect to initial given data for three different HDPL models. The same author studied the uniqueness of the solution 

in [48]. Chiriţă et al [49] studied the thermodynamical consistency of higher-order dual-phase-lag models of heat 

conduction.   
To verify the accuracy of the current model, we have discussed a thermal heat problem for an infinitely long cylinder 

subjected to a decaying and periodic heat source and exposed to a constant hydrostatic initial stress. Expressions of the 
studied variables are calculated under appropriate initial conditions. Using the Laplace transform and numerical Laplace 

inversion, the problem is solved. The variations of temperature, displacement and thermal stress distributions are 
investigated through the influence of the higher-order time-derivative parameters, heat source magnitude, initial stress and 

instant time. The obtained numerical results are illustrated graphically and show that the analytic solutions are in good 
accordance with the numerical solutions. We believe that the analysis of this study will be useful to understand the basic 
features of this new model for heat conduction. 

2. Governing Equations of Thermoelasticity Theory 

The classical model of the Fourier’s law ([6] and [50, 51]) states that the heat flux at any point in a body is proportional 
to the gradient of temperature at the same point, that is, 

 ( , ) ( , )x t K x tθ=− ∇q  (1) 

where q  is the heat flux, K is the thermal conductivity and 
0

T Tθ = −  represents the thermodynamic temperature in 

which T  is the temperature-change above a uniform reference temperature 
0

T  of the body chosen such that 

0 0
| |/ 1T T T− = .  Cattaneo [4], Vernotte [5], Lord and Shulman [6] formulated the theory of generalized thermoelasticity 

with one relaxation time by the equation 

 ( , ) ( , )x t K x tτ θ+ =− ∇
q

q  (2) 

whereτ
q

is the single phase-lag. Also, Tzou [11-13] proposed a generalization of the Fourier’s law with two phase-lags 

given by  

 ( , ) ( , )x t K x t
θ

τ θ τ+ =− ∇ +
q

q  (3) 

where 
θ
τ is the phase-lag of the temperature gradient. The classical energy equation [52] is formulated by 

 
0e

e
Q C T

t t

θ
ρ ρ γ

∂ ∂
−∇⋅ + = +

∂ ∂
q  (4) 

where 
e

C denotes the specific heat at constant strain, (3 2 )
t

γ λ μ α= +  represents the stress temperature modulus, in which 

t
α  denotes the thermal expansion coefficient, λ  andμ are Lamé’s constants, ρ  is the density of the medium and Q is the 

heat source per unit mass. In this work, a Taylor series approximation of Eq. (3) together with the energy equation (4) lead 

to a generalized heat equation describing a dual-phase-lag thermoelastic model. In the modified new model, Eq. (3) is 
approximated by 

 
1 1

1 ( , ) 1 ( , )
! !

k kk kpm

k k

k k

x t K x t
k t k t

θ
τ τ

θ
= =

∂ ∂
+ =− + ∇

∂ ∂

           
∑ ∑q

q  (5) 

where p and m are finite number of terms of higher-order time-derivatives. Introducing Eq. (5) into Eq. (4), we obtain the 

modified equation of heat conduction with higher-order time-derivatives and two phase-lags as  
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 ( )
0

1 1

1 . 1
! !

kk k kp m

ek k

k k

e
K C T Q

k t k t t t

θ
ττ θ

θ ρ γ ρ
= =

∂ ∂ ∂ ∂
+ ∇ ∇ = + + −

∂ ∂ ∂ ∂

              
∑ ∑ q

 (6) 

Equation (6) describes the coupled thermoelasticity theory, the Lord and Shulman theory and dual-phase-lag model for 

different values of the parameters ,
θ
τ τ

q
 and ,m p  as follows 

(i)  Coupled thermoelasticity (CTE) theory when 0
θ
τ =  and 0.τ =

q
 

(ii)  Generalized theory with one relaxation time (LS) when 0
θ
τ = and m = 1. 

(iii) Generalized theory with two phase-lags (DPL) when (m = 2, p = 1). 

The other models, when 2m > or 1p > , are called higher-order dual-phase-lag and denoted in this article by (HDPL). 

Quintanilla [53] proved that Eq. (5), in the case (m = 2, p = 1) with appropriate initial and boundary conditions for ,θ  

conducts to an exponentially stable system if and only if 0 2 .
θ

τ τ< <
q

 Fabrizio and Lazzari [54] has shown that the same 

model is compatible with the thermodynamics with the same restriction on
θ
τ and .τ

q
 In this regard, Chirita et al. [49] 

proved that for the (HDPL) model (m = 3, p = 2) the restriction to be fulfilled in order to have the thermodynamic 

consistency is 0.28441 1.4902 .
θ θ
τ τ τ< <

q
 Authors proved also that the model (m = 4, p = 3) is compatible with the 

thermodynamics provided that 0 1.33 .
θ

τ τ< <
q

 Besides, the well posedness of dual and three-phase-lag models of heat 

conduction equation was considered by Wang et al [55-57] and Quintanilla [58-59]. 

Following [34-37], the additional governing equations for an isotropic homogenous thermoelastic solid with hydrostatic 
initial stress in the absence of external body forces are given below: 

 2 ( )
ij ij kk ij ij ij ij

e e Pσ μ λ δ γθδ δ ω= + − − +  (7) 

 
, , , ,

2 , 2
ij j i i j ij j i i j

e u u u uω= + = −  (8) 

 

2

, 2

i

ij j

u

t
σ ρ

∂
=

∂
 (9) 

where
ij

σ stands for the components of the stress tensor, 
ij

e stands for the components of the strain tensor, 
ij

ω is the rotation 

tensor, P is the initial stress and 
i

u is the component of the displacement vector. 

3. Formulation of the Problem 

We consider the problem of an infinitely long cylinder of radius .a  The cylinder surface is due to hydrostatic initial 

stress, thermal shock and exposed to periodically and decaying heat source. We use the cylindrical coordinates ( ), ,r zφ

with the z -axis lying along the axis of the cylinder (see Fig. 1). 

Due to cylindrical symmetry, all the state functions can be expressed in terms of the radial distance r and the time .t  Thus, 

the displacement vector has the components 

 ( , ), ( , ) ( , ) 0
r z

u u r t u r t u r t
φ

= = =  (10) 

 

Fig. 1. Schematic diagram for the infinitely long cylinder.  
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The strain tensor has the following components 

 , , 0
rr r rz zz z

u u
e e e e e e

r r
φφ φ φ

∂
= = = = = =
∂

 (11) 

The cubic dilatation e is given by 

 
( )1 ru u u

e
r r r r

∂ ∂
= = +

∂ ∂
 (12) 

By setting i j=  in Eq. (7), we obtain 0ijω = and 1ijδ = , then ( )
ij ij

P Pδ ω+ = . Now, we replace the strain components 

in Eq. (7) by their values in (11). The non-vanishing constitutive relations of the system can be written as 

 

2

2

rr

zz

u
e P

r

u
e P

r

e P

φφ

σ μ λ γθ

σ μ λ γθ

σ λ γθ

∂
= + − −

∂

= + − −

= − −

 (13) 

In cylindrical coordinates, the equation of motion (9) can be expressed as (chapter 1 of [60]) 

 

2

2

2

2

2

2

1

2

r rrrr zr r

r

r z

z

rz

rz zz z

u

r r z r t

u

r r z t

u

r r z t

φ φφ

φφ

φ

φ φ φ

φ

σ σ σσ σ
ρ

φ

σ
σ

σ σφ
ρ

σ
σ

σ σφ
ρ

∂ −∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

∂
+

∂ ∂ ∂∂
+ + =

∂ ∂ ∂

∂
+

∂ ∂ ∂∂
+ + =

∂ ∂ ∂

 (14) 

Considering that 0, 0
r rz z z

u u
φ φ φ

σ σ σ= = = = =  and that the stresses and strains depends only on r and t, Eq. (14) 

leads to 

 

2

2

rrrr
u

r r t

φφ
σ σσ

ρ
−∂ ∂

+ =
∂ ∂

 (15) 

From Eqs. (12), (13) and (15), yields 

 ( )
2

2
2

e u

r r t

θ
λ μ γ ρ

∂ ∂ ∂
+ − =

∂ ∂ ∂
 (16) 

Applying the operator 1/ ( ) /r r r∂ ∂  to both sides of Eq. (16), we get 

 ( )
2

2 2

2
2

e
e

t
λ μ γ θ ρ

∂
+ ∇ − ∇ =

∂
 (17) 

where the Laplacien operator
2∇ is given by 

 

2

2

2

1

r r r

∂ ∂
∇ = +

∂ ∂
 (18) 

Also, the heat equation appeared in Eq. (6) turn out to be 



 Thermoelastic model with higher-order time-derivatives and two phase-lags      281 
 

Journal of  Applied and Computational Mechanics, Vol. 7, No. 1, (2021), 277-291 

 

 
2

0

1 1

1 1
! !

kk k kp m

ek k

k k

e
K C T Q

k t k t t t

θ
ττ θ

θ ρ γ ρ
= =

∂ ∂ ∂ ∂
+ ∇ = + + −

∂ ∂ ∂ ∂

              
∑ ∑ q

 (19) 

We will use the following non-dimensional parameters 

 

{ } { } { } { }

{ } { }

2

1 1 2

1

4 2 2

1 1

, , , , , , , ,

1
, , , , e

ij ij

r u c r u t c t
c

C
Q Q P P

Kc c K

θ θ

γ
η τ τ η τ τ θ θ

ρ

ργ
σ σ η

η ρ

′ ′′ ′ ′ ′= = =

′′ ′= = =

q q

 (20) 

where ( )
1

2c λ μ ρ= + is the dilatational wave velocity. Using the non-dimensional parameters (20), the equations (13), 

(17) and (19) reduce to (dropping the primes for convenience) 

 
2

1 1

1 1
! !

kk k kp m

k k

k k

e
K Q

k t k t t t

θ
ττ θ

θ ε
= =

∂ ∂ ∂ ∂
+ ∇ = + + −

∂ ∂ ∂ ∂

              
∑ ∑ q

 (21) 

 

2

2

2 2
e

e

t
θ∇
∂

∇
∂

− =  (22) 

 

( )

( )

( )

2 2

2 2

2

1

1

1

rr

zz

u
e P

r

u
e P

r

e P

φφ

σ β β θ

σ β β θ

σ β θ

∂
= + − − −

∂

= + − − −

= − − −

 (23) 

where 

 

2

2 0

2 2

1

2
,

2
e

T

C c

γμ
β ε

λ μ ρ
= =
+

 (24) 

4. Initial and Boundary Conditions  

The initial conditions of the problem are taken such that the medium is at rest and undisturbed initially as mentioned 

in the equation below  

 
( , 0) ( , 0)

( , 0) 0, ( , 0) 0
u r r

u r r
t t

θ
θ

∂ ∂
= = = =

∂ ∂
 (25) 

We suppose that the following boundary conditions are also hold: 

(i) The surface of the cylinder is subjected to thermal shock of the form 

 ( )
0

( , ) , 0a t H t tθ θ= >  (26) 

where H is the Heaviside unit step function and
0
θ is a constant.  

(ii) The surface of the cylinder is traction free  

 ( ), 0
rr

a tσ =  (٢7) 

The cylinder is initially at zero temperature and for times 0t > , the heat is generated or consumed within the cylinder at 

a time-dependent periodic and decaying generation rate as in [43], described by the equation  

 ( ) ( )2

0
, cos

t

Q r t Q te t
−

= , (28) 

in which
0

Q is the magnitude of the heat generation rate. 
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5. Solution of the Problem in the Laplace Transform Domain 

The application of the Laplace transform technique changes the current problem from the unsteady to a steady one in 
the transform domain. Thus, Eqs. (21-23) can be written in the transform field as 

 ( )2
Q

q q e q
s

θ ε∇ − = −  (29) 

 ( )2 2 2
s e θ∇ − =∇  (30) 

 

( )

( )

( )

2 2

2 2

2

1

1

1

rr

zz

u P
e

r s

u P
e

r s

P
e

s

φφ

σ β β θ

σ β β θ

σ β θ

∂
= + − − −

∂

= + − − −

= − − −

 (31) 

where 

 ( )
( )
( )22

1

1

2
1

!

1

4 3 4 4
, ,

5 4

!

4

k
m

k

k

kp

k

k

s
s s

q r

s
k

s

Q

k

s

s sθ

τ

τ

=

=

− + +
= =

+ +

+

+

     
    

∑

∑

q

 (32) 

Eliminatingθ from Eqs. (29) and (30), one gets 

 ( )4 2
A B CQθ∇ − ∇ + =  (33) 

where the coefficients ,A B and C are given by 

 
2 2

, ,A s q q B qs C qsε= + + = =  (34) 

Since A and B are real positive numbers then Eq. (33) becomes  

 ( )( )2 2 2 2

1 2
CQm m θ∇ − ∇ − =  (35) 

where
2

1
m and 

2

2
m are the roots of the characteristic equation 

 
4 2

0m A m B− + =  (36) 

The solution of Eq. (33) can be written in the form 

 ( )
2

0

1

i i

i

Q
A I m r

s
θ

=

= +∑  (37) 

where
0

I is the modified Bessel functions of the first kind of order zero and the parameters ( ), 1,2
i

A i =  can be determined 

from the boundary conditions. Similarly, the solution of e can be obtained as 

 ( ) ( )
2

2

0

1

1
i i i

i

e A m q I m r
qε =

= −∑  (38) 

In the Laplace transform domain, from Eqs. (12) and (38), we get 

 ( ) ( )
2

2

1

1

1
i

i i

i i

A
u m q I m r

q mε =

= −∑  (39) 
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In deriving Eq. (39), we have used the following well-known relation of the Bessel function 

 ( ) ( )
0 1

x I x dx x I x=∫  (40) 

Differentiating Eq. (39) with respect to r, we arrive at 

 ( ) ( ) ( )
2

2

0 1

1

1 1
i i i i

i i

u
A m q I m r I m r

r q rmε =

∂
= − −

∂

    
∑  (41) 

In addition, the thermal stresses that appeared in Eq. (31) can be expressed as 

 
( )

( )
( )

( )
2 2 2

2

0 1

1

1
i i

rr i i i

i i

m q m q Q P
A I m r I m r

q q rm s s

β
σ

ε ε=

− −
= − − − −

                    
∑  (42) 

 
( )( )

( )
( )

( )
2 2 2 2

2

0 1

1

1
1

i i

i i i

i i

m q m q Q P
A I m r I m r

q q rm s s
φφ

β β
σ

ε ε=

− − −
= − − − −

                    
∑  (43) 

 
( )( )

( )
2 2

2

0

1

1
1

i

zz i i

i

m q Q P
A I m r

q s s

β
σ

ε=

− −
= − − −

     
∑  (44) 

After applying Laplace transform, the boundary conditions (26) and (27) take the forms 

 0( , ) , ( , ) 0
rr

a s a s
s

θ
θ σ= =  (45) 

Substituting Eqs. (37) and (42) into the above boundary conditions, we get two equations in the unknown parameters 

( ), 1, 2
i

A i = as follows 

 

( )

( )
( )

( )
( )

2

0

0

1

2 2 2
2

0 1

1

1 0

i i

i

i i

i i i

i i

Q
A I m a

s s

m q m q Q P
A I m r I m r

q q rm s s

θ

β

ε ε

=

=

+ =

− −
− − − − =

                    

∑

∑
 (46) 

Solving this system, we obtain the values of the constants ( ), 1, 2
i

A i = . Hence, we obtain the expressions for the 

temperature, the displacement and the stress components of the medium in the Laplace transform domain.  

6. Laplace Transform Inversion 

In order to obtain the solutions of the different physical fields in the physical domain, it is necessary to perform Laplace 

inversion for the considered solutions obtained in the transformed domain. In this paper, an accurate and efficient 

numerical method proposed by Dubner and Abate [61] and based on a Fourier series expansion is used to obtain the 

inverse of the Laplace transform. An essential feature of this method is to be conceptually simple and easy to program. 

Specifically, authors have shown that any function f in Laplace domain takes the form  ( ) ( ) ( )
c

f f Et t t= − where
c

f is the 

proposed approximation to f defined for [ ]0,t T∈  by 

 ( ) ( )
1

1
  2 , Re , cos

2

ct

c

p

e ip p
f t f r c f r c t

T T T

π π∞

=

= + +
                   ∑  (47) 

Re is the real part, i is imaginary number unit and c is any real positive number. In the same article [61], authors have 

shown that the error term E can be made conveniently small by appropriately choosing the parameter c and only for 

/ 2t T≤ ⋅  If one takes / 2t T=  in (47), then f can be approximated to  

 ( ) ( ) ( )
1

1
  , Re , 1

2

ct N
n

c

n

e in
f t f r c f r c

t t

π

=

= + + −
           ∑  (48) 

where N is a finite number of terms. 
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Fig. 2. Variation of the temperature θ  versus the radius r for 

different models of thermoelasticity 
Fig. 3. Variation of the displacement u versus the radius r 

for different models of thermoelasticity 

 
 

Fig. 4. Variation of the radial stress
rr

σ versus the radius r for 

different models of thermoelasticity 

Fig. 5. Variation of the axial stress 
zz

σ versus the radius r 

for different models of thermoelasticity 

7. Numerical Results 

To illustrate the theoretical results obtained in the preceding section, we now present some computational numerical 

results. For this objective, the copper material was chosen as the thermal material. The physical constants of the copper 

material are given as [62-65]: 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

10 -1 -2 10 -1 -2 -3

-1 -1 1 -1 5 -1

0

7.76 10 kg m s , 3.86 10 kg m s , 8954 kg m ,

386 W m K , 383.1 J kg K , 293 K , 1.78 10 K
e t

K C T

λ μ ρ

α
− −

= × = × =

= = = = × ⋅
 (49) 

The computation was performed when 
0

0.2, 1, 0.05, 0.1t
θ

θ τ τ= = = =
q

(which satisfies the thermodynamic consistency 

conditions given in [49]). The numerical technique outlined above was used to obtain temperature θ , radial displacement 

u, radial and axial stresses 
rr

σ and
zz

σ inside the cylinder ( 2)a= . These distributions are illustrated in Figs. 2-17. The 

current results are well consistent with the analytical solution. Numerical calculations are performed for four cases as 

follows: 

7.1 The effect of higher-order parameters m and p. 

In this case, we will study the effect of the higher-order parameters m and p on the different physical fields in the direction 

of the radius � along the interval 0 2r≤ ≤ when the other parameters remain constant: 
0

2.5Q =  (magnitude of the heat 

generation rate), 0.2P =  (initial stress). We will also compare the results obtained in the new model HDPL ( 2, 1)m p> >  
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with the previous models CTE ( 0, 0)m p= = , LS ( 1, 0)m p= = and DPL ( ).2, 1m p= = The numerical results and 

graphics are represented in Fig.2-5. From the figures, we note that � and � have a significant effect on the physical fields 

studied except for the displacement where the effect is weak. Also, the values in the modified model of thermoelasticity 

(HDPL model) are different compared with other models (CTE, LS and DPL).  
The effect of higher-order parameters m and p  plays an important role in all studied fields and the results in this work can 

be used to design various devices depending on the choice of m and .p  It also appears from the figures that we must stop 

at ( 4, 3)m p= =  to obtain acceptable physical results, which is in line with what has been proved by Chirita et al. [49] 

who have verified that for 5m ≥ or 5p ≥ the equivalent models unavoidably lead to unbalanced mechanical systems. 

It is evident from Fig. 2 that the parameters m and p have a great effect on the thermodynamic temperature θ . Inside the 

cylinder, the solutions are different but the curves have a similar behavior except for the case ( 5, 4)m p= =  which clearly 

presents higher values than the other models. More precisely, the temperature θ  starts at maximum value 1θ ≈ on the 

surface of the cylinder r = 2, (which satisfies the thermal boundary condition of the problem and ensures that the numerical 

method used here is very reliable). Then, the value gradually decreases by decreasing the radius r. 
It is clear from Fig. 3 that the parameters m and p has a weak influence on the radial displacement u. Moreover, we observe 

that the variation of u corresponding to different values of m and p follows an almost similar pattern with a small difference 

in magnitudes limited to a bounded region (0.8 1.8)r≤ ≤ . Outside this region, the variation will disappear identically. 

Figure 3 shows that the displacement profile for different models starts at a common maximum value on the boundary of 

the cylinder, after that, it decreases rapidly to attain a small negative minimum value (near 1.8r = ) and finally, increases 

gradually until it reaches zero value.  
 

  

Fig. 6. Variation of the temperatureθ versus radius r for 

different values of the magnitude 
0

Q of the heat source 

Fig. 7. Variation of the displacement u versus radius r for 

different values of the magnitude 
0

Q of the heat source 

  

Fig. 8. Variation of the radial stress 
rr

σ  versus radius r for 

different values of the magnitude 
0

Q  of the heat source 

Fig. 9. Variation of the axial stress 
zz

σ versus radius r for 

different values of the magnitude 
0

Q  of the heat source 
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Fig. 10. Variation of the temperature θ  versus radius r  for 

different values of the the initial stress P 
Fig. 11. Variation of the displacement u versus radius r for 

different values of the the initial stress P 

  

Fig. 12. Variation of the radial stress 
rr

σ  versus radius r for 

different values of the the initial stress P 

Fig. 13. Variation of the axial stress 
zz

σ  versus radius r for 

different values of the the initial stress P 

Figures 4 and 5 show the variations of thermal stresses 
rr

σ  and zzσ  with respect to the distance r for different models of 

thermoelasticity. We notice that the parameters m and p have a significant effect on the profiles of rrσ  and zzσ . In 

addition, it is clear that the solutions are different but the curves have a similar behavior except for the case ( 5, 4)m p= =
which clearly presents, inside the cylinder, lower values than the other models. 

It is obvious from Fig. 4 that the graph of rrσ starts with a zero value which is consistent with the mechanical boundary 

conditions. Also, we note that it decreases rapidly with decreasing r in the range 1.6 2r≤ ≤  and then increases gradually 

with decreasing r until it reaches steady-state. The initial stress of the system explains the fact that this steady-state is 

different from zero. We note from Fig. 5 that the profile of zzσ starts with a common negative value 0.57
zz

σ ≈− and then 

follows an identical behavior to the profile of rrσ . 

7.2 The effect of the magnitude of the heat generation rate 

This case illustrates how different physical fields vary in the direction of the radius r inside the cylinder with different 

values of the magnitude parameter of the heat source  
0

Q  in the context of the HDPL model ( 3, 2)m p= =  when P = 0.2. 

For this case, results and graphics are represented in Figs. 6-9. From these figures, we note that the parameter 
0

Q has a 

significant effect on the studied physical fields except for displacement where the effect is weak. It is evident from Fig. 6 

that θ  increases with the increase of the parameter 
0

Q and that the curves have a similar behavior. Figure 7 shows that the 
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variation of the displacement u increases slightly with the increase of the parameter 
0

Q . From Figs. 8 and 9 it is observed 

that the stresses rrσ and zzσ  decrease with increasing of the parameter 
0

Q . All these results match with the numerical 

results of [42]. 

7.3 The effect of the initial stress 

This case explains how different studied fields differ with different values of the initial stress P in the context of the 

HDPL model. In this case, we take 4, 3m p= = and 0 2.5Q = . Numerical results and graphics are illustrated in Figs. 10-

13. From these figures, we note that the parameter P has a significant effect on the thermal stresses 
rr

σ  and 
zz

σ and weak  

influence on the temperature θ  and the displacement u. It is evident from Fig. 10 that θ  decreases slightly with the 

increase of the parameter P and that the curves have a similar behavior. Figure 11 shows that the variation of the 

displacement u increases slightly with the increase of the parameter P. From Figs. 12 and 13 it is observed that the stresses 

rr
σ  and 

zz
σ decrease with increasing of the parameter P and that the curves have similar behavior. These results agree with 

the numerical result of [32].  

 

  

Fig. 14. Variation of the temperature θ  versus radius r and 

instant time t 
Fig. 15. Variation of the displacement u versus radius r and 

instant time t 

  

Fig. 16. Variation of the radial stress 
rr

σ  versus radius r and 

instant time t 

Fig. 17. Variation of the the axial stress 
zz

σ  versus radius r and 

instant time t 
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7.4 The effect of the instant time 

The last case illustrates how the non-dimensional temperature, displacement, and thermal stresses differ with different 

values of the instant time t  in the range 0.1 0.2t≤ ≤  in the situation of the HDPL model ( 3, 2)m p= = , and when the 

initial stress P and the magnitude Q0 remain constant (P = 0.2 and Q0 = 2.5). The values of different fields are plotted in 

Figs. 14-17. The influence of the instant time parameter t is much manifest in all physical fields distributions. It is detected 

that all studied fields attains their boundary values conditions recommended in the model. 

Figure 14 shows that the temperature θ  increases inside the cylinder with the increase of the parameter t to attain a 

maximum value at the instant 0.13t ≈ , then it decreases until the instant 0.17t ≈ and finally increases slightly. However, 

the parameter t presents a weak influence on the temperature θ  on the surface of the cylinder and the value of θ is equal 

to 1  which agrees with the boundary condition (26). We observe, from Fig. 15, that the parameter t presents a weak 

influence on the displacement u inside the cylinder. Also, the value of u is almost equal to 0 at r = 0. Moreover, the 

displacement u decreases slightly with the increase of t on the surface of the cylinder. It is evident from Fig. 16 and 17 that 

the stresses 
rr

σ  and 
zz

σ  decrease inside the cylinder with the increase of the parameter t to attain a minimum value at the 

instant 0.13t ≈ , then they increase until the instant 0.17t ≈ and finally decreases again. However, the parameter t 

presents a weak effect on the thermal stresses on the surface of the cylinder. Indeed, the value of 
rr

σ  is equal to 0  which 

is consistent with the mechanical boundary condition (27). 

8. Conclusion 
 

In this work, a thermoelastic model with higher-order time-derivatives and two phase-lags for an infinitely long cylinder 

under initial stress has been investigated. The medium is subjected to thermal shock as well as a periodic and decaying 

generation rate. All the associated equations have been completely solved using the Laplace transform technique and an 

accurate numerical inversion method. A comparison is made to show the dependence of all field variables on the higher-
order parameter m and p associated with the different models of thermoelasticity (CTE, LS, DPL and HDPL). The effects 

of the time-dependent heat source and the hydrostatic initial stress are also discussed. From the numerical results, most 
fields are very sensitive to the variation of the parameters m and p, the heat source and the applied initial stress. The results 

are physically acceptable and accurate for the different models of thermoelasticity and especially when (m = 4, p = 3). The 

validity of results is acceptable by comparing the temperature, displacement, and thermal stresses according to the higher-

order dual-phase-lag model with those due to other thermoelasticity models. The results presented in this article are useful 

to a wide range of problems in material science such as the design of new materials, bioheat transfer mechanisms between 

tissues and blood during non-equilibrium processes and drug delivery in tumors involving the heat and mass transfer in 

biological systems. 
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Nomenclature 

,λ μ  Lamé’s constants [
-1 -2

kg m s ] K  Thermal conductivity [
-1 -1

W m K ] 

t
α  Thermal expansion coefficient [

-1
K ] ρ

 Density of the medium [
-3

kg m ] 

e
C  Specific heat at constant strain [

1 -1
J kg K

−
] Q  Heat source [m2 s-3] 

0
T  Environmental temperature [ K ] P  Initial stress [kg m-1 s-2] 

T  Absolute temperature [ K ] t  The time instant [s] 

θ  Thermodynamic temperature [ K ] τ
q

 Phase lag of  heat flux [s] 

u  
Radial component of the displacement vector 

[m]  θ
τ  Phase lag of  temperature [s] 
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e  Cubical dilatation ( )3 2
t

γ λ μ α= +  stress temperature modulus [
-1 -2 -1

kg m s K ] 

ij
σ  Stress tensor [kg m-1s-2] ( ), ,r zφ  Cylindrical coordinate  

ij
e  Strain tensor 1

c  Dilatational wave velocity [m s-1] 

q  Heat flux vector [kg s-3]   
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