Comparative Study of Mixed Convective MHD Cu-Water Nanofluid Flow over a Cone and Wedge using Modified Buongiorno’s Model in Presence of Thermal Radiation and Chemical Reaction via Cattaneo-Christov Double Diffusion Model

Sawan Kumar Rawat, Himanshu Upreti, Manoj Kumar

Department of Mathematics, Statistics and Computer Science, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India

Received January 03 2020; Revised February 13 2020; Accepted for publication March 03 2020.
Corresponding author: S.K. Rawat (sawan.rawat@gmail.com)
© 2020 Published by Shahid Chamran University of Ahvaz

Abstract. The steady Cu-water nanofluid flow in presence of magnetic field is investigated numerically under the effects of mixed convection, thermal radiation and chemical reaction. For investigating the nanofluid flow, the flow over two different geometries, cone and wedge have been considered. The Tiwari and Das nanofluid model is implemented together with Buongiorno nanofluid model. Thermal and concentration diffusion are studied using the Cattaneo-Christov double diffusion model. At the boundary of the surface, no slip and zero mass flux condition are implemented to control the nanoparticle volume fraction at surface. Constitutive laws of flow are obtained in form of ordinary differential equations by the use of similarity transformation. The modeled flow problem is solved numerically by the Runge-Kutta-Fehlberg method and shooting scheme. Variation in flow properties due to parameters involved is presented graphically and through tabular values. The effect of thermal radiation and thermal relaxation parameter is to increase heat transfer. The temperature of nanofluid and drag force at surface increases due to enhanced magnetic field. The nanoparticles are found to be concentrated near the surface of cone and wedge but concentration decreases with chemical reaction parameter and Schmidt number as fluid moves towards far field.

Keywords: Cattaneo-Christov model; Thermal Radiation; Chemical Reaction; Mixed Convection; Zero Wall Mass Flux.

1. Introduction

Heat transfer phenomenon occurs in many known process. Heat transfer is witnessed in the environment or medium due to the presence of temperature variation between two diverse entities or when single entity experiences variation in temperature within different parts of its body. The monotonically increasing demands in various industrial domain can be fulfilled only if new technologies witness an improvement in heat transfer performance. Present generation is witnessing increase in large sized machine in various industries like chemical or fertilizers producing industries and power stations for modern applications. But the industries are also struggling with thermal systems and to maintain their reduced size. As the conventional fluid have limited thermal characteristics, it makes them unsuitable to act as coolant for industrial purpose.

Choi [1] broke many barriers in this field when he gave the idea of suspending the nanoparticles in the traditional base fluid. With this experiment, an enhancement in thermal conductivity was witnessed. His research included many experiments validating the boosted thermal performance of nanofluid, which was later also confirmed by many other researchers and scientists. Later, many authors (see [2-9]) studied and analyzed the nanofluid flow and discussed their heat transfer performance. The aforementioned studies [2-9], analyze and discuss the flow of nanofluid over/past.
geometries of different shapes. However, these studies analyzed the heat transfer in accordance with law given by Fourier [10]. Fourier’s law signifies the parabolic nature of energy equation and confers that heat transfer takes place with zero time lag. Cattaneo [11] pointed out the fact that heat transfer takes place with a time lag. His study discussed this fact and he added factor in existing Fourier model, which was physically related to time lag. Later, Christov [12] included Oldroyd’s upper convected derivatives to give his principle for material invariance. Upadhya et al. [13] utilized Cattaneo-Christov heat flux model to analyze the nano and micro fluid. Alamri et al. [14] studied second grade fluid with Cattaneo-Christov theory. They presented the fluid problem with magnetic effects and also discussed the mass transfer. Recently, some more authors (for instance see [15-18]) have also implemented the Cattaneo-Christov heat flux model to explore heat transfer characteristic.

Heat exchangers, power and solar technology, nuclear reactors etc. witness the significant amount of thermal radiation. Thermal radiation accounts to a process when a heated object emits electromagnetic radiation in every direction through unoccupied gap. Most of the objects have this property. The heat transfer through thermal radiation do not essentially require source of heat and object subjected to heat to have any contact between them. Therefore, it is an important factor to look upto while discussing the flow problems. A case of thermal radiative nanofluid unsteady flow was presented by Mabood and Khan [19], who solved the flow problem using HAM. Sheikholeslami et al. [20] presented a study of fluid flow by the means of two phase model. They investigated the flow under the influence of thermal radiation and analyzed the heat transfer process. Pal et al. [21] investigated the stagnation point flow of nanofluid over a stretching/shrinking sheet and presented the results of heat transfer in presence of non-linear thermal radiation. Many have used thermal radiation together with Cattaneo-Christov model (C-C model) to exploit the heat transfer characteristics in various fluid flow problems. One such instance is study presented by Upadhya et al. [13]. They investigated a steady flow, where base fluid was rich in graphene nanoparticles and dust (in micron) was also suspended. With the findings of their study, they concluded that dust phase had lower temperature in comparison to nanofluid phase. Some existing studies [22, 23] have mentioned that the devices show enhanced thermal efficiency when exposed to high temperature.

The magnetic field and chemical reaction effects are also known to alter the pace of flow and heat transport. Their applications in industrial, medical and natural fields are vast. Their presence is also known to alter the behavior of flow at boundary layer. Therefore, introducing these effects in the study of fluid flow makes it more interesting and realistic. Zangooee et al. [24] analyzed the MHD nanofluid flow between two rotating disks, which were stretchable in nature. The base fluid (water) was rich in titanium dioxide and Gallic oxide nanoparticles. To exploit the nature of heat transport, they analyzed the flow with Joule and radiative heating. Aleem et al. [25] also studied the MHD nanofluid flow through an accelerating vertical plate whose height tends to infinity. They also implemented the effects of chemical reaction and Newtonian heating. In their study, they considered the five different types of nanoparticles with water as a base fluid. Krishna and Chamika [26] also solved the MHD nanofluid flow problem. The nanofluid was flowing past a permeable plate which was in motion. They used Perturbation method for solving the problem and also discussed the Nusselt and Sherwood number. Some others who have recently discussed the magnetic effects in nanofluid flow are Gholinia et al. [27], Souayeh et al. [28], Singh et al. [29], Singh et al. [30] and Upreti et al. [31]. An unsteady nanofluid flow over an infinite plate under convective boundary conditions in a binary chemical mixture was discussed by Dhلامini et al. [32]. They emphasized on heat transfer and mass transfer through Buongiorno’s model and activation energy effect. Rasool and Zhang [33] studied Powell-Eyring nanofluid flow past a Riga plate with chemical reaction effects. Using HAM they provided the solution profiles and also discussed heat and mass transfer coefficient via tabular values. The solution to Prandtl-Eyring chemically reactive nanofluid flow problem with entropy generation was given by Khan et al. [34]. Khan et al. [35] and Yadav et al. [36] were others who recently looked upon the effects of chemical reaction in flow of nanofluid through different geometries.

Presently, the two mathematical models (homogeneous and non-homogeneous) are used to discuss the nanofluid transport. Homogeneous model, presented by Tiwari and Das [37] pointed out that enhanced thermophysical properties of base fluid are due to suspended nanoparticles. Buongiorno [38], who proposed the non-homogeneous model, identified seven possible factors which contribute to enhance heat transfer in nanofluid but mainly two of them, Brownian motion and thermophoresis were found to contribute significantly. Previously published literature can be found using these two models for nanofluid flow problem. Many have utilized both models in their study. Some (for instance see [39] and [40]) called it combination of Buongiorno and Tiwari and Das model whereas others (for instance see [41], [42] and [43]) have referred it as modified Buongiorno model.

In flow problems, some study the fluid flow past (or over) a geometry or in other cases the fluid motion is generated when an object of particular geometry moves through the fluid generating motion in fluid. Moreover, many aforementioned studies have focused on different geometries while dealing with flow problems. The geometry over which fluid flow plays an important role, like in designing the heat exchangers, for transpiration and fiber coating. Keeping in mind the above discussed literature, various flow effects and models of nanofluid, we have developed a mathematical model discussing the mixed convective MHD nanofluid flow with chemical reaction and thermal radiation effects over cone and wedge. Buongiorno model together with Cattaneo-Christov double diffusion model (refer to [44-49]) is used to study thermal and concentration diffusion. Also, we have utilized the correlations that defines the relationship between thermophysical properties of nanofluid with those of base fluid and volume fraction of nanoparticle, in the view of Tiwari and Das model. We have referred it as modified Buongiorno’s model in this study. At the boundary, no slip condition with zero mass flux (see [7], [32], [50], [51], [52], [53], [54] etc.) is used. Local similar
equations representing the modeled problem are solved numerically. Such solutions for various boundary layer flow problems have been explored in past studies (see [7], [31], etc.) also. These kind of solutions are very useful, as they help one to examine the effect of pertinent parameters at static location from the surface. The expressions of drag coefficient and heat transfer coefficient are also discussed. Effects are analyzed and discussed via tables and graphs.

2. Description of mathematical problem

2.1 Analysis and theory of flow

Consider a two dimensional, steady, incompressible and mixed convective Cu-water nanofluid flow. Nanofluid flow is considered over vertical cone and wedge. As depicted in Fig. 1, here x axis is taken along the cone or wedge surface and y is axis normal to its surface. Magnetic field is applied perpendicular to the surface. The half angle of the cone or wedge is α and radius of cone is denoted by r. The temperature near the wall is considered as $T_w = T_\infty + ax$, where s stands for wall temperature related parameter and a is constant. The ambient fluid temperature and nanoparticle concentration are denoted by T_∞ and C_∞, respectively.

The aspects of Brownian motion and thermophoresis together with thermal radiation and chemical reaction are taken into consideration. Cattaneo-Christov heat and mass flux models are applied to evaluate heat transfer, thermal and concentration diffusion instead of traditional Fourier’s and Fick’s models. Zero normal wall mass flux condition is retained to passively control the concentration of nanoparticle at the surface. The nanoparticles are spherical in shape. Based on above assumptions, the equation governing the boundary layer flow are reduced to the following form [54, 55]:

Continuity-equation

\[
\frac{\partial (r^n u)}{\partial x} + \frac{\partial (r^n v)}{\partial y} = 0, \quad (1)
\]

The thermal boundary layer is assumed to be thin and, therefore, r can be approximated by the local cone radius and written as $r = x \sin(\alpha)$.

Momentum-equation

\[
\left\{ \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right\} = \frac{\mu_{nf}}{\rho_{nf}} \left[\frac{\partial^2 u}{\partial y^2} \right] + \left(1 - C_\infty \right) \rho_{nf} \beta_{nf} (T - T_\infty) \left[\frac{\sigma_{nf}}{\rho_{nf}} (\cos \alpha) - \left[\rho_p - \rho_{nf} \right] (C - C_\infty) \right] \left[\frac{\sigma_{nf}}{\rho_{nf}} (\cos \alpha) - \frac{\sigma_{nf}}{\rho_{nf}} B^2 \right] u \quad (2)
\]

Above equations are subjected to following boundary conditions:

\[
\begin{align*}
 u &= u_w = \frac{v_j x}{f}, \quad v = 0 \quad \text{at} \quad y = 0 \\
 u &= 0 \quad \text{when} \quad y \to \infty
\end{align*}
\]

(3)

The present model corresponds to flow over two different geometries on account of following conditions [55, 56]:

Fig. 1. Physical model of cone and wedge with coordinate system
(a) \(n = 0 \) and \(\alpha = 0 \), represents flow over wedge.
(b) \(n = 1 \) and \(\alpha = 0 \), represents flow over cone.

where, \(u \) and \(v \) represent velocity components in \(x \) and \(y \) directions respectively, \(g \) is acceleration by gravity, \(\delta \) is volumetric thermal expansion coefficient, \(\nu \) is kinematic viscosity, \(\sigma \) is electrical conductivity, \(\rho \) is density, \(\mu \) is dynamic viscosity and \(l \) is characteristic length.

With the use of following transformations (see [55, 56]) and parameters (refer to Table 1),

\[
\eta = \frac{v}{l}, \quad u = \frac{v}{l} f'(\eta), \quad v = -u \frac{n+1}{l} f(\eta), \quad \mu_w = \frac{\mu_f (\rho_B)^{\nu_f}}{(1-\phi)^{2\nu_f}} \left(\frac{\rho_B}{\rho_f} \right) = (1-\phi) + \phi \left(\frac{\rho_B}{\rho_f} \right) = C_v,
\]

\[
\frac{\rho_x}{\rho_f} = (1-\phi) + \phi \left(\frac{\rho_B}{\rho_f} \right) = D_x, \quad \frac{\sigma_x}{\sigma_f} = \left[1 + \frac{3(\sigma-1)\phi}{(\sigma+2)(\sigma-1)\phi} \right] = F, \quad \frac{\sigma}{\sigma_f} = \frac{\sigma}{\sigma_f}.
\]

The equation of continuity is identically satisfied and Eqns. (2) & (3) yield:

\[
A f'' + D \left[(n+1)f f' - \left(f' \right)^2 \right] - FM f' + \left(\frac{C_v}{D} \right) A \Theta \cos \alpha - \lambda N_r \Theta \cos \alpha = 0,
\]

\[
f = 0, \quad f' = 1 \quad \text{at} \quad \eta = 0 \quad \text{and} \quad f \rightarrow \infty \quad \text{as} \quad \eta \rightarrow \infty
\]

where \(\lambda = l^2 g \beta_f (1-C_\infty) (T_w - T_\infty) \rho_\infty / \rho_f \nu_f^2 x \equiv G_r / R_e^2 \) is mixed convection parameter (sometimes referred as Richardson number), which is also ratio of local Grashof number \(G_r (= g \beta_f (1-C_\infty) x^3 \rho_\infty (T_w - T_\infty) / \nu_f^2 \rho_f) \) to the local Reynolds number \(R_e (= u_\infty x / \nu_f) \). Physically, the negative values and positive of \(\lambda \) relates to cooling of nanofluid (or warming of surface) and heating of nanofluid (or cooling of surface), respectively. The other non-dimensional parameters are as such:

\[M (= \sigma_f B_0^2 / \rho_f \nu_f) \] is magnetic parameter, \(N_r (= \rho_f - \rho_\infty) / C_\infty \) is \(\beta_f (1-C_\infty) (T_w - T_\infty) \rho_\infty / \rho_f \) is buoyancy ratio parameter and \(A (= (1-\phi)^{-2.5}) \) is the dimensionless parameter and prime denotes differentiation w.r.t \(\eta \).

2.2 Heat and Mass transfer analysis by means of Cattaneo-Christov double diffusion theory

The Cattaneo-Christov double diffusion theory has been introduced in characterizing thermal and concentration diffusion with heat and mass fluxes relaxations, respectively. The expressions for heat flux \(q \) and mass flux \(j \) in terms of Cattaneo-Christov theory are as follows [44-49]:

\[
q + \tau_r \left[\frac{\partial q}{\partial t} + v \cdot \nabla q - q \cdot \nabla v + (\nabla \cdot v) q \right] = -k \nabla T,
\]

(7)

\[
j + \tau_c \left[\frac{\partial j}{\partial t} + v \cdot \nabla j - j \cdot \nabla v + (\nabla \cdot v) j \right] = -D_b \nabla C,
\]

(8)

where \(\tau_r \) and \(\tau_c \) denotes heat flux relaxation time and mass flux relaxation time, respectively. The symbol \(k \) stands for thermal conductivity, \(D_b \) for Brownian diffusivity and \(\nu \) denotes velocity. The classical Fourier’s and Fick’s law can be obtained by substituting \(\tau_r = \tau_c = 0 \) in Eqns. (7) and (8). Now, utilizing the steady state conditions (\(\partial q / \partial t = 0 \) and \(\partial j / \partial t = 0 \)) and mass continuity equation (\(\nabla \cdot v = 0 \)), eqns. (7) and (8) reduce to following form,

\[
q + \tau_r \left[v \cdot \nabla q - q \cdot \nabla v \right] = -k \nabla T,
\]

(9)

\[
j + \tau_c \left[v \cdot \nabla j - j \cdot \nabla v \right] = -D_b \nabla C,
\]

(10)

| Table 1. Thermo-physical properties of water and Copper (Cu) nanoparticles [56]. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | \(\rho \) (kg/m\(^3\)) | \(C_p \) (J/kgK) | \(k \) (W/mK) | \(\beta \) (1/K) | \(\alpha \) (S/m) |
| Water | 997.1 | 4179 | 0.613 | 21.4 \(\times 10^4 \) | 0.005 |
| Copper (Cu) | 8933 | 385 | 401 | 17 \(\times 10^6 \) | 5.98 \(\times 10^7 \) |

The two-dimensional energy and concentration equations for the present case attain the following forms:
Mixed Convective MHD Cu-Water Nanofluid Flow over a Cone and Wedge using Modified Buongiorno's Model

In the above equations (11) and (12), the Cattaneo-Christov expressions are as follows:

\[
\zeta = u^2 \frac{\partial^2 T}{\partial x^2} + \left(\frac{u \partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) \frac{\partial^2 T}{\partial x^2} - 2uv \frac{\partial^2 T}{\partial x \partial y} + \nu \frac{\partial^2 T}{\partial y^2} \quad (13)
\]

\[
\zeta = u^2 \frac{\partial^2 C}{\partial x^2} + \left(\frac{u \partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) \frac{\partial^2 C}{\partial x^2} - 2uv \frac{\partial^2 C}{\partial x \partial y} + \nu \frac{\partial^2 C}{\partial y^2} \quad (14)
\]

The associated boundary conditions with eqns. (11) and (12) are:

\[
T = T_\infty + ax', \quad D_T \frac{\partial C}{\partial y} + \frac{D_l}{T_\infty} \frac{\partial T}{\partial y} = 0 \quad \text{at} \quad y = 0
\]

\[
T \rightarrow T_\infty, \quad C \rightarrow C_\infty \quad \text{when} \quad y \rightarrow \infty
\]

where \(C_\infty \) stands for specific heat, \(\tau \) for ratio of effective heat capacity of the solid nanoparticle to the base fluid, \(q_\infty = -4\sigma^* T_\infty / k_\infty \) stands for radiation heat flux, \(\sigma^* \) is Stefan-Boltzmann constant, \(k_\infty^* \) is the mean absorption coefficient, \(D_T \) thermophoretic diffusion coefficient and \(K_o \) is reaction rate. Assuming the sufficiently low temperature difference in the flow, the following relationship holds:

\[
T^* \equiv 4T_\infty^3 - 3T_\infty
\]

Using the following transformation (see [55, 56]) and nanofluid parameters (see Table 1),

\[
\theta(\eta) = \frac{T - T_\infty}{T_\infty - T_\infty}, \quad \phi(\eta) = C - C_\infty
\]

\[
\frac{\langle \rho C'_p \rangle}{\langle \rho C'_\eta \rangle} = 1 - \phi, \quad \frac{\langle \rho C'_p \rangle}{\langle \rho C'_\eta \rangle} = B, \quad \frac{k_\eta}{k_f} = \frac{(k_p + 2k_f) - 2\phi(k_f - k_p)}{(k_p + 2k_f) + \phi(k_f - k_p)} = E
\]

along with eqns. (4) and (16), eqns. (11), (12) and (15) become

\[
- \frac{E}{B Pr} \left[1 + \frac{4}{3} Rd \left[\theta'' + Nb \theta'' \phi'' + Nt \theta''^2 - s f' \theta + (n+1) f \theta' - y_s \left[s(s-1) f'' \theta + (n+1)^2 f' \theta'' + (n+1)^2 f f' \theta' - 2(n+1)s f f' \theta' \right] \right] \right] = 0
\]

\[
\phi'' + (n+1) Sc f \phi' + \left(\frac{Nt}{Nt} \right) \theta'' - Sc Kr \phi' - \gamma_c Sc(n+1) f^2 \phi'' - f f' \phi' = 0
\]

where \(Pr(= \langle \rho C'_p \rangle, u_f / k_f) \) stands for Prandtl number, \(Rd(= 4\sigma^* T_\infty^2 / k_\infty^* k_\eta) \) is thermal radiation parameter, \(Nb(= D_k C_\eta \tau / u_f) \) is Brownian motion parameter, \(Nt(= \tau D_s \alpha' / T_\infty u_f) \) is thermophoresis parameter, \(\gamma_c(= \tau u_f / l^2) \) is the thermal relaxation time parameter, \(\gamma_s(= \tau u_f / l^2) \) is the solutal relaxation time parameter, \(Kr(= K_o l^2 / u_f) \) is the chemical reaction rate parameter and \(Sc(= u_f / D_k) \) is the Schmidt number.
2.3 Quantities related to engineering interest

Skin friction coefficient

\[C_f' = C_f \sqrt{\text{Re}_e} = \frac{f''(0)}{(1 - \phi)^{3/2}} \]
(21)

and, wall heat transfer coefficient

\[\text{Nu}_* = \frac{\text{Nu}}{\sqrt{\text{Re}_e}} \frac{k_f}{k_{of}} = -\left(1 + \frac{4}{3} \text{Pr} \right) \Theta'(0) \]
(22)

The Sherwood number which helps in characterizing the dimensionless mass transfer rate at surface is identically zero because of zero normal wall mass flux condition (see eqn. 15). So, in this study we focus our attention only to skin friction coefficient and non-dimensional wall heat transfer coefficient.

3. Numerical Method

Runge-Kutta-Fehlberg method with shooting technique (refer to Fig. 2) are utilized to solve the dimensionless eqns. (5), (18) and (19), which represents the modeled problem together with boundary conditions (6) & (20). We substitute \(g_1 = f', \ g_2 = f'', \ g_3 = f''', \ g_4 = \Theta, \ g_5 = \Theta', \ g_6 = \phi, \ g_7 = \phi' \) and seven first ODEs equations were formed as such:

\[
\begin{align*}
\dot{g}_1 &= g_2; \quad g_1(0) = 0 \\
\dot{g}_2 &= g_3; \quad g_2(0) = 1 \\
\dot{g}_3 &= \frac{1}{A} \left[-D \left((n+1)g_1g_3 - g_3^2\right) + M F \ g_2 - \frac{C_s}{D} \lambda \ g_4 \cos(\alpha) + \lambda \text{Nu} \ g_5 \cos(\alpha)\right]; \quad g_3(0) = h_i \\
\dot{g}_4 &= g_5; \quad g_4(0) = 1 \\
\dot{g}_5 &= \left[r_i(s-1)g_2g_4 + (n+1)^2 g_5g_5 + \varepsilon g_2g_4 + (n+1)^2 g_5g_5 + 2(n+1)g_5g_5 - 2n+1\right]g_8; \quad g_5(0) = h_i \\
\dot{g}_6 &= g_7; \quad g_6(0) = h_i \\
\dot{g}_7 &= \left[-(n+1)\text{Sc} g_2g_7; \quad g_7(0) = -\frac{\text{Nu}}{\text{Nb}} h_i \right]
\end{align*}
\]
(23)
Table 2. Values of missing slopes found by shooting method with different value of η_{max}.

<table>
<thead>
<tr>
<th>η_{max}</th>
<th>$f''(0)$</th>
<th>$\Theta'(0)$</th>
<th>$\phi(0)$</th>
<th>$f''(0)$</th>
<th>$\Theta'(0)$</th>
<th>$\phi(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.4785021</td>
<td>-2.931907</td>
<td>-0.88010</td>
<td>-2.472050</td>
<td>-0.9242810</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-1.2699781</td>
<td>-3.004657</td>
<td>-0.75879</td>
<td>-2.508200</td>
<td>-0.8208510</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-1.2477481</td>
<td>-3.014407</td>
<td>-0.69310</td>
<td>-2.525550</td>
<td>-0.7393200</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-1.2477481</td>
<td>-3.014507</td>
<td>-0.68354</td>
<td>-2.526215</td>
<td>-0.7216800</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-1.2478511</td>
<td>-3.014530</td>
<td>-0.68215</td>
<td>-2.526215</td>
<td>-0.7179050</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>-1.2478751</td>
<td>-3.014530</td>
<td>-0.68196</td>
<td>-2.526195</td>
<td>-0.7170900</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Comparison of values of $f''(0)$ & $-\Theta'(0)$ with results of Vajravelu and Nayfeh [55] for the flow over cone.

<table>
<thead>
<tr>
<th>Q</th>
<th>Pr</th>
<th>Gr</th>
<th>M</th>
<th>s</th>
<th>Present results</th>
<th>Vajravelu and Nayfeh [55]</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>0.3</td>
<td>-0.5</td>
<td>1</td>
<td>-2.1</td>
<td>-0.15559221</td>
<td>-0.155592</td>
</tr>
<tr>
<td>-5</td>
<td>0.3</td>
<td>-0.5</td>
<td>1</td>
<td>-2.1</td>
<td>-0.15600196</td>
<td>-0.156001</td>
</tr>
<tr>
<td>-5</td>
<td>0.3</td>
<td>-0.5</td>
<td>3</td>
<td>-2.1</td>
<td>-0.12640183</td>
<td>-0.126400</td>
</tr>
<tr>
<td>1</td>
<td>1.0</td>
<td>0.5</td>
<td>3</td>
<td>-2.1</td>
<td>0.32899477</td>
<td>0.328994</td>
</tr>
</tbody>
</table>

Mixed Convective MHD Cu-Water Nanofluid Flow over a Cone and Wedge using Modified Buongiorno’s Model

Fig. 3. A representative case to present the behavior of non-dimensional velocity, temperature and concentration as nanofluid moves towards ambient field.

Process of finding the solution of system of equations (23) is initialized by finding the missing slopes i.e., $h_1 = f''(0)$, $h_2 = \Theta'(0)$ and $h_3 = \phi'(0)$ (see Table 2). The numerical computations are stopped when following conditions is met,

$$\max\{g_1(\eta_{max}) - 0, g_2(\eta_{max}) - 0, g_3(\eta_{max}) - 0\} \leq 10^{-5}$$

(error tolerance). All the calculations and results are obtained for $\eta_{max} = 10$. All the ambient boundary conditions are attained asymptotically (see Fig. 3). For the validation of our results, we present a comparison with Vajravelu and Nayfeh [55] results under the special case in Table [3].

4. Results and Discussion

This segment focus on physical justifications of the effects of related parameters on specific flow properties. For numerical computations, the default values were set as:

- $\phi = 0.01$, $M = 0.2$, $\lambda = 0.4$, $Nr = 0.2$, $Pr = 6.2$, $Rd = 0.2$, $\gamma_r = 0.05$, $\gamma_s = 0.05$, $s = 1$, $\alpha = \pi / 3$, $Nb = 0.2$, $Nt = 0.2$, $Sc = 0.5$ and $Kr = 0.2$.

The variation, if any, of the values from set default is pointed out in the table or figure.

Tables 4, 5 and 6 are outlined to present the numerical values of skin friction and heat transfer coefficient in case of cone and wedge. Skin friction coefficient is seen to increase with increase in the value of magnetic parameter M but it decreases with mixed convection parameter λ. It implies that resisting force on the surface of cone or wedge increases with increasing strength of magnetic parameter and decreases as mixed convection parameter is increased. The increase in volume fraction ϕ also results in increment in surface drag. The skin friction coefficient for the aforementioned cases was found to be higher in case of flow over the cone in comparison to wedge case. The change in value of skin friction coefficient for rest of the parameters was not found to be significant. The numerical values of wall heat transfer rate elucidates that with increment in strength of thermal radiation parameter Rd, thermal relaxation parameter γ_r and wall temperature related parameter s, the heat transfer rate also amplifies. For the other case, a marginal reduction in heat transfer rate was seen as the value of parameter M and ϕ is incremented. Thermophoresis parameter Nt is the ratio of
thermophoretic diffusion caused by temperature difference to the momentum diffusion in the nanofluid. An increase in the value of N_t, causes nanoparticles near the heated surface to move towards the ambient fluid. This leads to increase in nanofluid thermal diffusivity and increase in thermal boundary layer thickness. Now, with the increase in width of thermal boundary layer, heat transfer rate through surface of cone or wedge decreases. The heat transfer rate was found to be lower in case of flow over the wedge in comparison to flow over the cone for all above discussed cases. The change in value of heat transfer rate for rest of the parameters was not found to be significant. The Brownian motion parameter N_b also does not change the heat transfer rate significantly despite being present in the energy equation. The reason for the case can be explained with the use of boundary conditions (20) in energy equation (18) (as $\eta \to 0$), as resulting equation for energy becomes independent of term N_b.

Table 4. Numerical values of skin friction & heat transfer coefficients of Cu-water nanofluid for variation in M, N_r, λ and ϕ.

<table>
<thead>
<tr>
<th>M</th>
<th>N_r</th>
<th>λ</th>
<th>ϕ</th>
<th>$-C_f^\prime$</th>
<th>Nu_x^\prime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cone</td>
<td>Wedge</td>
<td>Cone</td>
<td>Wedge</td>
<td>Cone</td>
</tr>
<tr>
<td>0.2</td>
<td>1.27963</td>
<td>1.10053</td>
<td>3.818405</td>
<td>3.199847</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>1.35564</td>
<td>1.18875</td>
<td>3.793920</td>
<td>3.170581</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1.49729</td>
<td>1.34871</td>
<td>3.748257</td>
<td>3.117197</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>1.62763</td>
<td>1.49233</td>
<td>3.706077</td>
<td>3.069493</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Numerical values of skin friction & heat transfer coefficients of Cu-water nanofluid for variation in R_d, Y_t, s and N_r.

<table>
<thead>
<tr>
<th>R_d</th>
<th>Y_t</th>
<th>s</th>
<th>N_r</th>
<th>$-C_f^\prime$</th>
<th>Nu_x^\prime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cone</td>
<td>Wedge</td>
<td>Cone</td>
<td>Wedge</td>
<td>Cone</td>
</tr>
<tr>
<td>0.2</td>
<td>1.27963</td>
<td>1.10053</td>
<td>3.818405</td>
<td>3.199847</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.27478</td>
<td>1.09437</td>
<td>4.305333</td>
<td>3.609867</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1.27049</td>
<td>1.08900</td>
<td>4.720308</td>
<td>3.960291</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Numerical values of skin friction & heat transfer coefficients of Cu-water nanofluid for variation in N_b, Y_t, Sc and Kr.

<table>
<thead>
<tr>
<th>N_b</th>
<th>Y_t</th>
<th>Sc</th>
<th>Kr</th>
<th>$-C_f^\prime$</th>
<th>Nu_x^\prime</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cone</td>
<td>Wedge</td>
<td>Cone</td>
<td>Wedge</td>
<td>Cone</td>
</tr>
<tr>
<td>0.2</td>
<td>1.27963</td>
<td>1.10053</td>
<td>3.818405</td>
<td>3.199847</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.27890</td>
<td>1.10093</td>
<td>3.819355</td>
<td>3.200651</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>1.27873</td>
<td>1.10103</td>
<td>3.819633</td>
<td>3.200848</td>
<td></td>
</tr>
</tbody>
</table>

Velocity profiles, represented by f', are plotted at various values of magnetic parameter M in Fig. 4. A decreasing trend in f' is witnessed as M varies from $M = 0.2$ to $M = 1.2$. It means that the flow is retarded by the increasing magnetic parameter and this result agrees with the expectations. As the increase in value of M, also leads to increase the Lorentz
force and it opposes the flow. Consequently, the decreasing trend in velocity is witnessed. Also, the momentum boundary layer thickness decreases with M. From Fig. 4, it can be observed that velocity is higher for the flow over wedge than flow over cone for all considered values of magnetic parameter. In Fig. 5, the graph of Θ for varying values of M are presented at mentioned default values of other parameters. As mentioned in the above discussion, decreasing velocity and increasing surface drag with increase in magnetic parameter causes the release of more amount of heat in the nanofluid flow, which increases the temperature and thermal boundary layer thickness of nanofluid flow. The temperature profiles are found to be significantly higher for the nanofluid flow over a wedge than for the case of nanofluid flow over a cone.

![Graph 1](image1.png)

Fig. 7. Behavior of non-dimensional velocity with variation in buoyancy ratio parameter.

![Graph 2](image2.png)

Fig. 8. Behavior of non-dimensional velocity with variation in mixed convection parameter.

The behavior of nanoparticles concentration profile for the change in value of M is recorded in Fig. 6. The non-dimensional nanoparticle concentration ϕ is seen to be negative at the surface of cone or wedge. Physically this situation means, the effect of thermophoresis is such that elevated wall temperature above the ambient conditions corresponds to depression in nanoparticle concentration at the surface of cone or wedge below the ambient condition. An overshoot in concentration profiles is witnessed which illustrates that concentration profiles in vicinity of plate exceeds the free stream nanoparticle concentration. It is obvious from the transformation and boundary conditions that ϕ would be negative at the surface of cone or wedge (at $\eta = 0$). It is also seen that, such an outcome persists for any value of other pertinent parameters. Literature search revealed that, this present outcome for the variation in nanoparticle concentration as fluid moves from surface to the far field is consistent with the previously published work (see [7] and [32]) in which same boundary condition as present study for ϕ is considered. It is observed that after reaching an absolute maximum, the nanoparticle concentration is higher for higher value of M and nanoparticle concentration was found to be higher for flow over wedge. However, the value of absolute maximum for nanoparticle concentration was found to be higher in case of flow over cone.
Figure 7 deals with variation in velocity for different values of buoyancy ratio parameter Nr. For an increase in the value of Nr, the velocity was seen to decrease. The velocity for flow over wedge was found higher in comparison to flow over cone when changing the values of Nr.
Figure 8 presents the curves of f' for various values of λ, when other parameters are fixed. Initially, increasing the value of λ, leads to increase in velocity but after a certain distance opposite trend is observed. The distance where this change in trend is observed is found more near to surface in case of flow over cone. However, velocity was found higher in case...
of flow over wedge on changing \(\lambda \) and keeping other parameters fixed. In Figs. 9 and 10, temperature and concentration profiles are plotted at different numerical values of \(Rd \). As expected, temperature was seen to rise with increasing value of thermal radiation parameter \(Rd \). The mean absorption coefficient decreases as thermal radiation increases, which leads to increase in radiative heat transfer and consequently, the temperature rises. Substantial rise in temperature with change in numerical values of parameter \(Rd \) was seen and temperature was found higher in case of flow over wedge. From Fig. 10, it is concluded that after attaining the absolute maximum, when nanofluid moves towards far field, concentration of nanoparticles rises as parameter \(Rd \) increases. The value of absolute maximum for concentration of nanoparticles was higher for flow over cone but the concentration was found higher for flow over wedge as fluid moved towards the far field.

![Graph](image1.png)

Fig. 15. Behavior of non-dimensional temperature with variation in thermophoresis parameter.

![Graph](image2.png)

Fig. 16. Behavior of non-dimensional concentration with variation in thermophoresis parameter.

Figure 11 points out the change in temperature distribution \(\Theta \) as the thermal relaxation parameter \(\gamma_r \) increases. Temperature is seen to have an inverse relationship with thermal relaxation parameter. It substantiates the Cattaneo-Christov theory that higher values of \(\gamma_r \), physically means that they require more amount of time to transfer heat to particles with low energy when a temperature gradient is present in medium. It is to be noted that for \(\gamma_r = 0 \), it represents Fourier's law of heat conduction and for this situation heat transfers without any time lag through the whole medium. From Fig. 11, it can be observed that temperature is dominant for the case \(\gamma_r = 0 \) (Fourier's model) than \(\gamma_r = 0 \) (C-C model). It can be said that C-C model helps characterize the conducting or non-conducting nature of a material. As, higher the value of thermal relaxation parameter of a material or higher the time a material takes to transfer heat, the more non-conducting it is in nature.

The changes in temperature and concentration profiles due to varying values of wall temperature related parameter \(s \) are presented in Figs. 12 and 13, respectively. Both temperature and nanoparticle concentration decrease as the value of
parameter s enlarges from $s = 1$ to $s = 2$. Temperature profile for flow over cone is lower than flow over wedge. It is to be noted that $s = 0$ represents the isothermal boundary condition at wall ($\eta = 0$). From Fig. 13, it is evident that wall temperature of the cone or wedge also regulates the nanoparticle concentration as fluid moves towards far field. Concentration for flow over wedge was found higher when fluid moved away from wall. Fig. 14 presents the relationship between parameter Nb and concentration ϕ when other parameters are kept constant. We observed that with higher value of Nb, the value of absolute maximum of nanoparticle concentration decreases. Also, a significant decay in concentration was seen when value of Nb is varied from $Nb = 0.2$ to $Nb = 0.8$. Negligible variation in temperature profiles was noticed with change in parameter Nb, due to boundary condition $\phi'(0) = -(Nt / Nb)\Theta'(0)$ in eqn. (18) when we move towards wall. The result is in accordance with Kuznetsov and Nield [50, 51] who were first to study the zero wall mass flux condition.

Fig. 17. Behavior of non-dimensional concentration with variation in solutal relaxation parameter.

Fig. 18. Behavior of non-dimensional concentration with variation in Schmidt number.

Influence of thermophoresis parameter Nt on temperature and concentration is elucidated in Figs. 15 and 16. Intensification in strength of thermophoretic force leads to deeper migration of solid nanoparticles to far field fluid. This leads to thickening of thermal boundary layer and enhancement in temperature of nanofluid. Figure 16 tells that the value of absolute maximum of concentration increases rapidly with small increase in parameter Nt. After attaining the absolute maximum, the concentration was found higher for higher values of Nt. The flow over wedge has higher concentration of nanoparticles when fluid moves towards ambient field but lower value for absolute maximum in each case when Nt is varied. The variation in concentration profile for flow over wedge and cone under same physical conditions but for varying solutal relaxation time parameter γ_s is depicted in Fig. 17. On increasing the parameter γ_s, the concentration rises steeply to reach an absolute maximum and then to fall downwards. When fluid moves to far field, the concentration decreases with increasing value of parameter γ_s.

Fig. 19. Behavior of non-dimensional concentration with variation in chemical reaction parameter.

Fig. 20. Behavior of non-dimensional velocity with variation in volume fraction.

Fig. 21. Behavior of non-dimensional temperature with variation in volume fraction.

Fig. 18 portrays the impact of Schmidt number Sc on concentration profiles. Schmidt number is characterized as ratio of kinematic viscosity (ν_f) to the Brownian diffusion coefficient (D_B). The higher values of Sc relates to smaller values of D_B. Thus, increasing Sc means hampering the development of concentration boundary layer and consequently,
concentration reduces for higher values of Sc. The effect of chemical reaction parameter Kr on nanoparticle concentration is displayed via Fig. 19. After reaching the absolute maximum, when concentration starts to fall, the increasing value of Kr corresponds to decreasing concentration. The concentration profiles for flow over cone are lower than flow over wedge. The behavior of solution profiles of velocity, temperature and concentration with volume fraction ϕ is analyzed in Figs. 20, 21 and 22, respectively. The velocity was seen to decrease, whereas the temperature and concentration were found to increase with increasing volume fraction. The flow over wedge witnessed the higher velocity, temperature and concentration when nanofluid moves to far field on changing volume fraction.

Fig. 22. Behavior of non-dimensional concentration with variation in volume fraction.

5. Conclusions

In this study, the authors have comparatively studied the flow over a vertical cone and wedge of Cu-water nanofluid using effective models of thermal conductivity and viscosity. The effects of mixed convection, thermal radiation and chemical reaction are discussed. Moreover, we have utilized the zero mass flux condition at the surface of cone and wedge. Furthermore, the modeled nanofluid problem is characterized by single phase nanofluid model (i.e., Tiwari and Das’s model) and two phase mixture nanofluid model (i.e., Buongiorno’s model) together with Cattaneo-Christov double diffusion model. The significant findings are summarized below:

1. For a particular set of values of parameters, the solution profiles of velocity, temperature and concentration were found higher in case of flow over wedge than flow over cone.
2. The temperature and concentration decrease with thermal relaxation parameter γ, and solutal relaxation time parameter γ_s, respectively.
3. The velocity profiles experience the fall in their values when magnetic parameter M, buoyancy ratio parameter Nr and volume fraction ϕ increases.
4. The nanofluid temperature can be enhanced by increasing the magnetic parameter M, thermal radiation parameter Rd, thermophoresis parameter Nt and volume fraction ϕ.
5. The Brownian motion parameter Nb had no effect on temperature, which can be explained with zero mass flux condition at the wall.
6. The nanoparticles are concentrated near the wall of cone or wedge and the negative value of φ at the wall ($\eta = 0$), illustrate that concentration of nanoparticles at surface is lower than ambient value of concentration.
7. The effect of magnetic parameter M, thermal radiation parameter Rd, thermophoresis parameter Nt and volume fraction ϕ is to increase the concentration when fluid moves towards ambient field whereas opposite trend is observed for parameters s, Nh, Sc and Kr.
8. The drag force at the surface can be reduced with increasing the values of mixed convection parameter λ but it increases with increasing magnetic parameter and volume fraction.
9. The heat transfer rate at the wall of cone or wedge can be increased by increasing thermal radiation, parameter s and γ_r.

Author Contributions

S.K. Rawat: Presented the idea, developed the model, investigated the problem, performed the computations, verified the numerical methods and results, discussed the results and wrote original draft of the paper. H. Uperti: Developed the model, performed the computations, discussed the results and helped in writing the original draft. M. Kumar: Developed...
the model, supervised the whole process, discussed the results, reviewed and edited the draft of the paper.

Acknowledgments

The authors want to express sincere thanks to anonymous reviewers for their helpful feedback and comments to improve manuscript content.

Conflict of Interest

The authors declared no potential conflicts of interest with respect to the research, authorship and publication of this article.

Funding

Research was supported by UGC (F. No. 16-6 (Dec. 2017)/2018 (NET/CSIR)), Government of India and gratefully acknowledged by the first author.

Nomenclature

- **a, A, B** Constant
- **B_0** Magnetic field
- **C** Concentration of the fluid
- **C_f** Skin friction coefficient
- **C_0, D** Constant
- **D_B** Brownian diffusion coefficient
- **D_T** Thermophoretic diffusion coefficient
- **E, F** Constant
- **f'** Dimensionless velocity
- **G_r** Local Grashof number
- **g** Acceleration due to gravity
- **j** Mass flux
- **k** Thermal conductivity
- **K_0** Reaction rate
- **Kr** Chemical reaction rate parameter
- **K_e** Mean absorption coefficient
- **l** Characteristic length
- **M** Magnetic parameter
- **N_B** Brownian motion parameter
- **N_r** Buoyancy ratio parameter
- **N_t** Thermophoretic parameter
- **N_u** Local Nusselt number
- **P_r** Prandtl number
- **q_r** Radiation heat flux
- **q** Heat flux
- **r** Radius of cone
- **R_e** Local Reynolds number
- **R_d** Thermal radiation parameter
- **s** Wall temperature related parameter
- **S_c** Schmidt number
- **T** Temperature of the fluid

Greek symbols

- **α** Half angle of cone or wedge
- **β** Thermal expansion coefficient
- **γ_i** Thermal relaxation time parameter
- **γ_s** Solutal relaxation time parameter
- **η** Similarity variable
- **Θ** Dimensionless temperature
- **λ** Mixed convection parameter
- **μ** Dynamic viscosity
- **ν** Kinematic viscosity
- **ρ** Effective density
- **ρc_p** Heat capacity
- **σ** Electrical conductivity
- **τ** Ratio of the effective heat capacity of nanomaterial/base fluid
- **τ_f** Heat flux relaxation time
- **τ_r** Mass flux relaxation time
- **σ'** Stefan-Boltzmann constant
- **ϕ** Dimensionless concentration
- **ϕ** Volume fraction of nanoparticle

Superscript

- **Derivative w.r.t η**

Subscript

- **Base fluid**
- **Nanofluid**
- **Solid particle**
- **Wall**
- **Ambient condition**

References

[45] Hayat, T., Muhammad, T., Alsaedi, A., Ahmad, B., Three-dimensional flow of nanofluid with Cattaneo–Christov double diffusion, Results in Physics, 6, 2016, 897-903.

