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Abstract. In this article, the vibration and buckling of a double-layer Graphene sheet (DLGS) coupled with a piezoelectric 
nanoplate through an elastic medium (Pasternak and Winkler models) are investigated. DLGS are subjected to biaxial in-plane 
forces and van der Waals force existing between each layer. Polyvinylidene fluoride (PVDF) piezoelectric nanoplate is subjected to 
an external electric potential. For the sake of this study, sinusoidal shear deformation theory of orthotropic plate expanded with 
Eringen’s nonlocal theory is selected. The results indicate that nondimensional frequency and nondimensional critical buckling 
load rise when the ratio of width to thickness increases. Furthermore, incrementing the effect of elastic medium parameter 
results in increasing the stiffness of the system and, consequently, rising nondimensional frequency and critical buckling load. 

Keywords: Double-Layer Graphene Sheets, Piezoelectric Nanoplate, Elastic Medium, Sinusoidal Shear Deformation Theory, 
Nonlocal Piezoelasticity Theory. 

1. Introduction 

Recently, nanomaterials and nanostructures have had several applications in various nano-devices, micro-electro-
mechanical-systems (MEMS), nano-electro-mechanical-systems (NEMS) such as strain sensor and mass and pressure sensor, and 
regarding their superior electrical and mechanical properties, they have attracted the attention of scientific community [1,2]. 
Polyvinylidene fluoride (PVDF) is a piezoelectric polymer, which has unique properties, such as excellent dimensional stability, 
abrasion and corrosion resistance, high strength, and capability of maintaining its mechanical properties at elevated temperature 
[3]. On the other hand, Graphene is composed of a flat monolayer tightly compacted carbon atom into a two-dimensional 
honeycomb lattice. Graphene also has premier properties, which include high mechanical strength, large thermal conductivity, 
and excellent electric conductivity [4-6]. 

Eringen states that classical (local) theories will give acceptable responses when the ratio of external characteristic of length 
to internal characteristic of length is substantial. However, when this ratio approximates one, classical (local) theories do not 
present an accurate response, so the small scale effect must be considered in this case. Thus, in contrast to the classical theory 
which considers the stress of one point as a function of strain at that point, Eringen’s nonlocal theory, which is one type of the 
continuum mechanical theories dependent on size, states that stress at one point is a function of strain at all points of 
continuum [7–9]. 

Ghorbanpour Arani et al. [10] and Pradhan and Kumar [11] investigated the vibration of coupled DLGS embedded on Visco-
Pasternak foundation and single-layer Graphene sheets (SLGS) using nonlocal classical plate theory, respectively. Ghorbanpour 
Arani et al. [12] analyzed the buckling and smart control of SLGS using nonlocal Mindlin plate theory and observed that the 
buckling load ratio decreases when the nonlocal parameter rises. Ke et al. [13] examined free vibration of nonlocal piezoelectric 
nanoplates under various boundary conditions applying nonlocal Mindlin plate theory and found out that frequency decreases 
when electric voltage increases. Damping vibration of smart piezoelectric polymeric nanoplate by nanlocal strain gradient theory 
was analyzed by Ebrahimi and Barati [14]. Shen et al. [15] investigated the vibration of SLGS using nonlocal Kirchhoff plate theory. 
Malekzade et al. [16] analyzed the small scale effect on free vibration of orthotropic nonoplate applying nonlocal first order shear 
deformation theory and concluded that nondimensional frequency rises when limitation in nanoplate edges increases. Pradhan 
and Phadikar [17] examined nonlocal vibration of nanoplate using nonlocal classical plate theory and nonlocal first order shear 
deformation plate theory. Malikan [18] investigated the buckling of composite plate with nano coating, based on the modified 
couple stress theory. Zhu and Li investigated [19] the twisting static behaviors of through-radius functionally graded nanotubes 
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by formulating a nonlocal integral model, based on Eringen's nonlocal integral elasticity. In another article, Zhu and Li [20] study 
the size-dependent effect on the dispersion relation and vibration frequencies using single-walled carbon nanotube, single layer 
graphene sheet and silicon as nanoscaled rods, which can show a good agreement with molecular dynamics results or 
experimental data. Allahyari and Asgari [21] analyzed thermo-mechanical vibration of double-layer Graphene sheets via nonlocal 
third order shear deformation plate theory. Kadari et al. [22] investigated the buckling of orthotropic nanoplate by using 
hyperbolic plate theory and nan-local small scale effects. In Shaat’s [23] article a general nonlocal theory and its approximations 
for slowly varying acoustic waves is under consideration and this general nonlocal theory is reduced to the strain gradient theory 
and the couple stress theory. Ghorbani et al. [24] determined carbon nanotubes size-dependent parameters, which are molecular 
dynamics simulation and nonlocal strain gradient continuum shell model. In their article, nonlocal and material length scale 
parameters are calibrated by comparing the natural frequencies obtained from MD simulation and nonlocal strain gradient 
theory. Thai et al. [25] investigated the vibrations and buckling of SLGS applying nonlocal sinusoidal shear deformation theory 
stated by Touratier [26]. Khajehdehi et al. [27] analyzed the buckling of DLGS coupled with another DLGS by Pasternak medium 
considering surface stress effect. Ghorbanpour Arani et al. [28] and Zenkour and Sobhy [29] analyzed electro-magneto wave 
propagation of viscoelastic sandwich nanoplates of ZnO-SLGS-ZnO and the thermal buckling of SLGS laying on Winkler–Pasternak 
elastic medium, using sinusoidal shear deformation theory, respectively. Chemi et al. [30] assessed nonlocal critical buckling loads 
of chiral double-walled carbon nanotubes embedded in an elastic medium implementing nonlocal Timoshenko beam theory. 
Narendar and Gopalakrishnan [31] investigated the scale effects on the buckling of orthotropic SLGS based on nonlocal two-
variable refined plate theory and found out that nondimensional critical buckling load of orthotropic nanoplate is less than that 
of isotropic nanoplate. Lindahl et al. [32] investigated the values of bending rigidity of double-layer Graphene membranes, 
experimentally, using the snap-through behavior of convex buckled Graphene membranes under the electrostatic pressure. 
Pradhan [33] analyzed the buckling of SLGS based on nonlocal elasticity and higher order shear deformation theory. 

With respect to the usage of the DLGS coupled with a piezoelectric nanoplate in nano-electro-mechanics, nano-sensors, nano-
swiches, etc., and regarding the huge expenses and the complexity of doing nano scale experiments, developing continuum 
mechanical theories for analyzing the mechanical behavior of nanostructures is desirable. In the present study, an analysis of the 
vibration and buckling of DLGS coupled with a PVDF piezoelectric nanoplate through an elastic medium is performed. The elastic 
medium is simulated according to Pasternak and Winkler models. Each Graphene layer is subjected to a biaxial in-plane force and 
under van der Waals force due to the other Graphene layer, and the bottom layer of Graphene is under forces caused by the elastic 
medium, and PVDF nanoplate is subjected to an external electric potential and also forces caused by the elastic medium. In the 
study, sinusoidal shear deformation theory of orthotropic plate developed by Eringen’s nonlocal theory is applied. Governing 
relations and equations are obtained using Hamilton’s principle. Simply supported boundary conditions of the all four edges of 
nanoplates are assumed for the system; thus, governing relations are solved applying Navier method. Nondimensional critical 
buckling load and nondimensional frequency of the system are obtained based on several parameters such as nonlocal 
parameter, external electric voltage, various ratios of length to width and width to thickness, different modes and various biaxial 
compression ratios. Some results for the system are obtained considering ZnO nanoplate rather than PVDF nanoplate and the 
results of the two systems are compared.  

2. Basic Equation 

2.1 Nonlocal Theory 

Based on nonlocal piezoelasticity theory, the stress and electric displacement filed of a particular point depend not only on 
strain and electric filed components at the same point but also on all other points of the body. The nonlocal theory can be stated 
as nonlocal constitutive behavior [3, 5]: 

2 2
0(1 ( ) ) nl l

ij ije a σ σ− ∇ =  

2 2
0(1 ( ) ) nl l

ij ije a D D− ∇ =  
(1) 

where nl
ijσ  and l

ijσ  show nonlocal stress tensor and local stress tensor, respectively. nl
ijD and l

ijD  indicate components of 

nonlocal and local electric displacement, respectively. ( )μ
2

0e a=  is the small-scale effect on the response of structures at 

nanosize and 2
0, ,a e∇  represent the Laplacian operator, internal characteristic length of the material and constant appropriate 

to each material, respectively. The nonlocal parameter depends on the boundary conditions, chirality, mode shapes, number of 

walls, and type of motion So far, there is no rigorous study made on estimating the value of the nonlocal parameter. It is 

suggested that the value of nonlocal parameter can be determined by experiment or by conducting a comparison of dispersion 

curves from the nonlocal continuum mechanics and molecular dynamics simulation [25]. 
 

2.2 Sinusoidal shear deformation plate theory 

The sinusoidal (higher-order) shear deformation theory (SSDPT) develops the first-order theory by considering shear strain 
and consequently shear stress not to be constant through the plate thickness and also the shear correction factor considered in 
first order and Mindlin plate theories is not required anymore. The displacement field of the sinusoidal theory of plates is 
expressed as follows [25, 34]: 

( ) ( ) ( )1 , , , , , / / sin / xu x y z t u x y t z w x h z hπ π φ= − ∂ ∂ +  (2a) 

( ) ( ) ( )2 , , , , , / / sin / yu x y z t v x y t z w y h z hπ π φ= − ∂ ∂ +  (2b) 

( ) ( )3 , , , , ,u x y z t w x y t=  (2c) 

where u, v, w are displacements at one point in the middle of a plate along the x, y, z coordinate, respectively, x and y are 
rotations from the middle surface along x and y directions, respectively, and h is the plate thickness.  

By eqs. (2), the following linear strains are concluded: 
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(a) 

 

(b) 

Fig. 1. DLGS coupled by an elastic medium (Pasternak and Winkler models) with PVDF nanoplate 
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 (3c) 

( )cos /xz xz hγ π φ=  (3d) 

( )cos /yz yz hγ π φ=  (3e) 

In eqs. (3), it is shown that the transverse shear strains (  ,  yz xzγ γ ) are zero, at the top ( / 2z h= ) and bottom ( / 2z h=− ) of the 

plate surfaces. 

3. Governing Equations of Motion 

Consider a DLGS system coupled with a piezoelectric nanoplate, as shown in Fig. 1, which contains geometric paramet
ers of length a, width b, Graphene thickness h and PVDF thickness hp. DLGS is coupled with PVDF through an elastic me
dium simulated based on Pasternak and Winkler. DLGS are subjected to biaxial in-plane forces and PVDF under electric p
otential. 

The following matrix is the expanded form of nonlocal sinusoidal shear deformation orthotropic plate theory of DLGS [27]: 
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where Cij are elastic coefficients, 

1 2
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= = =
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(5) 

where 1E   and 2E  are Young’s modules, 12 23,G G   and 13G  are shear modules, and 12ν  and 21ν  are Poisson ratios.  

The following matrix is the expanded form of nonlocal sinusoidal shear deformation orthotropic plate theory of PVDF: 
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 (6) 

where 
ij

pC , ije  and ii∈   are elastic, piezoelectric and dielectric coefficients. iE  is electric field in terms of electric potential ( Φ ) 

is obtained as follows [3,12]: 

      ,       , ,iE i x y z
i

∂Φ
=−∇Φ=− =

∂
 (7) 

The electric potential distribution in the thickness direction of the PVDF nanoplate as the combination of a half cosine and 
linear variation which satisfies the Maxwell equation is given as follows: 

( ) ( ) 02
, , , cos , , i t

p p

zVz
x y z t x y t e

h h

π
ϕ Ω

  Φ =− +   
 (8) 

4. Hamilton’s Principle 

Hamilton’s principle is applied to obtain system energy and governing equations. The principle is adopted as follows [13, 35]: 

( )
0

0    
T

U T K dtδ δ δ− − =∫  (9) 

where Uδ , Tδ and Kδ denote the variations of strain energy, external work energy and kinetic energy, respectively. 

The variations of strain energy for PVDF nanoplate are as follows, and not considering xxD , yyD  and zzD , the variations of 

strain energy for DLGS can be obtained. 
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 (10) 

where N, M, P and Q are the stress resultants and are defined as follows. However, it should be noted that Graphene thickness 
and relation (4) are used for DLGS and piezoelectric nanoplate thickness and relation (8) are applied in stress resultants relations. 
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The variations of kinetic energy of the system are defined as follows: 
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where ρ is mass density and  0 0 01 2 1, , , , ,I I I J J K  are mass inertia [25]: 
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The variations of external work energy are calculated with respect to multi-layer Graphene and van der Waals relations [4, 36] 
and elastic medium (Pasternak and Winkler models) relations as follows[5, 37, 38]: 

( )1 12 1 2T c w w= −  (14a) 

( ) ( ) ( )2
2 21 2 1 23 2 3 23 2 3T c w w K w w G w w= − − − + ∇ −  (14b) 

( ) ( )2
3 32 3 2 32 3 2T K w w G w w=− − + ∇ −  (14c) 

In-plane forces applied to DLGS and electric forces applied to PVDF are considered as follows [39, 40] 
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Substituting Uδ , Kδ and Tδ relations into Hamilton’s principle, and integrating by parts and collecting uδ , vδ , , , x ywδ δφ δφ  

coefficients, motion equations for each layer are stated as follows: 

0       :     xy

i
x

i

N
u

N
u I

x y
δ

∂∂
+ =

∂ ∂
ɺɺ  (17a) 

0       :     x

i

y y

i

N N
v I

x
v

y
δ

∂ ∂
+ =

∂ ∂
ɺɺ  (17b) 

2 2 2 22

0 2 1 2 12 2 2 2
      :     2 xy y yix i xi i
i i i

M M w wM
w T N I w I J I J

x x y y x x y y

φφ
δ

∂∂ ∂ ∂ ∂ ∂∂
+ + + + = − + − +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

ɺɺɺɺ⌢ ɺɺ ɺɺ
ɺɺ  (17c) 

1 0     :     xyx i
xzi x ix

P wP
Q J K

x y x
δφ φ

∂ ∂∂
+ − =− +

∂ ∂ ∂

ɺɺ
ɺɺ  (17d) 

1 0     :     xy y i
yzi y iy

P P w
Q J K

x y y
δφ φ

∂ ∂ ∂
+ − =− +

∂ ∂ ∂

ɺɺ
ɺɺ  (17e) 

In the above relations, i=1, 2, 3 represents the number of the layers. 
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Graphene properties are used for the first and second layers, PVDF properties are applied for the third layer, and eqs. (15) are 
used for N of DLGS and PVDF nanoplates, respectively. 

5. Solving with Navier Method 

Navier method is used for obtaining critical buckling load and frequency of the system for all nanoplates with four edges 
simply supported boundary conditions. Navier method automatically satisfies boundary conditions of simply supported 
nanoplates [41-43]: 

1 1

    j t
i imn

m n

m n
u u cos xsin ye

a b

π π∞ ∞
Ω

= =

=∑∑  (18a) 

1 1

    j t
i imn

m n

m n
v v sin xcos ye

a b

π π∞ ∞
Ω

= =

=∑∑  (18b) 

1 1

    j t
i imn

m n

m n
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a b

π π∞ ∞
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= =
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1 1

    j t
ix ixmn

m n

m n
cos xsin ye

a b

π π
φ φ

∞ ∞
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= =

=∑∑  (18d) 

1 1

    j t
iy iymn

m n

m n
sin xcos ye

a b

π π
φ φ

∞ ∞
Ω

= =

=∑∑  (18e) 

1 1

    j t
mn

m n

m n
sin xsin ye

a b

π π
ϕ ϕ

∞ ∞
Ω

= =

=∑∑ ,  1,2,3i=  (18f) 

where 1j= − and � is natural frequency of the system. 

Substituting eqs. (18) into eqs. (17), matrix equation of the system is obtained as follows: 

[ ] [ ]( )[ ]

( )

2

16 16 16 16

16 1

   U 0   

[U]=              

1,2,3

mnimn imn imn ximn yimn

A M

u v w

i

φ φ ϕ

× ×

×

−Ω =

   
=

 (19) 

where [ ]A  is stiffness matrix, and [ ]M  is mass matrix. The above Matrix elements are defined in ‘‘Appendix’’. And the other 

elements are zero. 

6. Results and Discussion 

In this section, nondimensional critical buckling load and nondimensional frequency of the system, with respect to matrix 
relation (19), are derived as eqs. (20) and (21) [41-44]: 

2

0 3
2

crN a
N

E h
=  (20) 

Ω 2

0

2

Ga

h E

ρ
Ω =  (21) 

The properties of material are listed in Table. 1. Geometric properties of nanoplates, external electric voltage, physical 
properties of elastic medium and van der Waals coefficient are as follows [12, 27, 43]: 

0

0.34   ,  2   ,  20  ,   ,

2   ,

2.71273 ,  8.9995035 / ,

45  /

ph nm h nm b h a b

V volt

N
G K Gpa nm

m
c Gpa nm

= = = =

=

= =

=−

 (22) 

6.1 Validation with other studies 

The research is validated with similar studies in the field, in this part. Ghorbanpour Arani et al [12] analyzed the buckling of 
an SLGS coupled with a PVDF nanoplate using nonlocal Mindlin plate theory. Confirming the present study with that of 
Ghorbanpour Arani et al [12], that is, removing the first layer (top Graphene nanoplate) and considering geometric specifications 
of nanoplates, the two studies are compared and the results of comparing the ratio of buckling loads for the higher modes are 
shown in Fig. 2. Similar to the studies done by Pradhan and Kumar [11], Shen et al. [15] and Pradhan and Padikar [17], the results 
for the ratio of frequency are obtained considering a Graphene nanoplate of the system (i.e. removing one layer of double-layer 
Graphene nanoplate and also removing piezoelectric nanoplate and elastic medium). They utilized the properties of isotropic 
SLGS in their studies (E = 1.06 TPa and 0.25ν = ) and also considered geometric properties a=b=10 nm. The results of the 
comparison are presented in Table 2. As observable in Figure 2 and Table 2, the study is of high accuracy. 
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Table 1. Material properties of DLGS, PVDF and ZnO [3, 12, 28, 45] 
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Table 2. Comparison of the results for vibration ( )/nonlocal localΩ Ω  of the SLGS for all edges simply supported between the 

present study and Refs. (Pradhan & Kumar [11]; Shen et al [15]; Pradhan & Phadikar [17]) 

( )2 2
0 (e )a nm  Pradhan and Kumar [11] Shen et al [15] 

Pradhan and 
Phadikar [17] 

Present work 

0 1 1 1 1 
1 0.9139 0.9139 0.9139 0.9139 
2 0.8468 0.8467 0.8467 0.8467 
3 0.7926 0.7925 0.7925 0.7925 

 

6.2 Results 

Nondimensional critical buckling load according to the variations of external electric voltage for various values of nonlocal 
parameter is shown in Fig. 3. In the figure, two main parameters for the behavior of critical buckling load are investigated. As it is 
indicative in the figure, nondimensional critical buckling load increases when the external electric voltage rises, and decreases 
when the value of nonlocal parameter increments. 

Nondimensional critical buckling load according to nonlocal parameter for various biaxial compression ratios is indicated in 
Fig. 4. The figure shows that nondimensional critical buckling load has the maximum value when it is under uniaxial pressure 
(q=0), and it reduces when loading ratio increases.  

In Fig. 5, nondimensional critical buckling load according to nonlocal parameter for various ratios of width to thickness of 
Graphene is shown. As indicated in the figure, nondimensional critical buckling load rises when the ratio of width to thickness of 
Graphene increases. 

The effect of nonlocal parameter on nondimensional critical buckling load for various values of Winkler spring stiffness is shown 
in Fig. 6. In the figure, it is observable that nondimensional critical buckling load grows up when Winkler spring stiffness increases, 
since the stiffness of elastic medium increases when Winkler spring stiffness rises, and the stiffness of the system increases by 
incrementing the stiffness of elastic medium and, consequently, nondimensional critical buckling load enhances. Nondimensional 
critical buckling load according to nonlocal parameter for PVDF and ZnO material is shown in Fig. 7. As observable in the figure, 
nondimensional critical buckling load is higher for PVDF than that for ZnO material. The schematic representation of the buckling 
mode for a system under biaxial pressure for different buckling modes is shown in Fig. 8. 
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Fig. 2. Comparison of buckling load ratios for SLGS coupled with PVDF nanoplate according to nonlocal parameter, m=n=1, m=n=3, m=n=5 
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Fig. 3. Effect of nonlocal parameter on nondimensional critical buckling load for different nonlocal parameters 
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Fig. 4. Effect of nonlocal parameter on nondimensional critical buckling load for different biaxial compression ratios 
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Fig. 5. Effect of nonlocal parameter on nondimensional critical buckling load for width to thickness of Graphene ratios 
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Fig. 6. Effect of nonlocal parameter on nondimensional critical buckling load for different values of Winkler spring stiffness 
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Fig. 7. Effect of nonlocal parameter on nondimensional critical buckling load considering two different piezoelectric nanoplates of PVDF and ZnO 

Figure 9 indicates the effect of nonlocal parameter on nondimensional frequency of the system considering two piezoelectric 

PVDF and ZnO nanoplates. As observable in the figure, nonlocal frequency causes reduction in nondimensional frequency, and 

when nonlocal frequency enhances, nondimensional frequency of the system reduces more while considering ZnO than PVDF. 

Although, the value of nondimensional frequency of the system for ZnO is higher initially, but after 0  0.74 e a nm≅ , the value of 

nondimensional frequency becomes less for ZnO material than that for PVDF material.  

Nonlocal frequency of the system for different vibration modes according to various ratios of length to width for different 

values of nonlocal parameter are listed in Tables 3 and 4, considering PVDF and ZnO, respectively. Analyzing the results of the two 

tables indicates that the nonlocal frequency of the system enhances by increasing the number of vibration mode and the ratio of 

length to width. Comparing the two tables, it can be found out that the nonlocal parameter causes more reduction in the 

magnitude of nondimensional frequency of the system, while considering ZnO rather than PVDF, and also, when the ratio of 

length to width enhances, the nondimensional frequency of the system increases, while considering ZnO rather than PVDF for 

the local state and increases by incrementing nonlocal parameter for PVDF comparing to ZnO (since nonlocal parameter has 

more reduction effect for ZnO than PVDF), and it is observable in Fig. 9. 

Nondimensional frequency of the system for different vibration modes according to various ratios of width to thickness of 

Graphene for different values of external electric voltage are listed in Tables 5 and 6, considering PVDF and ZnO, respectively. 

Analyzing the results of the two tables, it is shown that the nondimensional frequency of the system rises when the ratio of 

width to thickness enhances and decreases when the external electric voltage increases. Comparing the two tables indicates that 

for the ratio of b/h=15. nondimensional frequency of the system while considering PVDF is less than that while considering ZnO, 

and the value of nondimensional frequency of the system becomes more while considering PVDF comparing to ZnO, when the 

ratio of width to thickness rises.  
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Table 3. Nondimensional frequency for different vibration modes according to various length to width ratios for 
different nonlocal parameters considering PVDF 

17
020 ,  2  ,  8.9995035 10   / ,   2.71273  /b h V volt K Gpa nm G N m= × = = × =  

(m,n) a/b ( )0  e a nm  

  
0 0.5 1 1.5 2 

 
(1,1) 

 

1 5.2148 5.1059 4.8761 4.6677 4.5369 

1.5 9.6627 9.5569 9.3171 9.0756 8.9049 
2 15.8276 15.7063 15.4246 15.1309 14.9167 
3 33.5368 33.3474 32.8997 32.4209 32.0640 

 
(2,1) 

1 9.2118 8.5856 7.6797 6.7177 5.3974 

1.5 14.3314 13.8380 12.8945 12.1578 11.7837 
2 20.8594 20.4237 19.5044 18.6709 18.1475 
3 38.6508 38.2277 37.2685 36.3025 35.6194 

 
(2,2) 

1 11.0296 10.3737 10.2026 8.7551 6.8847 
1.5 18.8379 17.8215 16.7867 16.6909 16.6674 
2 29.8325 28.4656 26.8225 26.7482 26.5797 
3 61.2005 58.7864 55.5865 54.9917 53.8081 

 

 

m=n=1 

 

m=1 , n=3 

 
m=n=2 

 

 
m=2 , n=3 

Fig. 8. Mode shapes for a system subjected to biaxial compression 
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Fig. 9. Effect of nonlocal parameter on nondimensional frequency considering two different piezoelectric nanoplates of PVDF and ZnO 

Nondimensional frequency of the system according to nonlocal parameters considering the elastic medium (Winkler and 
Pasternak models) and also without considering Winkler and Pasternak models, is shown in Figure 10. The figure shows that the 
stiffness of the system is higher while considering both models (Winkler and Pasternak) rather than only considering Pasternak 
model, and while only Winkler model is under consideration, the stiffness of the system is less than that in the two other states. 
Thus, the nondimensional frequency of the system is higher while considering both Winkler and Pasternak models comparing to 
that in the two other states, and it is higher while only considering Pasternak rather than Winkler model. Therefore, it can be 
concluded that the stiffness of the system is directly related to nondimensional frequency of the system. 



Buckling and Vibration Analysis of a Double-layer Graphene Sheet Coupled with a Piezoelectric Nanoplate  
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 129-143 

139 

Table 4. Nondimensional frequency for different vibration modes according to various length to width ratios for different nonlocal parameters 

considering ZnO for 17
020 ,  2  ,  8.9995035 10   / ,  2.71273  /b h V volt K Gpa nm G N m= × = = × =  

(m,n) a/b
 ( )0  e a nm  

  
0 0.5 1 1.5 2 

 
(1,1) 

1 5.4681 5.2351 4.7103 4.1634 3.7211 

1.5 9.7821 9.4903 8.7872 7.9822 7.2691 
2 15.9067 15.5010 14.4983 13.3057 12.2077 
3 33.5826 32.8246 30.9152 28.4367 25.2273 

 
(2,1) 

1 10.7671 9.6457 7.7667 6.1486 4.9401 

1.5 15.7482 14.8031 12.8479 11.0232 9.6933 
2 21.8724 20.9406 18.8413 16.6537 14.8845 
3 39.1283 37.9611 35.1489 31.9286 29.0764 

 
(2,2) 

1 14.5976 12.4388 9.8231 7.9140 5.5801 

1.5 26.5049 23.4072 18.5697 15.4895 13.3508 
2 43.1049 38.6128 31.0812 24.5945 19.7605 
3 70.4314 63.3218 50.4546 39.7820 32.1657 

 

Table 5. Nondimensional frequency for different vibration modes according to various width to thickness of Graphene ratios for different 

external electric voltages considering PVDF for 17
0,  1  ,  8.9995035 10   / ,  2.71273  /a b e a nm K Gpa nm G N m= = = × =  

(m,n)
 

b/h
 

0V  

 
(1,1) 

 -2 -1 0 1 2 
15 3.6518 3.6017 3.5510 3.4995 3.4471 
20 5.1589 5.0897 5.0195 4.9483 4.8761 
25 6.8497 6.7637 6.6766 6.5883 6.4988 
30 8.7481 8.6478 8.5463 8.4436 8.3396 

 
(2,1) 

15 4.1795 4.1055 4.0258 3.9401 3.8497 
20 8.0880 7.9882 7.8869 7.7841 7.6797 
25 10.4031 10.2717 10.1385 10.0034 9.8664 
30 12.9577 12.7992 12.6387 12.4760 12.3112 

 
(2,2) 

15 4.9217 4.8154 4.7065 4.5946 4.4798 

20 10.5029 10.4279 10.3528 10.2777 10.2026 

25 11.9796 11.8243 11.6668 11.5071 11.3452 

30 14.6071 14.4069 14.2039 13.9978 13.7886 
 

 
Table 6. Nondimensional frequency for different vibration modes according to various width to thickness of Graphene ratios for different 

external electric voltages considering ZnO for 17
0,  1  ,  8.9995035 10   / ,  2.71273  /a b e a nm K Gpa nm G N m= = = × =  

(m,n)
 

b/h
 

0V  

 
(1,1) 
 

 -2 -1 0 1 2 
15 3.8742 3.8197 3.7645 3.7084 3.6514 
20 5.0449 4.9634 4.8805 4.7962 4.7103 
25 6.0722 5.9598 5.8453 5.7286 5.6093 
30 7.0742 6.9297 6.7821 6.6312 6.4768 

 
(2,1) 

15 4.8155 4.7696 4.7105 4.6574 4.6014 
20 7.8868 7.7986 7.7054 7.5943 7.4867 
25 10.4026 10.2454 10.0858 9.9235 9.7585 
30 12.3217 12.1235 11.9219 11.7168 11.5080 

 
(2,2) 

15 6.2316 6.1274 6.0212 5.9129 5.8025 

20 10.2766 10.1642 10.0511 9.9374 9.8231 

25 12.8350 12.6643 12.4913 12.3157 12.1376 

30 15.4967 15.2789 15.0579 14.8335 14.6057 
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Fig. 10. Effect of nonlocal parameter on nondimensional frequency considering different types of elastic medium 



 K. Malekzadeh Fard et. al., Vol. 8, No. 1, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 129-143   

140 

7. Conclusions 

Analyzing nanoplates in applying nanostructures and nanosystems has taken the attention of many researchers. In the 
present study, the buckling and vibration of a system composed of DLGS, where each layer is under van der Waals force with the 
other layer and under in-plane forces, coupled with a PVDF piezoelectric nanoplate through an elastic medium based on Winkler 
and Pasternak models and subjected to an external electric potential were investigated according to sinusoidal shear deformation 
theory of orthotropic plate extended with Eringen’s nonlocal theory. Nondimensional frequency and critical buckling load were 
obtained using the Navier method for all edges with simply supported boundary conditions. Some results of the system were 
analyzed considering ZnO rather than PVDF nanoplate, and it was observed that nondimensional critical buckling load according 
to nonlocal parameter was less while considering ZnO rather than PVDF nanoplate. However, to compare a system with two 
different piezoelectric nanoplates of PVDF and ZnO, initially, the nondimensional frequency, according to the nonlocal parameter, 
increased, considering ZnO, and decreased after a while. In the present study, external electric voltage, loading ratios along y to x, 
ratio of width to the thickness and Winkler spring constant were discussed for nondimensional critical buckling load according to 
the nonlocal parameter, and ratio of length to width, external electric voltage, ratio of width to thickness, various vibration modes 
and the effect of elastic medium were presented for nondimensional frequency according to the nonlocal parameter. The results 
indicate that nondimensional frequency and nondimensional critical buckling load decreases when nonlocal parameter 
enhances, and when the external electric voltage increases, nondimensional frequency reduces and nondimensional critical 
buckling load rises, and nondimensional frequency and nondimensional critical buckling load increments when the effect of 
elastic medium and the ratio of width to thickness increases. Nondimensional frequency enhances when the number of modes 
and the ratio of length to width increases. Nondimensional critical buckling load is higher for the uniaxial than biaxial state, and 
nondimensional critical buckling load decreases when loading ratio along y to x enhances. 
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Nomenclature 

μ Small-scale effect (nm) ρ Mass density ( 3/kg m ) 

u Displacements at one point in the middle of a plate along the x (nm) Ncr Critical buckling load (N)  
v Displacements at one point in the middle of a plate along the y (nm) � Natural frequency 
w Displacements at one point in the middle of a plate along the z (nm) [ ]A  Stiffness matrix 

x Rotations from the middle surface along the x-direction [ ]M  Mass matrix  

y Rotations from the middle surface along the y-direction N0 Nondimensional critical buckling load 
h The plate thickness (Graphene) (nm) �0 Nondimensional frequency 
hp The plate thickness (piezoelectric) (nm) V0 External electric voltage (volt) 

ij

pC  Elastic coefficients (Graphene) (Gpa) c van der Waals coefficient (Gpa/nm) 

ij

pC  
Elastic coefficients (piezoelectric) (Gpa) a Length (nm) 

Ei Young’s modules (i=1,2, 3) (Gpa)  b Width (nm) 
Gij Shear modules (i, j=1, 2, 3 and i≠j) (Gpa) K Winkler spring stiffness (Gpa/nm) 
νij Poisson ratios (i, j=1, 2, 3 and i≠j) G Pasternak shear modulus (N/m) 
eij Piezoelectric coefficients (C/m2) 

ii∈  Dielectric coefficients (F/m) 

Appendix 

The elements of [A] and [M] are obtained by deriving iuδ , ivδ , iwδ ,  i xδφ  and  i xδφ  (i=1, 2, 3) coefficients in the left and right 

sides of (23) to (34) eqs., respectively. 
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