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Abstract. In this article, a fluid dynamic code is implemented to investigate a non-linear model for electro-osmotic flow through a 
one-dimensional Nano-channel. Certain mathematical techniques are simultaneously utilized to convert the coupled system of 
equations into a non-linear differential correlation. This correlation is based on the mole fraction of anion. By using a modified 
homotopy perturbation method, the achieved non-linear differential equation is converted into a few linear differential 
equations. The mole fraction of anion across the channel is found by solving the linear differential equations. Finally, the 
distribution of the mole fraction of cation, electrical potential, and velocity are accurately derived based on the mole fraction of 
anion. The present study confirms that by application of a modified homotopy perturbation method, the results are in acceptable 
agreement with the previously validated data. However, using the proposed method here, a closed-form of the solution is 
achieved. 

Keywords: Electro-osmotic flow, Nano-channels, numerical solution, Poisson-Nernst-Planck. 

1. Introduction 

Miniaturization has been one of the most rapid developments in the world of science and technology during the last century. 
Around 40 years ago, the concepts "micro and nano fluidics" were coined when micro-fabricated fluid systems were developed at 
Stanford (gas chromatography) and IBM (inkjet printer nozzles) [21]. Fluid flow through a capillary microchannel has various 
biotechnological applications (such as fast DNA analysis, protein separation, drug delivery systems, etc.), in solid-state and 
catalytic devices [1]. The flow, the electric field, and mass transfer due to the diffusion and presence of an imposed electric field 
between parallel plates are of great importance in electro-osmotic flow. These types of problems have been discussed in various 
papers (e. g. [16, 17, 18, 19]). Electro-osmotic flow (EOF) is defined as the fluid flow in a micro-/nano-sized channel or a porous 
medium under an imposed electric field. EOF occurs on the liquid-solid interface as a result of the spontaneous charge creation. 
Usually, when put in contact with water or aqueous solutions, negative charges are formed naturally on a solid surface. The 
positive ions in the liquid are then attracted to the negatively-charged surface, whereas the negative ions are repelled from it, 
forming a thin layer of net charges called the electrical double layer (EDL) [2]. In many systems, the usual balance for mass 
transfer is between Fick diffusion and convection of the bulk fluid [3]. This mass transfer balance is a key parameter in 
performance determination of an absorption heat pump [4]. Liquid pumping may also occur under a DC electric field along the 
outer surface of an electrode. The liquid pumping of an ionic solution is caused by the movement of mobile ions (EDL) 
accumulated around an electrode, and the resultant flow is the EOF. For biological applications, the ionic solution pumping 
mechanism needs to be better understood, which is the main concern in [5]. 

Field-dependent solvent polarization effects on the EDL electrostatic potential distribution and the effective EDL thickness in 
narrow nanofluidic confinements with thick (or overlapping) EDLs were also depicted in [6]. The effect of the size of a fluidic 
channel on the form of the electrostatic potential was investigated in [7]. The non-linear Poisson-Boltzmann equation was solved 
by using the method of matched asymptotic expansions. The electrostatic potential in a capillary filled with electrolyte was 
analytically derived. It was approved that by decreasing the size of the channel, the precise form of the electrostatic potential in a 
fluidic channel is being more important. This often occurs in microfluidic and nanofluidics applications. The results were in very 
good quantitative agreement with the numerical solution of the non-linear Poisson-Boltzmann equation for thin electrical double 
layers. 

The lattice-Boltzmann method was developed in [8] to numerically simulate three-dimensional electro-osmotic flow problems 
in porous media. In their work, the electro-osmosis in straight cylindrical capillaries with a (non)uniform zeta-potential 
distribution for capillary inner radius ratios to electrical double layer thicknesses between 10 and 100 was considered. 

The flow of ions through protein channels was presented in [9]. The authors focused on the numerical investigation of the 
effects of electrical properties of the channel on the flow. It was shown that for long channels with small permittivity (in 
comparison with that of the aqueous solution), the potential down the channel was significantly altered. They concluded that this 
potential does not satisfy a one-dimensional Poisson-Boltzmann but is a solution to a new equation. 
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Fig. 1. One-dimensional channel geometry W "h, L "h. 

 
A numerical model to describe the rotating EOF of the power-law fluid in a non-uniform microchannel with slip boundary 

condition was presented in [10]. The potential distribution of the EDL was introduced by using the non-linear Poisson-Boltzmann 
equation. The solution was then obtained by using finite difference method. Comparison of their results with the analytical 
solutions of a Newtonian fluid confirmed the validity and effectiveness of the proposed method. 

A stochastic version of the Navier-Stokes equations was employed in [11] to spectrally investigate the probabilistic effects due 
to the influence of roughness elements and uncertainties in wall conditions due to the presence of a random distribution of 
nanobubble. Accordingly, a generalized mathematical expression which can be utilized as a basic scientific guideline for designing 
microfluidic channels was derived. 

In [12], Poisson-Nernst-Planck (PNP) systems were taken into consideration in the case of vanishing permanent charge. The 
authors conducted a case study using simulation and singular perturbation analysis. The results for potential profiles and ion 
concentration profiles were given for different boundary conditions. 

In [13], a solution to this problem by means of Adomian method was provided. Adomian is a powerful method to solve non-
linear differential equations. In [22], EOF through nano-channels was investigated and four coupled non-linear equations were 
derived to calculate mole fractions of anion and cation, electrical potential, and velocity of ion flow. Zheng [22] presented an 
accurate solution for this problem using finite difference approach. Although the results were in acceptable agreement with 
experimental data, error analysis could not be done and a closed form expression for the solution was not accessible using finite 
difference approach. 

In this paper, the non-linear system of equations introduced in Zheng [22], is converted into a non-linear ordinary differential 
equation system. Then the equation is solved by implementation of the homotopy perturbation method. Once the non-linear 
differential equation is solved, the mole fraction of anion is determined and the solution to the rest of the equations is accurately 
obtained. 

2. Mathematical Model 

A mathematical model to analyze the electro-osmotic flow in nano channels is represented here based on the research 
conducted in [22]. The geometry of channel is shown in Fig.1. The general three-dimensional governing equations for electro-
osmotic flow are Poisson equation for the electric field, the Navier-Stokes equation for the flow field, and the mass transfer 
equation. First, the general three-dimensional equations are represented here. Then, assuming a dilute mixture, the mass transfer 
equations reduce to the PNP equations ([9, 12, 20]). The flow is assumed to be incompressible, laminar, and one-dimensional. 

2.1 Poisson Equation 

The Poisson equation is written in the following form: 

2 * * * * *

0 0 0

1 1 1
( ) ( ) ( ) ( )Ai i i i i i

i i ir r r

r e z r eN z c r Fc z X rϕ ρ
ε ε ε ε ε ε

∇ =− =− =−∑ ∑ ∑                            (1) 

solventii
c c c= +∑ corresponds to total molar concentration of all ions and solvent (which is supposed to be constant for ea

ch system) and /i iX c c=  denotes the mole fraction of ion species. By defining non-dimensional variables as

* * * * *
0( ( , , )) ( ) / , / , / , /r x y z r x x L y y h z z Wϕ ϕ ϕ= = = =  the following correlation is acquired:   

2
2

0
i i

ie

Fch
z Xϕ

ε ϕ
∇ =− ∑                                                        (2) 

where 1 2 0/ , / , e rh L h Wε ε ε ε ε= = = , and 0 / /kT e RT Fϕ = =  ( , ,k T and R denote Boltzmann constant, absolute temperature in 

Kelvins, and universal ideal gas constant, respectively). If the volume of ions could be neglected, equation becomes: 

2 2
i i

i

z Xε ϕ β∇ =− ∑                                                       (3) 

/ , /h c Iε λ β= = , λ  is the Debye length, c is the total concentration and I  is the ionic strength. The boundary conditions for the 

equation are: 

0

1

0

1

y

y

ϕ ϕ

ϕ ϕ

 = = = =
                                                    (4) 

2.2 Mass Transfer Equation 

As the focus is on the electro-osmotic flow here, it is supposed that no externally imposed pressure gradient exists. Moreover, 
for nanochannels, in which there exists an externally applied pressure, as long as the pressure is not considerably large, the 
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pressure diffusion is neglectable compared to the electro-osmosis. In consequence, the forces which contribute in mass transfer 
of fluid are ordinary Fick diffusion, convection, and migration due to the presence of an electric field. At steady state, the non-
dimensional mass transport equation is: 

 
2 .( . ) Re. . .( ) 0i i i iX z X Sc X uϕ∇ + ∇ ∇ − ∇ =                                    (5) 

where 0Re /U hρ µ=  is the Reynolds number, / iSc Dµ ρ=  is the Schmidt number, and iD is the diffusion coefficient. The non-

dimensional velocity is defined as 0* /u u U=  where 0U is the velocity scale. For the electro-osmotic flow in micro- and 

nanochannels, the Reynolds number could be neglected as it is very small. Thus the non-dimensional mass transfer equation 
becomes: 

.( ) 0i i iX z X ϕ∇ ∇ + ∇ =                                                      (6) 

The boundary conditions are: 

0

1

0

1

i i

i i

X X y

X X y

 = = = =
                                         (7) 

2.3 Navier-Stokes Equation 

The three-dimensional momentum equation for incompressible, steady flow is: 

0
2

0

Re. . .
i i

i

Fc h z X

v v p v
U

ϕ

ϕ
µ

∇ =−∇ − ∇ +∇
∑

� � �
                                           (8) 

where *
0/ ( / )p p U hµ=  is the dimensionless pressure. The boundary conditions (4), (7) are held for this equation too. For no-slip 

flow, the boundary conditions for u  are 0u = at the walls. As the flow is laminar (the Reynolds number is very small), the 
pressure driving the flow can be neglected, and x is the main direction, the Navier-Stokes equation in the x-direction could be 
simplified and written in the following form: 

2 2
i i

i

u z Xε β∇ =− ∑                                                       (9) 

2.4 One-dimensional governing equations 

For the channel shown in Fig. 1 the classical three-dimensional governing equations can be simplified. As ,h W≪ and ,h L≪  

we have 1 2, 1,ε ε ≪  in the governing equations the terms with coefficients 1ε or 2ε  are assumed to be negligible. Thus the one-

dimensional governing equations can be written as: 
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Comparison of Eq. (10) with Eq. (12) shows that dimensionless potential ϕ  and velocity u  are governed by the same differential 

equations. If the electrolyte contains monovalent cation and anion (NaCl), 1iz =  and Eqs. (10) -(12) can be rewritten as: 

2

2 2

2

2 2
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where oX and cX  are mole fractions of anion and cation respectively. Boundary conditions of Eqs. (13) -(16) are given in the 

following form: 
0

0 1

0

(0) , (1) , (0) (1) ,

(0) (1) 0, (0) (1) .

o o o

c c c

X X X

u u X X X

ϕ ϕ ϕ ϕ = = = = = = = =

                               (17) 

 
For a real microchannel or nanochannel, if the inner surfaces of the channel are fabricated at the same environment and at the 
same time, the electrochemical properties of different surfaces will be equal. Therefore, the channel is symmetric. For 
symmetrical channels, 0 1 0ϕ ϕ= = [22]. The above system of differential equations with boundary conditions has been 

numerically solved in [22]. However, in this paper, in order to decrease the amount of computations, the system of equations is 
converted to one non-linear differential equation based on the mole fraction of anion. Other variables are found from the mole 
fraction of anion. 
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3. Converting The System of Differential Equations to an Ordinary Differential Equation 

Since Eqs. (13) and (16) are equivalent with the same boundary conditions, solving Eqs. (13) -(15) gives: 
 

1 1

0 0

(1) (1)
(1) (0) ln , (1) (0) ln .

(0) (0)
c o

c c o o

dy X dy X
a b

X X X X
ϕ ϕ ϕ ϕ

      − = − − = +        ∫ ∫                         (18) 

 

By substitution of boundary condition of Eq. (17) into Eq. (18), 0a b= =  is obtained. Therefore, Eqs. (14) and (15) are modified as: 
 

0 00 0

,
c c

c c

y yX X
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c oX X

dX dX
d d

X X
ϕ ϕ=− =∫ ∫ ∫ ∫                                      (19) 

 
resulting in 

0 0
( ) ln , ( ) lnc o

c o

X X
y y

X X
ϕ ϕ

      =− =        
                                    (20) 

Since 0 0ln( / ) ln( / )
o co cX X X X=− then 

0 0( ). ( ) .c o c oX y X y X X=                                           (21) 

 
By differentiating Eq. (20) with respect to y, substituting the results into Eq. (13) and employing Eq. (21), a non-linear differential 
equation is derived: 
 

2 0 02
3

2 2 2

0

0,

(0) (1) .

c oo o
o o o

o o o

X Xd X dX
X X X

dy dy

X X X

β β

ε ε

    − + − =      = =

                                (22) 

 
where the boundary conditions are as follows: 
 

 0

0

0.04, 188.679,

(0) (1) 0.00254

(0) (1) 0.00276

o o o

c c c

X X X

X X X

ε β = = = = = = = =

                                                (23) 

 
In order to solve Eq. (22), the non-linear equation is divided to certain linear differential equations by applying the new homotopy 
method introduced in [15]. 

4. Semi- Analytic Approach to Solve Eq. (22) 

In this section, an effective method which is introduced in [14] is applied to solve the non-linear problem. Certain 
improvements have been conducted to enhance the accuracy of this method [15]. In these kinds of methods, a non-linear 
problem is converted to certain simple linear or non-linear problems. Thus, the final solution to the non-linear problem can be 
introduced as a series form of the solutions to the easier problems. Here, the non-linear problem with the below boundary 
conditions is considered: 

( ( )) ( ) 0,

( , ) 0, ,

oN X y f y y

x
B x n

n

 − = ∈Ω ∂ = ∈ Γ ∂

                                               (24) 

where N and B are general differential and boundary operators respectively and f is a known analytic function. According to Eq. 

(22), ( ) 0f y = . Thus, based on Eq. (24) and using the concepts defined in [15], a homotopy perturbation is defined as below: 

 

0( , ) ( ( )) ( 1)( ( )) 0, [0,1]H p N p N X pψ ψ= + − = ∈                                          (25) 

and 
 

2 3
0 1 2 3( ) ( ) ( ) ( ) ( ) ( ) ...oX y y y p y p y p yψ ψ ψ ψ ψ= + + + +≃                                    (26) 

 

where p is an embedding parameter and 0X is an initial guess for ( )oX y . Since p varies between 0 and 1 , ( )N ψ changes 

between 0( )N X and 0 . The solution of Eq. (24) for 1p = and 1( ) lim ( )o pX y yψ→≃ is obtained. From boundary condition (23) and using 

Eq. (26): 
 

0

0

(0) (0) 0.00254, (0) 0, 1, 2, 3,...

(1) (1) 0.00254, (1) 0, 1, 2, 3,...
o i

o i

X and i

X and i

ψ ψ

ψ ψ

 = = = = = = = =
                                      (27) 

 
Thus, an initial guess can be written as follows: 
 

 0 0( ) ( ) 0.00254y X yψ = =                                                     (28) 

 
Therefore, considering Eqs. (22) and (25), the non-linear operator N is given by: 
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2

2 3

2
( ) ( )o o

o o o

d X dX
N X X X X

dy dy
η δ−= − + −                                            (29) 

 

where 0 0 2 2 5/ 0.8266498688, / 1.179243750 10 .c oX Xη β ε δ β ε= = = = × Substituting Eqs. (26) and (27) in Eq. (25) gives: 

 
2

2 30 0
2

0 0 0

2
2 30 0

0 0 02
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( ( )) ( ) ( ) ( ( ))

( ) ( )
( 1)( ( )) ( ) ( ) ( ( )) 0.

i i
i ii i ii i
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d p y d p y
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dy dy

d X y dX y
p X y X y X y

dy dy

ψ ψ
ψ η ψ δ ψ

η δ

∞ ∞
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= =

= = =

 − + −+ − − + − =

∑ ∑∑ ∑ ∑
                        (30) 

 
With rearrangement of Eq. (30) in terms of p powers and using Eq. (25), it is concluded that the coefficients of p powers are equal 
to zero. Thus Eq. (22) is converted to the below differential equations: 
 

{ 0 0( ) ( ) 0.00254.y X yψ = =                                                  (31) 
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By substitution of Eq. (31) in Eq. (32), the solution of differential Eq. (32) is found as: 
 

 23.94015525 23.9401552515 4
1( ) 4.604873974 10 1.148933969 10 (1 )y yy e eψ −− −=− × + × −                         (35) 

 
Substituting Eqs. (31) and (35) in Eq. (33) leads to a simple differential equation in terms of 2ψ function, which can be solved easily: 

 
23.94015525 23.94015525 47.88031057 27

2

47.88031050 71.820465755 47.88031050 1

23.9

( ) 7.887750425 10 19680.24413 4.362999428 10

0.8148188226 10 ( 0.9680373359 10

0.3333333331 2.415290808 10

y y y

y y

y e e e

e e e

e

ψ −− −

− − −

= × + + ×

− × + ×

− + × 94015525 )y

                (36) 

 
Similarly, the solution to Eq. (34) is found as: 
 

23.94015525 23.9401552517 7
3( ) 1.391981968 10 3.473049157 10 (1 )y yy e eψ −− −=− × − × −                         (37) 

 
To obtain a solution of Eq. (22) with acceptable accuracy, the four first terms of series (26) are taken into consideration. More terms 
of the summation could be considered if higher accuracy is required. 
 

3
47.8803 23.9402 23.9402 47.88036 15 27

0

( ) ( ) 0.00264709 2.71606 10 0.000114112 2.57088 10 4.363 10y y y y
o i

i

X y y e e e eψ
− −− − −

=

= + × − − × + ×∑≃   (38)                      

 

In order to evaluate the error of the presented method, the above solution is substituted in the equation of mole fraction of anion 
distribution (Eq. (22)). The corresponding results are given in table.1.  

Table 1. Absolute errors for ( )oX y . 

y (dimensionless) Absolute errors 

0.0 7.2e-6 
0.1 5.1e-7 
0.2 1.5e-6 
0.3 1.6e-6 
0.4 1.6e-6 
0.5 1.6e-6 
0.6 1.6e-6 
0.7 1.6e-6 
0.8 1.5e-6 
0.9 5.1e-7 
1.0 7.2e-6 
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Fig. 2. The mole fraction distribution of cations and anions across the channel. 

 

Fig. 3. The potential and velocity profile across the channel. 

Substituting Eq. (38) in Eq. (21) and applying the boundary conditions (23), mole fraction of cation distribution is found in 
the following form: 

47.8803 23.9402 23.9402 47.88036 6 15 27 1( ) (7.0104 10 )(0.00264709 2.71606 10 0.000114112 2.57088 10 4.363 10 )y y y y
cX y e e e e− −− − − − −× + × − − × + ×≃  (39)  

In Fig. 2, the mole fraction distribution of cations and anions across the channel is shown. Both mole fractions and y are non-

dimensional. As it is clear from Fig.2, the mole fraction of cations increases while the distance to the wall decreases. However, the 

mole fraction of anions decreases as the distance to the wall decreases: the increment of the cation concentration equals the 

decrement of the anion concentration. The concentration difference between cation and anion species reaches its maximum at 

the wall. In the bulk of the channel, cations and anions mole fractions are the same (difference between ( )oX y  and ( )cX y  for 

0.5y =  is equal to 62 10−×  and this value is similar to the results given in [22]), confirming that the electrolytic solution is 

neutral in the bulk. 

The values of sodium mole fraction ( )cX y and chloride mole fraction ( )oX y according to Eqs. (39) and (38) are given in table 2. 

Also, the results obtained from a code which is developed based on the finite difference approach in [22] are presented here. 

Table 2. Values of cation and anion distribution. 

y (dimensionless)          ( )cX y          ( )cX y form [22]     ( )oX y  ( )oX y from [22] 

0.0 0.00276 0.00276 0.00254 0.00254 
0.1 0.00265692 0.0026571803 0.00263855 0.0026383916 
0.2 0.00264932 0.0026485279 0.00264612 0.0026469254 
0.3 0.00264877 0.0026477585 0.00264666 0.0026476253 
0.4 0.00264874 0.0026476733 0.00264669 0.0026476661 
0.5 0.00264874 0.0026476606 0.0026467 0.0026476635 
0.6 0.00264874 .0026476733 0.00264669 0.0026476661 
0.7 0.00264877 0.002647758 0.00264666 0.0026476253 
0.8 0.00264932 0.0026485279 0.00264612 0.0026469254 
0.9 0.00265692 0.0026571803 0.00263855 0.0026383916 
1.0 0.00276 0.00276 0.00254 0.00254 
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Using Eqs. (20) and (38) the solution of electrical potential and velocity are found as: 

47.8803 23.94026

0

23.9402 47.880315 27

1
( ) ln( ) ln( (0.00264709 2.71606 10 0.000114112

0.00254

2.57088 10 4.363 10 ))

y yo

o

y y

X
y e e

X

e e

ϕ − −−

− −

= = + × −

− × + ×

              (40) 

Since Eqs. (13) and (16) are equal, ( ) ( )y u yϕ = . The solution of electrical potential and velocity are shown in Fig. 3. 

5. Conclusion 

The coupled non-linear system of equations (Eqs. (13)-(16)) was solved in [22]. However, in this paper, the above system was 
converted to a non-linear differential equation. In this research, the non-linear differential equation governing the fluid flow in 
Nano-channels was solved by the proposed method. A comparison of our results with those found from previous methods 
available in the literature demonstrates the simplicity and effectiveness of the proposed method. It was also demonstrated that 
our results are in acceptable agreement with previously validated data. Furthermore, error analysis, which could be done by 
substituting the closed-form of the solution in the equations, guarantees the validity of our results. The numerical error analysis 
shows that the fluid dynamic code accurately solves the governing equations. 
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Nomenclature 

* 

r* 

r 

0 
e 

Electrical potential [Volts]  
Vector of location in Cartesian coordinates [m] 
Dielectric constant of the substance [F/m] 
Permittivity of free space [F/m] 
Elementary charge [C] 

zi 
i 
NA 

F 

Valence of ion species 
Density of electrolyte i [kg/m3] 
Avogadro number  
Faraday’s constant [C/mol] 
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