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Abstract. In this paper, the numerical manifold method (NMM) with a 9-node quadrilateral element and a 10-node triangular 
element is developed. Furthermore, complex Fourier shape functions are used to improve the 9-node quadrilateral NMM. Also, the 
two approaches of higher-order NMM construction are compared, increasing the order of weight functions or local approximation 
ones; for this purpose, six-node triangular and three-node triangular using second-order and third-order NMM is used. For 
validation of the suggested method, one free vibration and two forced vibration numerical examples are assessed. The results 
show that the proposed methods are more accurate than conventional NMM. In addition, the superiority of complex Fourier 
shape functions compared to classical Lagrange ones in improving accuracy is perceived. 

Keywords: Numerical manifold method, Nine-node complex Fourier shape functions, Complex Fourier radial basis functions, Free 
vibrations, Forced vibrations, Ten-node shape functions. 

1. Introduction 

The numerical manifold method (NMM), which combines the finite element method (FEM) and the discontinuous deformation 
analysis (DDA), was proposed by Shi in 1992 [1,2]. The use of two separate covers, mathematical covers, and physical ones give 
this method the ability to analyze continuous and discontinuous problems in a unified way [3]. Mathematical covers consist of 
mathematical functions, and physical covers define geometry, constraints, etc. 

Many researchers tried to improve NMM; For instance, the governing equations of NMM usually derive from the minimum 
potential energy principle (MPE), but Li et al. [4] used the weighted residual method in NMM and achieved results resembling 
those of MPE. Also, some researchers like Oden et al. [5], Ghasemzadeh et al. [6], and Fan et al. [7] tried to solve the linear 
dependence problem of NMM. Zheng and Xu [8] proposed new treatment in solving linear elastic fracture problems, Chen and Li 
[9] try to improved NMM in generating manifold elements and Chern et al. [10] developed a second-order displacement function 
for NMM. 

Usually, the use of 3-node triangular elements, because of simplicity in use and better adaptation on the physical domain, is 
common in NMM (also in FEM [11-14]). Shyu and Salami [15] proposed a manifold method with Four-node isoparametric element, 
Zhang et al. [16] used 6-node triangular elements and Fan et al. [17] used 9-node triangular elements to improve NMM’s accuracy 
and observed that the extended NMM could also solve simulate large deformation and contact problems in continuous and 
discontinuous problems. In this paper, in addition to the 3-node and 6-node triangular element, 10-node triangular and 9-node 
quadrilateral element are used. Although, functions of the mentioned covers can be chosen arbitrary according to the physical 
features; usually these functions are chosen from polynomials. In this paper, in addition to choosing weight functions from the 
polynomials, weight functions are also chosen in a new way by using Fourier functions. The aim of this study is to use the new 9-
node quadrilateral element NMM which is produced with new weight functions that are chosen by using Fourier functions and 
the new 10-node triangular element NMM, and compare the proposed methods with the 6-node and 3-node triangular and also 9-
node quadrilateral NMM by the use of polynomials. 

The complex Fourier radial basis function (RBF) was introduced by Hamzehei-Javaran et al. [18]. Simultaneous satisfaction of 
polynomial, exponential and trigonometric function fields is one of the advantages of the suggested shape functions, unlike the 
classic Lagrange functions that only satisfy polynomial function fields. Some applications of different kinds of RBFs in solving 
various types of problems are reported in the literature [19-32]. 

In the following sections include a summary of NMM and the new proposed elements; and also complex Fourier shape 
functions and their properties and advantages are introduced. Three numerical examples are provided to examine the accuracy 
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and the validity of the 9-node quadrilateral NMM with the new proposed shape functions. The results show that the proposed 
NMM with the use of complex Fourier shape functions is more accurate than the 3-node triangular and the 9-node quadrilateral 
NMM with Lagrange shape functions. 

2. Brief Introduction of Numerical Manifold Method 

The mathematical cover is one of the fundamental concepts of NMM. At first, the whole problem domain must cover with 
mathematical covers. Mathematical covers are chosen arbitrary, but their assembly must completely cover all physical domain, 
and they can overlap with each other [33]. By intersecting mathematical covers and physical domain, physical covers are formed. 
Indeed, physical covers can also be understood as the subdivision of mathematical covers by physical domain. Finally, manifold 
elements are obtained by overlapping physical covers with each other. Along with the above process, weight functions are 
constructed over each mathematical cover, and cover functions are chosen for each physical cover. So, NMM combines two kinds 
of functions together on each manifold element. 

Supposing that an element E is formed by m overlapped covers, the global function u(x,y) can be obtained through the 
weighted average of the local approximations ui(x,y) using the Partition of Unity (PU) function wi(x,y) as presented in eq. (1): 

1

( , ) ( , ) ( , )
m

i i
i

u x y w x y u x y
=
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(1) 

where wi(x,y), cover weighting function, is defined as one function over the mathematical covers and meets the following 
conditions depicted in eq. (2) [6]: 
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where   is the whole field. 

2.1 Cover weighting functions 

It is worth mentioning that a manifold element can span discontinuity boundaries, and can be partially out of the material 
volume. So, the same shape and size for all the elements are always available, no matter how complicated the geometric shapes 
of material volumes and joint distributions are. As mentioned above, in this paper in addition to 3-node and 6-node NMM (see [1], 
[16]), 9-node quadrilateral and 10-node triangular elements are used.  

2.1.1 9-node quadrilateral element 

A 9-node quadrilateral element consist of overlapping of 9 quadrilateral mathematical covers, which is shown in Fig. 1. Since 
the development of element matrices and equations expressed in terms of a global coordinate system becomes an enormously 
task (if even possible), the isoparametric formulation is used for quadrilateral elements [34]. Suppose a manifold element like Fig. 
2, the corresponding nine weighting functions in the natural coordinate system can be written as eq. (3). 

2 2 2 2 2 2( , ) , 1,2,3,...,9l l l l l l l l l lw a b c d e f g h i lξ η ξ η ξ ξη η ξ η ξη ξ η= + + + + + + + + =
 

(3) 

Each of the nine cover points of the element should meet the following conditions depicted in eq. (4). 
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where 
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Substituting eq. (3) into eq. (4), unknowns ( , , ,...,l l l la b c i ) can be solved. Equation (6) shows the element weight functions [35]: 
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(6) 

where i iξ ξξ η ηη0 0= , = and ,i iξ η are the normalized coordinates at node i. 

2.1.2 10-node triangular element 

Each 10-node triangular element is constructed from the overlap of ten mathematical covers, and as Fig.3 shows each node is 
the center of a hexagon mathematical cover (Fig. 4 shows an irregular 10-node triangular element). The weight functions for the 
considered element is as eq. (7). 
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Fig. 1. (a) 9-node quadrilateral manifold element which consist of overlapping of 9 mathematical covers; (b) An IPE which is meshed with 9-node 
quadrilateral manifold element. 

 

Fig. 2. 9-node quadrilateral element in global and natural coordinate system. 

 

Fig. 3. 10-node triangular manifold element is constructed from overlap of 10 hexagon mathematical covers. 

 

Fig. 4. 10-node triangular element. 
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The center of these covers is considered as eq. (8) and should meet the eq. (9) conditions. 

( , ), 1,2,3,...,10m mx y m=
 

(8) 

( , ) , , 1,2,3,...,10l lmw l mξ η δ= =
 

(9) 

in which lmδ is as eq. (5). 

Substituting eq. (7) in eq. (9), element weight functions are as eq. (10). 
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(11) 

2.2 Cover displacement functions 

As mentioned, the cover displacement functions are chosen from polynomials by arbitrary degree. So, by increasing the 
polynomial degree, the manifold degree increases. As a result, in NMM, it is not necessary to add nodes to the element for 
increasing the order of the displacement function. 

The cover displacement functions can be expressed as eq. (12). 
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Equation (12) can also be expressed as: 
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According to eq. (1), the global displacement functions in a manifold element can be written as eq. (15). So, the global 

displacement functions can be written as eq. (16); in which ( , )l x yT and lD can be expressed as eq. (17). 
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2.3 Matrices of equilibrium equations 

When the displacement functions are obtained, the total potential energy of the field can be expressed. Afterwards, the 
equilibrium equations can be derived from minimizing the total potential energy and then the coefficients of each cover 
displacement function can be obtained by solving the equilibrium equations [1,2]. 

So, using the total potential energy method or the weighted residuals method, equilibrium equations can be derived as 
follows: 

ɺɺ + - =Mu Ku F 0

 
(18) 

where uɺɺ and u are displacement and acceleration, respectively. Also, the stiffness matrix K, the mass matrix M and the loading 
matrix F are defined in eq. (19). 
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in which, b is the body force per unit mass, Γt  is the boundary of traction, Γt  is the traction, and E is defined as follows: 
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in which E and ν are Young’s modulus and Poisson’s ratio respectively. For plane strain, E and ν replaced by 2/ (1 )E ν− and / (1 )ν ν− . 

To determine Gl , the strains in a 9-node quadrilateral element can be obtained from eq. (21) [1,31]. 
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where Dl, l=1,2,…,9 is as eq. (17) and 
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in which, l
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are in the form of eq. (23). 
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where J is the Jacobian matrix and can be written as below equation: 
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3. Complex Fourier Shape Functions 

Complex Fourier shape functions have various properties which make them more accurate and stable than other shape 
functions such as classic Lagrange in the approximation process. In the following, these shape functions are introduced, and 
some of their properties are presented. 

3.1 The basis for the construction of complex Fourier elements 

Any function in the functional space can be obtained as constant coefficients multiplied by a series of basis functions [36]. 
Choosing a suitable set of functions to be implemented as basis functions is very important. In this paper, complex Fourier 
functions are chosen to be implemented as basis functions. The implementation of complex Fourier functions as RBF has been 
already reported in the works of Hamzehei-Javaran and Khaji [18, 36-39]. Here, to achieve the advantages of RBFs in the 
interpolation of state variables, complex Fourier is implemented in an element-based framework with 9-node elements for the 
approximation of the state variables of Navier’s equation (displacements and tractions) [38]. In the following, the enriching 
process of complex Fourier RBF in the natural coordinates mapping with 9-node is expressed. 

3.2 Enrichment of complex Fourier RBF-1D complex Fourier element 

The following steps explain the enrichment process of the desirable RBF for a domain with n arbitrary nodes. Firstly, 
polynomial terms are added to the functional expansion, which only uses RBF in the approximation: 
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where n is the number of nodes, m denotes the basis polynomial terms, r represents the Euclidean norm among data points and 
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Satisfying eq. (25) on the nodal points leads to below equation: 
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There are n+m unknowns in eq. (27), while there are just n equations. Therefore, considering extra conditions is necessary to 
overcome this challenge; eq. (29) is the condition [40]. 
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As a result, the final set of equations can be achieved as below: 
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Finally, after doing some algebraic manipulations, the eq. (31) is obtained: 
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Substituting a and b into eq. (25), leads to the below equation: 
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ah bu x r x = +  R S p S u

 
(33) 

As seen in eq. (34) and considering definition of a shape function in numerical methods, the shape functions’ matrix can be 
presented as below: 

( ) ( ) ( )T T
a bx r x= +R S p S

 
(34) 

In the following, the above process is implemented in a 1D 3-node element in the natural coordinate system ξ with arbitrary 
coordinates in NMM (Fig. 5). The desired complex Fourier RBF can be presented as eq. (35) [38,39]: 

( ) i rR r e ωα=

 
(35) 
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Fig. 5. 1D 3-node element in the natural coordinate system. 

 

Fig. 6. 2D 9-node complex Fourier element in the natural coordinate system. 

in which, α and ω represent shape parameters [40]. For a 1D 3-node natural element, R(r) vector can be written as follows: 
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It is possible to use constant or linear polynomial fields, for a 3-node element. Equation (37) shows a linear polynomial field. 
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The desired vectors and matrices of the enrichment process of complex Fourier RBFs can be obtained as below [37]: 
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In the end, the shape functions of a 1D 3-node complex Fourier element can be presented as below: 
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where 
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As seen in equations, the shape parameter α vanishes and only the shape parameter ω remains. 
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3.3 2D complex Fourier element 

In This section, formulation of a 2D 9-node element is obtained by use of above results. Consider a 2D 9-node complex Fourier 
element with arbitrary coordinates as shown in Fig. 6. This element’s shape functions are accessible by multiplying complex 
Fourier one-dimensional interpolation functions as shown below: 

3( 1) ( , ) ( ) ( )r sr sw ξ η φ ξ φ η− + =

 
(42) 

3.4 Properties of complex Fourier shape functions 

In this section, the main properties of complex Fourier shape functions that cause them to become more accurate and stable 
than classic Lagrange shape functions, in the process of approximation, are provided: 

3.4.1 Partition of unity 

The below relation can be written for an n-node complex Fourier element [18]: 

1

( ) 1 0
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j
j

w i
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= +∑ 

 
(43) 

where ( , )Tξ η= . 

3.4.2 Kronecker delta property 

The Kronecker delta property of shape functions can be shown as follows: 

( )m n mnw δ=

 
(44) 

in which, ( , )Tn n nξ η= represents point n and mnδ indicates the Kronecker symbol which is described in eq. (5). 

3.4.3 Linear independence property 

In general, the basis functions with Kronecker delta property also have the linear independence property, as mentioned in 
mathematics. The linear independence property of proposed shape functions can be shown as below: 
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where ( , )Tξ η= and ( , )T
i i iξ η= . Replacing  with ( 1,2,..., )k k n= in the above relation and using the Kronecker delta property leads 

to proving the mentioned property: 
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3.5 The versatility of complex Fourier shape functions 

Both classic Lagrange and complex Fourier shape functions can satisfy polynomial function fields. Moreover, the proposed 

shape functions also satisfy exponential and trigonometric function fields appeared in additional functions ( )h ξ . 

4. Numerical Examples 

In this section, three problems are provided to compare the results of complex Fourier shape functions in NMM with those 
obtained by classic Lagrange shape functions and, if available, analytical solutions. 

4.1 Free vibration of a simple beam 

The first example is a simply supported beam with a length of 10 m and height of 0.4 m. At first, the beam is loaded with a 
constant linear load w= 9.6 KN.m-1. So, by the effect of the load, the beam will statically deflect and becomes fixed. Then, the load 
is suddenly removed, and the beam dynamically starts to vibrate freely. Figure 7 shows the geometry, loading and boundary 
conditions. The material properties for this example are E=20000 MN.m-2, ρ=2400 Kg.m-3 and ν=0.333. 

 

Fig. 7. Geometry, loading and boundary condition of the simply supported beam. 
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Fig. 8. The Manifold element of the simple beam. (a) Two 3-node triangular elements; (b) Two 6-node triangular elements; (c) Two 9-node 
quadrilateral element; (d) Four 10-node triangular elements. 

 

Fig. 9. 9-node NMM with Lagrange shape functions results, proposed complex Fourier shape functions results and analytical results of middle point 
vibration of the simply supported beam. 

 

Fig. 10. 9-node, 10-node, 3-node 2nd-order and analytical results of middle point vibration of the simply supported beam. 
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The midpoint vibration of the beam is used to compare the analytical solutions [41] with the solutions of NMM using 
approach mentioned above. Figure 8 shows the elements for 3-node, 9-node and 10-node NMM. As shown in Fig. 9, the results of 
the suggested complex Fourier shape functions are more accurate than Lagrange shape functions in the same manifold order 
with the same number of elements, and also, they are close to the analytical results. In Fig. 10, 9-node NMM with use of complex 
Fourier shape functions with the degree of freedom (DOF) of 30 are compared to 10-node triangular (DOF=56) and 6-node 
triangular with Lagrange shape functions and 2nd-order NMM with Lagrange shape functions (Fig.8) and as the figure shows, 9-
node NMM with complex Fourier shape functions is more accurate than the other methods, even with lower DOF. 

4.2 Deep beam with simple supports under Heaviside step function loading 

Suppose that a deep beam with the height of 6 and width of 24 is simply supported at both ends. The geometry, loading and 
boundary conditions are shown in Fig. 11(a). The deep beam is subjected to a uniformly distributed Heaviside step function 
loading w(t)=0.01H(t-0) (Fig. 11(b)). Other properties for this example are E=100, ρ=1.5 and ν=0.333. Since symmetry condition is 
applicable, half of the beam is modeled (see Fig. 11(c)). 

 

 

Fig. 11. Deep beam with simple supports under w(t)=0.01H(t-0) load. (a) Geometry and boundary conditions of the beam; (b) Loading; (c) Half of the 
beam. 

 

Fig. 12. Manifold elements of the deep beam. (a) Two 3-node elements; (b) two 6-node elements; (c) one 9-node element (d) two 10-node element. 
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Figure 12 shows the elements for 9-node, 6-node, 10-node and conventional 3-node element NMM. Figure 13 shows the 
vertical displacement time history of point A, which is used to compare the results of 9-node NMM using suggested shape 
functions with 9-node NMM and 3-node NMM with classic Lagrange ones and the results of Samaan and Rashed [42]. As seen in 
the figure, results of both 9-node NMMs, which use 18 degrees of freedom, are more accurate than 2nd-order 3-node NMM that 
uses 24 degrees of freedom. Furthermore, the results of complex Fourier shape functions are more accurate than Lagrange shape 
functions in the same manifold order and the same number of elements. The results for 6-node NMM, 10-node NMM and 3-node 
3rd-order NMM with Lagrange shape functions are shown in Fig. 14. Comparing Fig. 13 and Fig. 14, 9-node NMM with complex 
Fourier shape functions (DOF=18) is more accurate than 3rd-order NMM (DOF=40). Also, the results of suggested shape functions 
with lower degrees of freedom almost match the ones of Samaan and Rashed [42] (DOF=96). 

4.3 Infinite rectangular strip under Heaviside step function loading 

An infinite strip with a rectangular cross-section which has a height of 4 m and width of 2 m is enclosed from three sides with 
roller supports. The upper edge is uniformly subjected to a Heaviside step function P(t)=H(t-0) (Fig. 15). The material properties are 
as follows: E=0.1 MN.m-2, ρ=1 Kg.m-3 and ν=0.25. 

 

Fig. 13. 9-node with Lagrange and proposed complex Fourier shape functions, 3-node 2nd-order and analytical results of middle point vibration 
of the deep beam. 

 

Fig. 14. 6-node, 10-node, 3-node 3rd-order and analytical results of middle point vibration of the deep beam. 
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Fig. 15. Infinite rectangular strip under load P(t)=H(t-0). (a) Geometry and boundary conditions; (b) Loading; (c) Section a-a. 

 

Fig. 16. Manifold elements of the infinite rectangular strip. (a) Two 3-node elements; (b) one 9-node element; (c) Two 6-node elements; (d) Two 10-
node elements. 

 

Fig. 17. 9-node NMM with Lagrange shape functions results, proposed shape functions results, 3-node 2nd-order and analytical results of point A 
vibration. 
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As shown in Fig. 16, to mesh the problem, one 9-node element, two 3-node elements, two 6-node elements and two 10-node 
elements are used. The displacement time history of point A for 9-node and 2nd-order 3-node triangular NMM with complex 
Fourier shape functions and 9-node Lagrange shape functions and the analytical results [43] are indicated in Fig. 17. As seen in 
the figure, 9-node NMM with proposed shape functions (DOF=18) results are more accurate than 2nd-order 3-node NMM with the 
complex Fourier shape functions results (DOF=24) [44], and also more accurate than 9-node NMM Lagrange shape functions in the 
same manifold order and with the same number of elements. Also, in Fig.18 results of 9-node NMM with proposed shape 
functions are compared to 6-node (DOF=18) and 10-node (DOF=32) triangle NMM with Lagrange shape functions, and it can be 
seen that 9-node NMM with proposed shape functions is more accurate than other methods. 

 

 

Fig. 18. 6-node, 10-node NMM with Lagrange shape functions, 9-node NMM with complex Fourier shape functions and analytical results of point A 
vibration. 

5. Conclusions 

In this paper, the new 9-node quadrilateral and 10-node triangular elements were proposed, and also, in addition to Lagrange 
shape functions, complex Fourier shape functions were used to improve the results of 9-node quadrilateral NMM. The most 
remarkable advantage of these proposed shape functions over classic Lagrange ones is satisfying polynomial, trigonometric and 
exponential function fields simultaneously. Also these shape functions have some useful properties which the most important of 
them in NMM is linear independence property. As mentioned, construction of high-order NMM is applicable in two ways; the first 
way is increasing the order of weight functions which increases the number of nodes of each element and thus remeshing the 
desirable domain is needed for the increase of each degree. The second way is increasing the order of local approximation 
functions which is simpler compared to the first approach, but the probability of linear dependence occurring is an obstacle in 
this approach. Some numerical examples were provided to challenge the proposed methods in free vibration and also forced 
vibration. These examples showed high accuracy of the proposed 9-node quadrilateral element and 10-node triangular element 
compared with 3-node and 6-node triangular NMM, and also the superiority of complex Fourier shape functions over 
conventional Lagrange shape functions. 
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Nomenclature 

u  
uɺɺ   

E 

Displacement [m] 
Acceleration [m/s2] 
Young’s modulus [Pa] 

ρ 

ν  
 

Density [Kg/m3] 
Poisson’s ration 
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