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Abstract. The significance of inconstant gravity force and uniform throughflow on the start of convective movement in an 
anisotropic porous matrix is investigated numerically utilizing large-term Galerkin procedure. The porous layer is acted to 
uniform upright throughflow and inconstant downward gravitational force which changes with the height from the layer. In this 
study, two types of gravity field digression were examined: (a) linear and (b) parabolic. It is found that the throughflow parameter 
Pe, the thermal anisotropy parameter  and gravity deviation parameter  postpone the beginning of convective activity, whereas 
the mechanical anisotropy parameter  rapids the onset of convective activity. The dimension of the convection cells enhances on 
enhancing the thermal anisotropy parameter , the mechanical anisotropy parameter  and gravity deviation parameter  while, 
the throughflow parameter Pe decreases the extent of the convective cells. It is also noted that the structure with linear variation 
of gravity force is more stable. 
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1.  Introduction 

The occurrence of convective motion in a fluid layer depends upon the temperature variance between the fluid layers. If this 
temperature difference is large enough, then convective motion arises due to buoyancy force. This convective motion builds the 
arrangement unstable and produces an important phenomenon called convection. The arrival of convective flux in a porous 
matrix has drawn significant consideration over the last few decades due to its physical uses in several fields such as impurities 
on water resources, petroleum industry, materials processing, chemical process, Earth’s crust and geothermal fields to name a few. 
For example, the Earth's crust is in a condition of continues flux due to the convective movement in the mantle form new internal 
crust along midoceanic edges. An motivating problem of convective activity in a porous matrix was evaluated by Horton and 
Rogers [1]. They found that the critical thermal Rayleigh-Darcy number for the beginning of convective movement is 42. Their 
outcomes were validated by Elder [2] experimentally. The huge size of research dedicated to this field is well recognized by 
Ingham and Pop [3], Nield and Bejan [4] and Vafai [5]. Moreover, there have been several investigations concerning convective 
movement in anisotropic porous matrix [6-15]. Anisotropy is normally an outcome of special direction or uneven geometry of 
porous medium or fibers and falls in many systems related to engineering and nature.  

Throughflow influence on the convective instabilities in an anisotropic porous matrix is important concept since its uses in 
engineering and geophysics. Higgins [16] and Sherwood and Homsy [17] discussed a new idea in situ coal gasification and 
suggested that the situ processing of energy resources for instance coal, oil shale, or geothermal energy, contains the convective 
instabilities with vertical processing (throughflow). The like concerns are also related to processing in packed-bed reactors. 
Throughflow changes the basic state temperature from linear to nonlinear with layer elevation, which affects the onset of 
convective instability significantly. The power of throughflow on the beginning of convective instabilities in a porous medium was 
made by Sutton [18], Homsy [19], Nield [20] and Kiran [21]. They found that the outcome of throughflow does not delay the 
convective instability always and it depends on the direction of throughflow and character of the boundaries. The case with 
anisotropic porous medium layer was discussed by Khalili and Huettel [22] and Bhadauria and Singh [23]. They found that a more 
specific control of the convective instabilities may be reached by alteration of the anisotropy parameters and throughflow 
strength. 

In this paper, we study gravity as a function of height (h) recognized as gravitational force deviation. It is found that the 
gravitational force of the Earth diverges with height from its planes in a large amount of important circumstances that exists for 
big scale flows in the geophysical science and engineering, the atmosphere and the sea [24-28]. However, the examination of the 
consequence of inconstant gravity field on the start of convective movement in a porous layer is very limited. Alex et al. [29] 
calculated the weight of linear variation of gravity field and interior heat power on the appearance of convective movement in a 
porous layer and observed that the declining gravity parameter has stabilizing influence on the stability of the arrangement. The 
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expansion with anisotropic porous matrix was completed by Alex and Patil [30]. The linear and nonlinear digression of gravity 
strength on the beginning of convective movement in a porous matrix with heat source was explored by Rionero and Straughan 
[31]. Very recently, Yadav [32] examined the significance of uneven gravity force and even throughflow on the start of convection 
in a Darcian porous matrix and found that these parameters are to suspend the start of convective activity. The idea of 
throughflow is applied to manage the convective movement in engineering disciplines, manufacturing and geophysics. The 
extension with internal heating and rotation were also made by Yadav [33,34]. 

The literature review demonstrated that till now no attempt has been made about the examination of the start of convective 
motion in an anisotropic porous medium layer with irregular gravity power and throughflow effects. Such examinations may be 
helpful to deal the problems associated to large scale flows in the material processing, Earth’s crust, atmosphere, ocean, toxin 
transfer in saturated soils, fuel drilling, in the situ processing of energy resources and crystals augmentation, where throughflow 
can be vital to manage the convective instability [16, 17, 23-28]. Rao et al. [35] organized a contrast among the parabolic, binomial 
and exponential variations of gravity field with depth and they achieved that the parabolic function well fits for most crustal 
structure. In sight of the significance of such a concern, the key intend of the current research is to explore the mutual influence 
of the throughflow and the changeable gravitational force on the coming of convective movement in an anisotropic porous layer 
for two sets of functional values of gravity field digression: (a) G(z) = -z (linear) and (b) G(z) = -z2 (parabolic). A numerical result of 
the prevailing equations is offered utilizing large-term Galerkin technique. The significances of numerous applicable parameters 
on the launch of convective motion are presented in detail. 

2. Mathematical Modeling 

We considered an infinite extended parallel fluid saturated anisotropic porous layer bounded amid the plates 0z=  and 
z h= , and heated from bottom. The physical diagram of the system is exposed in Fig. 1. The layer is acted to a uniform upright 
throughflow cw  and inconstant gravitational force ( )zg which relays on the vertical part z  and works in the opposite z -way. 
The temperatures at the bottom and upper boundaries are alleged to be 1θ  and ( )2 2 1θ θ θ< , respectively. Furthermore the Darcy’s 
rule and the Boussinesq–Oberbeck estimation are expected to be effective. The Darcy’s law is suitable for slow flow and most 
groundwater flow cases belong to this category. Whereas the Boussinesq–Oberbeck approximation is applicable for flows that has 
small variation in temperature. In this way the deviation in density is small and the buoyancy drives the flow. In this manner the 
variation in density is ignored wherever with the exception in the buoyancy term. With these assumptions, the equations which 
express the current flows are [36-39]: 

. 0∇ =u , (1) 

[ ( ) ( )0 ˆ1 ,= c gP z
µ

ρ β θ θ − − − −∇  zu e
Kɶ

 (2) 

( ) ( ) ( ) ( )   
c c mm f
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 ∂
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Here, ( ) [ ]0 1g z g Gλ= + is the inconstant gravity, G  is the functional estimate of gravity field with layer depth 
,z ˆ ˆ ˆ/ / /x y z∇ ∂ ∂ + ∂ ∂ + ∂ ∂≡ x y ze e e . All other notations are defined in the nomenclature. The converse of the permeability and the 

thermal conductivity tensors of the porous matrix are described respectively as: 

( )1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ,zhK K− − −= + +x x y y z zK e e e e e eɶ  (4) 

( )ˆ ˆ ˆ ˆ ˆ ˆ .mzmhm k k= + +x x y y z ze e e e e ekɶ  (5) 

Here, hK  and zK  are the horizontal and vertical permeability’s of the porous matrix, respectively and, mhk  and mzk are the 
horizontal and vertical effective thermal conductivities of porous matrix, respectively. In writing Eqs. (4) and (5), the horizontal 
mechanical and thermal isotropy are assumed. Eqs. (1)-(3) can be nondimensionalized by taking the subsequent substitution: 
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Fig. 1. The physical diagram of the system. 
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where, ( )1 2/ ( ) ,   = v mz fk k cρ θ θ θ∆ −= . Then, the nondimensionalize form of Eqs. (1)-(3) after eradicating the pressure term by 
operating curl two times and using the dimensionless continuity equation ( ). 0∇ =u

⌢ ⌢
are: 
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Here, D 0 0R  / ,z vhK g kρ β θ µ∆= ,/ mzmhk kη = / ,zhK Kξ = ( ) ( )/ ,
m f
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Here Pe /c mhw α= . The basic state is taken to be of the form: ˆ Pe,b = zeu
⌢ ( )b b zθ θ=

⌢ ⌢ ⌢
. Then the basic state temperature is given as:  

Pe Pe
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e e

e
θ

−
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⌢

⌢

. (10) 

3. Instability 

We now expect very slight perturbations on the basic state as b
′= +u u u

⌢ ⌢
and b    θ θ θ′= +

⌢ ⌢

. Here ′u and θ′ are perturbed 
dimensionless velocity and temperature. Substituting these into Eqs. (7) and (8) and linearizing, we obtain the following instability 
equations: 
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Supposing the perturbation quantities as [40]:  

( ) ( ) ( ) ( )1 2ˆˆ, , ,i x y
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where, 1χ  and 2χ  are the flat wave numbers and σ is the expansion rate of instability. On substituting Eq. (13) into Eqs. (11) and 
(12), we have: 
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where /D d dz≡
⌢

 and 2 2
1 2a χ χ= +  is the wave number. Now, the boundary settings are: 

ˆˆ 0,    at  0,1w zθ= = =
⌢

 (16) 

4. Technique of Solution 

The system of governing Eqs. (14) and (15) is solved by Galerkin process. So, the variables are defined as: 

1
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Here kA  and kB are unknown coefficients and ˆˆ sink kw k zθ π= =
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. By means of Eq. (17) into Eqs. (14) and (15) and using the 

orthogonal property, we have: 
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Table 1. Estimate of D,cR and 
c

a  with λ  for the nonappearance of throughflow and motion in isotropic porous layer, i.e., Pe 0,=  1ξ η= =  for 

cases (a) ( )G z z= −  and (b) ( ) 2G z z= − . 

 

G  λ  
Current study Rionero and  Straughan [31] 

D,cR  2

c
a  D,cR  2

c
a  

(a) 

0 39.478 9.872 39.478 9.870 
1 77.080 10.208 77.020 10.209 

1.5 132.020 12.313 132.020 12.314 
1.8 189.908 17.198 189.908 17.198 

1.9 212.281 19.475 212.280 19.470 

(b) 

0 39.478 9.872 39.478 9.870 

0.2 41.832 9.872 41.832 9.874 
0.4 44.455 9.885 44.455 9.887 

0.6 47.389 9.916 47.389 9.915 
0.8 50.682 9.960 50. 682 9.961 
1 54.390 10.036 54.390 10.034 

 

Table 2. Estimate of D,cR and 
c

a for various values of Pe  and λ  at 0.7ξ =  and 0.6η =  for types (a) ( )G z z= −  and (b) ( ) 2G z z= − . 

Pe  λ  

For type: (a) For type: (b) 
Pe  

For type: (a) For type: (b) 

D,cR  
c

a  D,cR  
c

a  D,cR  
c

a  D,cR  
c

a  

0 

0 36.604 3.902 36.604 3.902 

1.2 

38.494 3.969 38.494 3.969 

0.25 41.812 3.904 39.370 3.904 44.553 3.955 41.933 3.955 

0.50 48.672 3.910 42.540 3.908 52.787 3.942 45.983 3.943 

0.75 58.052 3.927 46.194 3.918 64.532 3.932 50.799 3.935 

1.00 71.467 3.969 50.430 3.935 82.346 3.938 56.580 3.932 

1.25 91.575 4.076 55.357 3.963 111.320 4.006 63.574 3.940 

0.4 

0 36.814 3.910 36.814 3.910 

1.6 

39.967 4.021 39.967 4.021 

0.25 42.235 3.906 39.759 3.906 46.468 4.002 43.735 4.002 

0.50 49.449 3.906 43.164 3.906 55.395 3.981 48.216 3.983 

0.75 59.452 3.915 47.130 3.910 68.317 3.961 53.603 3.967 

1.00 74.032 3.945 51.778 3.921 88.330 3.953 60.152 3.956 

1.25 96.468 4.040 57.253 3.943 121.861 4.006 68.189 3.956 

0.8 

0 37.443 3.932 37.443 3.932 

2 

41.864 4.090 41.864 4.090 

0.25 43.146 3.923 40.610 3.924 48.897 4.064 46.027 4.064 

0.50 50.814 3.917 44.306 3.918 58.660 4.035 51.027 4.038 

0.75 61.596 3.916 48.653 3.915 73.007 4.004 57.107 4.013 

1.00 77.622 3.935 53.809 3.920 95.717 3.981 64.598 3.993 

1.25 102.962 4.017 59.963 3.935 134.970 4.017 73.930 3.984 

 

Table 3. Estimate of D,cR and 
c

a  for various values of ξ  and λ  at Pe 0.8=  and 0.6η =  for types (a) ( )G z z= −  and (b) ( ) 2G z z= − . 

ξ  λ  
For type: (a) For type: (b) 

ξ  
For type: (a) For type: (b) 

D,cR  
c

a  D,cR  
c

a  D,cR  
c

a  D,cR  
c

a  

0.25 

0 65.464 5.087 65.464 5.087 

0.75 

36.237 3.865 36.237 3.865 

0.25 75.441 5.076 71.007 5.076 41.756 3.856 39.302 3.857 

0.50 88.856 5.066 77.474 5.068 49.177 3.850 42.879 3.851 

0.75 107.717 5.065 85.082 5.065 59.612 3.849 47.087 3.849 

1.00 135.739 5.091 94.100 5.070 75.122 3.868 52.077 3.853 

1.25 179.989 5.199 104.857 5.091 99.645 3.948 58.032 3.868 

0.50 

0 44.300 4.277 44.300 4.277 

1.0 

31.815 3.597 31.815 3.597 

0.25 51.047 4.268 48.047 4.268 36.661 3.589 34.507 3.589 

0.50 60.119 4.260 52.419 4.261 43.178 3.583 37.648 3.583 

0.75 72.875 4.260 57.563 4.259 52.341 3.582 41.343 3.581 

1.00 91.837 4.281 63.663 4.264 65.958 3.600 45.724 3.585 

1.25 121.819 4.369 70.944 4.281 87.476 3.675 50.952 3.600 
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Fig. 2. Estimate of D,cR and 
c

a with λ  for various values of Pe  at 0.7ξ =  and 0.6η =  for types (a) ( )G z z= −  and (b) ( ) 2G z z= − . 

 

 

Fig. 3. Estimate of D,cR and 
c

a  with λ  for various values ξ  at Pe 0.8=  and 0.6η =  for types (a) ( )G z z= −  and (b) ( ) 2G z z= − . 
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Table 4. Estimate of D,cR and 
c

a  for various values of η  and λ  at Pe 0.8=  and 0.7ξ =  for types (a) ( )G z z= −  and (b) ( ) 2G z z= − . 

η  λ  
For type: (a) For type: (b) 

η  
For type: (a) For type: (b) 

D,cR  
c

a  D,cR  
c

a  D,cR  
c

a  D,cR  
c

a  

0.25 

0 25.807 4.895 25.807 4.895 

0.75 

41.794 3.719 41.794 3.719 

0.25 29.741 4.884 27.994 4.884 48.160 3.711 45.329 3.711 

0.50 35.031 4.875 30.544 4.876 56.719 3.704 49.454 3.705 

0.75 42.468 4.874 33.544 4.873 68.754 3.704 54.307 3.703 

1.00 53.513 4.898 37.099 4.879 86.643 3.722 60.062 3.707 

1.25 70.939 5.005 41.338 4.899 114.930 3.799 66.931 3.722 

0.50 

0 34.384 4.115 34.384 4.115 

1.0 

48.601 3.461 48.601 3.461 

0.25 39.621 4.106 37.293 4.107 56.004 3.453 52.713 3.453 

0.50 46.663 4.099 40.687 4.100 65.958 3.447 57.510 3.448 

0.75 56.565 4.099 44.680 4.098 79.954 3.447 63.154 3.446 

1.00 71.282 4.119 49.415 4.103 100.757 3.463 69.847 3.450 

1.25 94.546 4.205 55.065 4.119 133.647 3.535 77.835 3.464 

 

The system of Eqs. (18) forms a generalized eigenvalue situation in σ . The complex eigenvalue σ  is achieved in Matlab 
using QZ procedure and EIG function by fixing the other physical parameters. Then, the nil real portion of σ  ( 0rσ = ) is 
determined by altering DR  using Newton’s practice. After that, for  recognizing values of a  and other fixed parameters, we 
obtained the imaginary part of σ ( )iσ  linked to that valuation of DR  at which rσ  pushes to zero, and approved that the 
attained estimate of iσ  tends to nil at the same time. We continued this practice for several estimations of a  and other 
prevalent parameters in order to get iσ  all time nil when rσ  tends to nil. Thus, the behavior of the convective motion is 
stationary for the considered problem. 

5. Code Validation   

 In order to confirm the numerical code, the outcomes obtained by the current technique illustrated in Section 4 are linked to 
those obtained by Rionero and Straughan [31] in the nonexistence of throughflow and isotropic porous medium (i.e. 
Pe 0,  1ξ η= = = ). The problem is solved for two sets of functional values (a) ( )G z z=−  and (b) ( ) 2G z z=−  of the variable gravity 
field using 6-terms Galerkin method. Table 1 shows this comparison for D,cR  and 2

ca . The outcomes are provided in the Table 1 
exhibit an outstanding agreement with the outcomes obtained by Rionero and Straughan [31]. Hence, it can be stressed that the 
outcomes which are offered in the subsequent sections are trustworthy. 

      

 

6. Outcomes and Explanation 

This section characterizes the outcomes for the coming of convective motion in the forms of graph (Fig. 2, Fig. 3 and Fig. 4) and 
Tables (Table 2, Table 3 and Table 4) for Pe , ξ  and η  as a function of λ . The results show that the stability conditions are given 
in term of the critical thermal Rayleigh-Darcy number D,cR , lower which the arrangement is stable and at the thermal Rayleigh-
Darcy number DR  slightly above the critical value of D,cR , convective motion occurs in alternating patterns of upward and 
downward motion. 

To evaluate the consequence of Péclet number Pe  on the stability of the arrangement, the deviation of D,cR  and ca  are 
displayed in Fig. 2 as a function of λ  for types (a) ( )G z z=−  and (b) ( ) 2G z z=− . The outcomes are also listed in Table 2. From 
these, it is found that both λ  and Pe  have a stabilizing outcome on the stability of the arrangement. This may be qualified to 
the fact that the result of rising λ  is to reduce in the gravity strength. Since, the disturbances in the arrangement die down as 
the gravity strength diminishes and this leads to postponement the start of convective activity. The stability of the system boosts 
upon increasing Pe . This happened for the reason that the throughflow moves the crucial warmth gradients to the boundary 
where throughflow is engaged. As a consequence, large values of DR  are needed for the creation of convective activity. The size 
of the convective cells decreased with the augmentation in the estimates of Pe  while it expands with λ . It is also noted that the 
arrangement shows more stability for case (a). 

The result of ξ  on the stability of the arrangement is exposed in Fig. 3 and Table 3. From these it is found that the impact of 
rising ξ  hastens the convective wave. This happened because an augment in ξ  increases the horizontal permeability which 
hurries the movement of the fluid horizontally, and consequently smaller estimates of D,cR  are needed for the initiate of 
convective motion with rising ξ . It is also established that ca  reduces as ξ  augmented and so its result is to boost the 
dimension of convection cells. This is for the reason that the slight resistance to horizontal movement also directs to an 
expansion of the flat wavelength. 

The outcome of η  on the onset of convective motion is presented in Fig. 4 and Table 4. From these, it is shown that D,cR  
amplifies on enhancement in the value of η , whereas the critical wave number ca  diminishes on rising η . This exposed that 
the stability of the arrangement increases with η . This happened for the reason that the flat thermal diffusivity rises with η . 
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Fig. 4. Estimate of D,cR and 
c

a with λ  for various values of η  at Pe 0.8=  and 0.7ξ =  for types (a) ( )G z z= −  and (b) ( ) 2G z z= − . 

7. Summary 

The significance of the uniform throughflow and the inconstant downward gravity force on the beginning of convective 
movement in an anisotropic porous layer was inspected numerically utilizing large-term Galerkin process. The inspection was 
carried out for two varieties of gravity strength digression: (a) ( )G z z=−  and (b) ( ) 2G z z=− . The main outcomes of the current 
investigation are as follows: 

 The arrangement was found to be more stable on growing η , Pe  and λ , while ξ  has a destabilizing significant on the 
stability of the arrangement.  

 The measurement of the convective cells decreased on enhancing Pe , for small values of gravity deviation parameter, 
while it increased with ξ , η  and λ . 

 The arrangement is more stable for case (a) in comparison to case (b). 
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Nomenclature 

a  dimensionless wave number ρ  density 

ê  unit vector ε  porosity of the porous medium 

( )g z  variable gravity ( )
f

cρ  heat capacity of fluid 
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0g  reference gravity ( )c
m

ρ  effective heat capacity of porous matrix 

h  dimensional fluid layer height σ  expansion rate of instability 

Kɶ  permeability tensor of the porous matrix λ  gravity deviation parameter 

mkɶ  effective thermal conductivity tensor of the porous matrix ξ  mechanical anisotropy parameter 

P  pressure η  thermal anisotropy parameter 

Pe  Péclet number τ  time 

DR  thermal Rayleigh-Darcy number θ  temperature 

( ), ,u v wu  velocity vector cθ  reference temperature 

cw  the magnitude of the throughflow velocity  Superscripts 

( ), ,x y z  space co-ordinates ' perturbed dimensionless quantities 

Greek symbols Subscripts 

β  thermal expansion coefficient 0 reference value 

∇  del operator b basic state 
2

H∇  horizontal Laplacian operator c critical 

γ  heat capacity ratio m effective porous medium 
µ  viscosity f fluid 
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