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Abstract. An analytical effort is made to achieve cognition on the effect of time-dependent mechanical loading on the stress fields 
of rotating disks with non-uniform thickness and density. At high variable angular velocities and accelerations, evaluation of the 
effect of shear stress on the values of von Mises stress is significant and it is excellent to consider shear stress in this equivalent 
stress calculation alongside the radial and tangential stress. In the proposed analytical model, the Homotopy perturbation 
method (HPM) solves the general structure of rotating disks equilibrium equations in both radial and tangential directions. HPM is 
an efficient tool to solve linear and nonlinear equations, providing solutions in quick converging series. The results obtained 
through this process are then confirmed using the finite difference method and the exact solution in the literature. The effect of 
parameters in angular velocity and acceleration functions with the parameter in the thickness function and the effect of 
boundary conditions on the values of elastic limit angular velocity and acceleration are established by performing numerical 
examples. Furthermore, the effect of shear stress on the maximum values of von Mises stress is discussed. It is shown that shear 
stress has more influence on the distribution of equivalent von Mises stress in the elastic region. It is shown the introduced 
analytical model is useful for evaluating rotating disk with any arbitrary shape of thickness and density function, without using 
the commercial finite element simulation software. 

Keywords: Non-uniform thickness and density disk, Homotopy perturbation method, Time-dependent loading, Shear stress, 
Elastic limit angular velocity and acceleration. 

1. Introduction 

In various engineering machines and systems such as gas turbine engines, gears, flywheel systems, turbo pumps, and turbo 
generator a rotating disk is an essential structural component [1-4]. Throughout normal work, the angular velocity of a rotating 
disk is usually constant. But, the angular velocity is changed overtime during the start or the stop process of the machine and the 
disk may have an angular acceleration. Hence, the stress distribution of rotating disks becomes an essential consideration of the 
design process in such situations. The study of real engineering problems generally includes the solution of nonlinear differential 
equations. It is not possible to solve these differential equations simply and usually attempts to find their exact solution fails. 
Most of the research in rotating disk fields is focused on the finite element simulations and numerical solutions of rotating disks 
with uniform and particularly variable thickness and density under constant angular velocity [1-20]. As previous research shows, 
numerical methods in solving nonlinear problems are not highly accurate and sometimes have high error rates. Finite element 
solutions also need commercial software and are costly. Based on the need for high precision solutions, no research work has 
been provided on analyzing mechanical behavior in a rotating disk under time-dependent mechanical loading with analytical 
methods to the author's knowledge. The Homotopy perturbation method (HPM) is used for the first time in this paper to obtain 
displacement-stress distributions in both radial and tangential direction of the rotating disk under variable mechanical loading 
condition. In most cases [21-25], the HPM yields a very quick convergence of the solution series. It is showing that the elastic limit 
angular velocity and acceleration how changes over time for different thickness and density parameters and boundary 
conditions.  

One of the first researchers to work on the theoretical treatment of elastic-plastic rotating disks is Gamer [1], and after him, 
researches continue in various aspects to these days [1-20]. Gamer provided the exact solution for the elastic-plastic reaction of a 
rotating solid disk with uniform thickness. Following on Gamer works; Guven investigated the fully plastic state of the solid disk 
with variable thickness [2-4]. Eraslan performed computational studies on the elastic-plastic mechanical behavior of annular 
disks with various thickness profiles, including hyperbolic, exponential and power types under different boundary conditions [5-
9]. Hojjat et al. also have performed several works on rotating disks [10-15]. They studied the elastic behavior of rotating disks 
by variational iteration method [10], variable material property method [11], Adomian’s decomposition [12] and homotopy 
perturbation methods [12]. The thickness and density function are considered non-uniform in these researches and parametric 
studies for different values of thickness and density parameters are carried out after the verification process [10-12]. They 
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proposed a plastic study of rotating disks by assuming a linear strain hardening model for material behavior in the plastic region 
by HPM [13] and variable material property method [12]. In all of these researches, constant mechanical loading is imposed on 
rotating disks. Hojjati et al. suggested the use of variable material properties, Runge–Kutta's and finite element methods for 
functionally graded rotating disks subjected to thermo-mechanical loadings [14]. In the field of optimization, Jafari et al. 
introduced classical and modern optimization methods in minimal weight configuration of an elastic rotating disk with variable 
thickness and density. They used Karush-Kuhn-Tucker, simulated annealing (SA) and particle swarm methods (PSO) and found 
that the performance of PSO and SA methods is simpler and provides greater flexibility [15]. 

Among the latest research, Alashti et al. studied the plastic behavior of a rotating disk with non-uniform thickness under a 
constant angular velocity by taking into consideration the models of ductile damage in simulations [16]. Zheng et al. provided 
stress analysis for non-uniform thickness and variable angular velocity in functionally graded rotating disks using the finite 
difference method [17]. Newly, Salehian et al perform thermo-elastic analysis of a functionally graded rotating hollow circular 
disk with variable thickness and angular velocity using the Galerkin method [18]. Shlyannikov et al. emphasis on the crack growth 
rate for rotating disk in gas turbine engine compressor based on the nonlinear fracture mechanics [19]. Nayak et al. used a 
variational iteration method to evaluate the elastic-plastic behavior of thermo-mechanically loaded FGM disks [20]. Bayat et al. 
solved a thermo-elastic contact problem of functionally graded materials rotating brake disk under temperature dependent 
material properties by Finite Element Method. The results for temperature-dependent and temperature-independent material 
properties are investigated and presented [21]. 

As a result of this introduction, it can say that the presumption in a large number of studies is that the angular velocity as 
mechanical loading is constant. Because of the importance of variable angular velocities on the one hand and the accuracy 
precision of analytical solution on the other hand, displacement-stress distributions in radial and tangential direction and the 
values of elastic limit angular velocity and acceleration are studied using the presented analytical model for boundary condition 
that occurs in real work environments. The rotating disk undergoes the time-dependent mechanical loading and governing 
equilibrium equations are solved by HPM. The results are compared to the exact solution for uniform disk and the results of a 
non-uniform disk are confirmed using the finite difference method. The material is supposed to obey an elastic-linear hardening 
behavior with von Mises yield criterion. The values of equivalent von Mises stress as a criterion for estimating the elastic limit of 
angular velocity and acceleration are implemented. Finally, a parametric analysis is performed in the form of examples for 
various sets of thickness parameters, boundary conditions and constants in angular velocity and acceleration functions. The 
material of the disk is considered as an Inconel-718 alloy in which density varied alongside the disk radius according to a special 
function. As illustrated in Fig. 1, the disk is assumed to be different boundary conditions. Also, a schematic configuration of 
equipment including the rotating disk is shown in this figure. 

 
 

(a) (b) 

 

(c) 

Fig. 1. a) Radially restricted-directed b) radially restricted-free c) a schematic configuration of equipment including the rotating disk 
 



Elastic Limit Angular Velocity and Acceleration Investigation in Non-Uniform Rotating Disk   
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 791-808 

793 

2. Disk Thickness Profile and Material Properties 

The disk is symmetrical to the mid-plane and its profile is supposed to vary as a function of radius (r) as shown in Fig. 2 [12]: 

( ) 0

n

e

r
h r h

r

−  =    
 (1) 

where n is geometric parameter, re is the outer radius of the disk and h0 is the thickness of the disk at r = re. The disk material 
is chosen as Inconel-718 having densities that change according to Eq. (2) [17]: 

( ) 2 3
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The density function along the disk radius is shown in Fig. (2). Uniform thickness and density disk are simply obtained by 
setting n = 0 in Eq. (1) and r = 0 in Eq. (2), respectively. An elastic-linear hardening [2] model is used in this work to model the 
stress-strain relationship of the disk material: 
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 (3) 

where σ
�
 and tΕ  are the material yield strength and tangent modulus, respectively. Table 1 demonstrates the geometry and 

material properties used for the disks studied in this research. 

 

 
(a) 

 
(b) 

Fig. 2. a) Disk profile for different thickness parameter b)Density function 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Radial coordinate (m)

T
h
ic

k
n
e
s
s
 f

u
n
c
ti
o
n
 (

m
)

 

 

n=0

n=0.2

n=0.5

n=0.8

n=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
7700

7800

7900

8000

8100

8200

8300

8400

Radial coordinate (m)

D
e
n
s
it
y
 f

u
n
c
ti
o
n
 (

k
g
/m

3
)

 

 

(r)=0+1*r+2*r2+3*r3

(r)=0



 Sanaz Jafari, Vol. 8, No. 3, 2022 
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 791-808   

794 

Table 1. Geometry and material properties and angular velocity constant of rotating disks [18] 

Outer 
radius 

ro (m) 
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radius 

ri (m) 

Thickness 

at r = re 
 

Young's 
modulus 
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Poisson's 
ratio 

v  
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Tangent 
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Yield 
strength 

σ
�

(MPa) 

Angular 
velocity 
constant 

0ω (rad/s) 

Angular 
velocity 
constant 

λ (1/s) 

0.8 0.1 0.1  200 0.3 77 80 300 100 [ ]1, 1− +  

3. Time-dependent Mechanical Loading 

In this paper, we assume that angular velocity and acceleration as mechanical loading is a function of time (t), rather than a 
constant state as discussed in the previous literature [1-21]. For the convenience of modeling rotating disk in general form, 
angular velocity and acceleration are defined as an exponential function [17]: 

( ) 0
tt e λω ω −=  (4) 

( )
( )

0
td t

t e
dt

λω
ω

λω −= =−
i

 (5) 

Such relations focus on the accelerating or decelerating process on the rotating disk. In these relations, 0ω is the initial 

angular velocity, and λ  is a constant that influences the law of transition. If 0λ > , it is a decelerating process that occurs when 

the rotating disk decides to stop. While accelerating when 0λ < , in this situation the disk decides to start the work condition. If

0λ = , the disk is rotating with a constant angular velocity and zero angular acceleration, this situation is equal to normal work. 

Elastic limit angular velocity ( eω ) and elastic limit angular acceleration ( eω
i

) occurs when the von Mises stress as equivalent 

stress exceeds the yield strength of the material of disk.  

In Fig. 3, the angular velocity and acceleration variations based on the parameters in Table 1 are plotted for various time 

values ( t ). As seen in these figures, for 0λ > , the changes in angular velocity and acceleration are completely different over time. 

The angular velocity is positive; it has 0ω  value at 0t =  and tends toward zero as time increases. But angular acceleration is 

negative; it has 0ω λ−  value at 0t =  and tends toward zero as time increases. For 0λ = , the angular velocity is constant over 

time ( 0( )tω ω= ) and angular acceleration is zero. For 0λ < , changes in angular velocity and acceleration over time are similar. 

4. Theoretical Background  

4.1. Governing equation of rotating disk 
 

In this part, assuming that the disk is thin, has a variable thickness which is a function of r and rotates around the z-axis with 
angular velocity and acceleration that is a function of time ( t ). Fig. 4 displays a disk element with all in-plane forces in the radial 

( r ) and tangential ( θ ) directions of a polar coordinate system. The equilibrium equations can be given in relative directions as 
[12- 13, 17]: 
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( ) ( ) ( ) ( )2
r r
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i

 
(7) 

where ( )rρ is density distribution function, ω is the angular velocity, ω
i

is the angular acceleration, 2 2( ) ( ) ( )f r r r h rρ ω=−  is a radial 

force, and 2( ) ( ) ( )f r r h rθ ρ ω=−
i

is a tangential force. Otherwise, rσ  and θσ  are radial and tangential components of the normal 

stresses and rθτ  is the shear stress. Because of the rotational symmetry in this problem, displacements fields are functions of r

only and Eqs. (6-7) can be simplified further to: 

( ) ( ) ( ) ( )2 2
r

d
h r r h r r r h r
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( ) ( ) ( ) ( ) ( ) ( )2
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 (9) 

The stress-strain relationship in the plane stress and small deflection condition assumed for these analyses are [2]:   

( ) ( ) ( )21r r

E
r r v r

v θσ ε ε = + −
 (10) 

( ) ( ) ( )21 r

E
r r v r

vθ θσ ε ε = + −
 (11) 

( )r rr Gθ θτ γ=  (12) 

and strain-displacement relationships can be defined as: 

( )
( )r

r

du r
r

dr
ε =  (13) 
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(a) 

 

(b) 

Fig. 3. a) Angular velocity, b) Angular acceleration, for different value of
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Fig. 4. Acting forces at the disk element [12-13] 
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with a substitution of Eqs. (10-12 and 13-15) in the relations (8 and 9), yields the following governing equation in the term of 
radial ( ru ) and tangential ( uθ ) displacements in relative direction: 
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where, G is shear modulus and v  is the Poisson ratio. For mention, the analytical solution of the Eq. (16) for constant angular 
velocity by the Homotopy perturbation method, Variational iteration method, Adomian’s decomposition method and Runge-Kutta 
method is shown in references [10, 12]. Such findings are in excellent agreement for thickness and density profile as 

0 0( ) ( / ) , ( ) ( / )n mh r h r b r r bρ ρ−= = . A new density profile is assumed in this study; HPM is implemented to solve equilibrium Eqs. (16 
and 17) for angular velocity and acceleration that is changing over time. 

4.2. Homotopy Perturbation Method (HPM) [22-26] 

To present HPM, let us consider the following differential equation and boundary condition: 

( ) ( ) 0 , ,A u f r r− = ∈Θ  (18) 

( , / ) 0 ,                   ,B u u n r∂ ∂ = ∈ Γ  (19) 

In this relation, u is the unknown function, A is a general differential operator, B is a boundary operator, ( )f r  is a known 
analytic functional and Γ  is the domain boundary. One of the most important steps in solving the differential equations by 
HPM is to find the linear and nonlinear parts of the function A . Hence, function A in Eq. (18) can be divided into two parts L  

and N . In this definition, L  is a linear part whereas N  is a nonlinear part. So, Eq. (18) rewritable as: 

( ) ( ) ( ) 0.L u N u f r+ − =  (20) 

The Homotopy perturbation structure is established as the following equation: 

( , ) ( ) ( ) ( ) [ ( ) ( )] 0H v p L v L u pL u p N v f r= − + + − =
� �

 (21) 

where v  in HPM is a character variable by below definition: 

( , ) : [0,1]v r p RΘ× →  (22) 

At Eq. (21), [0,1]p ∈  is the embedding parameter and u
�

is the first approximation that satisfies the boundary condition in Eq. 

(19). For 0p=  and 1p= , Eq. (21) reduced to the following equations respectively:   

( ,0) ( ) ( ) 0H v L v L u= − =
�

,  ( ,  1) ( ) ( ) 0H v A v f r= − =  (23) 

This relation shows that ( ) ( )L v L u=
�

and ( ) ( )A v f r= . This information is used to writing Eq. (21). To begin the process of 

solving, we consider v  as following: 

2 3
0 1 2 3 ....v v pv p v p v= + + + +  (24) 

Then, Eq. (21) is arranged according to the various powers of p-terms (p0, p1, p2, …). Each coefficient of p-terms is a differential 
equation in terms of variable v  that must be solved. After this stage, the process of changes of p  from zero to unity is that of

( , )v r p  changing from u
�  

to ( )u r . And the best approximation for the solution is: 

1 1 2lim   ......pu v v v v→= = + + +
�

 (25) 

The above convergence is discussed in [22-26]. 

   
4.3. Finite Difference method (FDM) [27-28] 

One of the effective methods for the numerical solutions of differential equations is the finite difference method. This 
approach is one of the easiest and the oldest methods to solve difficult or impossible differential equations. Finite difference 
approximation of derivatives plays a key function for the numerical solutions of differential equations in this method. The 
solution's precision depends on the number of grid points chosen. By increasing the number of grid points one can improve the 
precision of the solution to some desired degree. To solve differential equations with stated boundary conditions, a set of grid 
points must be identified in the variable interval. Central difference equations often approximate the derivatives of a function

( )f r . But derivatives for grid point in boundary conditions are written based on the forward and backward finite difference form. 
Therefore, the first derivative concerning r  in central-forward-backward difference form can be written as [27-28]: 
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1 1 1 1
2( ), ( ), ( )
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While the second derivative of a function ( )f r  for r  is: 

2 1 1 2 2 1 2 1 2
2

2 2 2 2 2 2

2 2 2
( ), ( ), ( )

i i ir r r r r ri i i i i i i i i
Central Forward Backward

r r r

d f f f f d f f f f d f f f f
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= = =+ − + + − −− + − + − +
→= + →= + →= +

 

(27) 

The references [26-27] include other finite-difference types of derivatives for a function ( )f r . The differential equation is 

written in the finite difference form for each grid point in the interval [ ]0,1 . In this scheme, the boundary conditions are written, 

too. Finally, the set of linear algebraic equations can be obtained in the following matrix expression which must be solved using 
an appropriate method [28]. 

A U B⋅ =  (28) 

At the end of the finite difference process, there are 2N−  equations for the inner points and two equations for the inner 
and outer surface boundary condition of the disk. 

5. Analytical Solution 

To achieve the analytical model, in this section elastic annular rotating disks with variable thickness and density are 
considered in its general form under variable mechanical loading. The equilibrium equations in both the radial and tangential 
directions are simultaneously solved by HPM as an analytical method to achieve this paper's goals.  

5.1. Application of HPM 
 

5.1.1. Radial direction 

At first, the equilibrium equation is solved in a radial direction. Eqs. (1-2 and 4) are substituted into Eq. (16) and yields the 
following differential equation in term of unknown radial displacement: 

( ) ( ) ( ) ( )
( )

( )( )2 2 3 22
0 1 2 3 0

2 2

1 ( )1 1
t

r r
r

v r r r e rd u r n du r nv
u r

dr r dr r E

λρ ρ ρ ρ ω −    − + + +− +
   + − =−
   
   

 (29) 

Once the linear and nonlinear parts of this equation are separated according to the definitions for Eq. (21), HPM can be applied 
as: 

( )( )
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0 02 2

1 1
  r r
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 (31) 

( )
( )( )2 2 3 2

0 1 2 3 01 ( )tv r r r e r
f r

E

λρ ρ ρ ρ ω −− + + +
=−  (32) 

where ( )( ) L v r is the linear part of the Eq. (29) and ( )( )0  rL u r is its initial approximation. Due to the time dependence of the 

function ( )f r , the equilibrium equation must be resolved at each loading step. But the displacement field is still only dependent 

on the variable�. We considered v  as: 

( ) ( ) ( ) ( )2
0 1 2v r v r pv r p v r= + +  (33) 

Replacement Eqs. (30-32) into Eq. (21) and rearrangement based on the powers of p -terms, we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
0 0 0 0 0 0 0 0 0 00

2 2 2 2 2 2

   1 1
:         0r r r r ru r du r dv r d u r nvv r d v r v r du r nvu r dv rn n

p
r dr r dr r dr r dr r dr r r dr r

+ + − − + − − + − =  (34) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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2 2
0 1 0 0 1 1 1 1 01

2 2 2 2 2 2

2 2 3 2
0 1 2 3 00
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0

r r r r

t

r

u r d v r d u r du r nvv r dv r v r dv r nvu rn
p

r dr dr dr r r dr r r dr r r

v r r r e rdu r n
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λρ ρ ρ ρ ω −
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 (35) 

( ) ( ) ( ) ( ) ( )2
2 2 2 2 22

2 2 2

  1
:              0

dv r nvv r d v r v r dv rn
p

dr r r dr r dr r
− − + − + =  (36) 

The above equations are to be solved to determine function v . Solving Eq. (34), we have: 

( ) ( )
2 21 1 1 1

4 4 4 4
2 2 2 2

0 0 1 2

n n nv n n nv

rv r u r C r C r
+ + + − + +

= = +  (37) 

Similarly, solving Eqs. (35 and 36) yields the following results respectively: 
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n n nv n n nv v e r
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nv n nv n nv n nv n E

v n
v n v v n v v v n

v v n v v

λω

ρ

−
+ + + − + + −

= + +
+ − + − + − + −

− + + −
− + + − + + + + + + +

+ + + + +

( )

13

2 2 3 2 3 2 3
2 32 2 3 2 3

6

]

3 90)

2880 (672 2448)
4200 (925 3415) (58 460 882) ( 13 54 72)

(47 360 673) ( 12 47 60)

r
v n

v n
v n v v n v v v n r r

v v n v v v n

ρ

ρ ρ

   +  + 

 − + + −  − + + − + + + + + + +   + + + + + + 

 (38) 

( )
2 21 1 1 1

4 4 4 4
2 2 2 2

2 1 2

n n nv n n nv

v r C r C r
+ + + − + +

= +  (39) 

Replacement of the above equations (37-39) in Eq. (33) gives the equation for v and as 1
yields

p → , then ( ) ( )
yields

rv r u r→ . That means 

finding the answer for the governing equation of elastic rotating disk (i.e., Eq. (16)) in the general form of non-uniform thickness 
and density. The optimum number of HPM iteration considering the converged result is two. Therefore, the semi-exact solution of

( )ru r is: 

( )( )( )( )

( )

2 21 1 1 1 2 2 3
4 4 4 4

02 2 2 2
1 2

2 2 3 2 3
0 2 2 3

(1 )( )
( )

5 24 3 8 6 35 4 15

6720 (1312 5072)
[ 12600 (1725 8145) (74 720 1726) ( 15 74 120)

(67 584 1197) ( 14

t
n n nv n n nv

r

v e r
u r C r C r

nv n nv n nv n nv n E

v n
v n v v n v v v n

v v n v v

λω

ρ

−
+ + + − + + −

= + +
+ − + − + − + −

− + + −
− + + − + + + + + + +

+ + + +

( )

12 3

2 2 3 2 3 2 3
2 32 2 3 2 3

]

63 90)

2880 (672 2448)
4200 (925 3415) (58 460 882) ( 13 54 72)

(47 360 673) ( 12 47 60)

r
v n

v n
v n v v n v v v n r r

v v n v v v n

ρ

ρ ρ

   +  + + 

 − + + −  − + + − + + + + + + +   + + + + + + 

 (40) 

In this relation, 1C  and 2C  are integration constants to be calculated by applying boundary conditions on both inner and 

outer surfaces. As shown on Eq. (40), radial displacement is a function of the thickness parameter ( n ), the Poisson ratio ( v ), the 

Young modulus ( E ), the constant parameters in the density function ( 0 1 2 3, , ,ρ ρ ρ ρ ), the initial angular velocity ( 0ω ), the constant (λ ) 

and the variable time ( t ). 

5.1.2. Tangential direction 

In this section, HPM solves the equilibrium equation in the tangential direction. This equilibrium equation is obtained with 
the substitution of Eqs. (1-2 and 4) into Eq. (17) as follow: 

( )
( )

( )2 32
0 1 2 3 0

2 2

( )( ) (1 ) (1 )
[ ]

tr r r e rdu rd u r n n
u r

dr r dr r G

λ

θθ
θ

ρ ρ ρ ρ λω −+ + + − − −
 + − =−
  

 (41) 

After the linear and nonlinear parts of this equation are separated, HPM can be defined as: 

( )
( ) ( ) ( ) ( )

( )
2

2 2

1 1
  ( )

d v r n dv r n
L v r v r

dr r dr r

   − −
   = + −
   
   

 (42) 

( )
( )

( )
2

00
0 02 2

( ) (1 ) (1 )
  ( ) [ ]

du rd u r n n
L u r u r

dr r dr r
θθ

θ θ

 − −
 = + −
  

 (43) 

( )2 3
0 1 2 3 0( )

( )
tr r r e r

f r
G

λρ ρ ρ ρ λω −+ + + −
=−  (44) 

Where ( )  ( )L v r  is the linear part of the Eq. (41) and ( )0  ( )L u rθ  is its initial approximation. We considered v  as its definition in 

Eq. (33). With substituting Eqs. (42-44) into Eq. (21) and rearrangement on the basis of p-terms components, we have: 

2 2
0 0 0 0 0 0 0 0 0 0 0

2 2 2 2 2 2

( ) ( ) ( ) ( )   ( ) ( ) ( ) ( )   ( ) ( )1 1
:         0

u r du r dv r d u r nv r d v r v r du r nu r dv rn n
p

r dr r dr r dr r dr r dr r r dr r
θ θ θ θ θ+ + − + + − − − − =  (45) 

( )

2 2
1 0 1 0 0 1 1 1 1 0

2 2 2 2 2 2

2 3
0 1 2 3 00

( ) ( ) ( ) ( )   ( ) ( ) ( ) ( )   ( )1 1
:             

( )( )
0 

t

u r d v r d u r du r nv r dv r v r dv r nu rn
p

r dr dr dr r r dr r r dr r r

r r r e rdu r n

dr r G

θ θ θ θ

λ

θ
ρ ρ ρ ρ λω −

− + + + + − − + + −

+ + + −
+ =

 (46) 

2 2
2 2 2 2 2 2

2 2 2

( )   ( ) ( ) ( ) ( )1
:               0

dv r nv r d v r v r d v r n
p

dr r r dr r dr r
+ + − − =  (47) 

To determine v  function, the above equations are to be solved. Solving Eq. (45), we have: 

( ) ( ) )
3

1
0 4

(
0

nv r u r C r C rθ

−= = +  (48) 

Similarly, solving Eqs. (46 and 47) respectively give the following results: 
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( )
( )( )( )( )

( )

( ) ( ) ( )

3
( 1) 2 30

1 0

2 3 2 3 2 2 3 3
1

3

2

4

3

( )1
[ 6300 3210 540 30

60 4 5 6 7

3360 1880 340 20 2100 1245 240 15 1440 888 180 12 ]

t
n e r

v r C r C r n n n
n n n n G

n n n r n n n r n n n r

λλω
ρ

ρ ρ ρ

−
− −

= + + − + − + +
− − − −

− + − + + − + − + + − + − +

 (49) 

( ) 1)
2 4

(
3

nv r C r C r −= +  (50) 

Substitution equations (48-50) in Eq. (33) includes the equation for v and as 1
yields

p → , then ( ) ( )
yields

v r u rθ→ . This means finding the 

answer for Eq. (17) in the general form of non-uniform thickness and density. In this case, the optimum number of HPM iteration 

is two when with considering the converged result and the exact solution of ( )u rθ is: 

( )( )( )( )
( )

( ) ( ) ( )

3
( 1) 2 30

0

2 3 2 3 2 2 3 3
1 2

3 4

3

( )1
( ) [ 6300 3210 540 30

60 4 5 6 7

3360 1880 340 20 2100 1245 240 15 1440 888 180 12 ]

t
n e r

u r C r C r n n n
n n n n G

n n n r n n n r n n n r

λ

θ

λω
ρ

ρ ρ ρ

−
− −

= + + − + − + +
− − − −

− + − + + − + − + + − + − +

 (51) 

Tangential displacement in Eq. (51) is a function of the thickness parameter ( n ), the shear modulus ( G ), the constant 

parameters in the density function ( 0 1 2 3, , ,ρ ρ ρ ρ ), the initial angular velocity ( 0ω ), the constant (λ ) and the variable time ( t ). In this 

relation, 3C  and 4C are integrations constant to be determined by applying boundary conditions of rotating disk at inner and outer 

surfaces. Two various types of boundary conditions are considered in this paper. 

6. Numerical Solution 
 

6.1. Application of FDM 

The differential Eqs. (16 and 17) is valid for elastic deformations of non-uniform thickness and density rotating disk under 
variable mechanical load in radial and tangential direction. Derivatives of the displacement component in the radial direction are 
replaced by Eqs. (26-27) to solve the differential equation by finite difference method. Finally, these differential equations express 
in the form of finite difference as follows: 

( )2 2 3 21 1 1 1
0 1 2 3 0

2 2

(1 ) ( )(1 ) (1 )2

2

ti i i i i
i i i iir r r r r

r

r ri i

v r r r e rn nvu u u u u
u

r r E

λρ ρ ρ ρ ω

δ δ

−+ − + − − + + +− +− + −
+ − =−  (52) 

( )2 31 1 1 1
0 1 2 3 0

2 2

( )(1 ) (1 )2

2

ti i i i i
i i i ii

r ri i

r r r e rn nu u u u u
u

r r G

λ

θ θ θ θ θ
θ

ρ ρ ρ ρ λω

δ δ

−+ − + − + + + −− −− + −
+ − =−  (53) 

The radial direction of the disk ( [ , ]eir r rε ) is divided to N grid points ( [1, ]i N= ).The FD form of differential equations is written 
for internal grid points. The boundary condition of the rotating disk at the inner and outer surfaces of the disk must also be 
represented in the FD form. The FD form of two different boundary conditions is: 

(a) Radially restricted and directed boundary conditions: if the inner surface of the annular disk is placed on a rigid shaft 
and the outer surface is directed as shown in Fig.1, the FD form of these boundary conditions are: 

Radial direction:
 

( )

( )

1,       0 0

,       0 0

yields
i

r ri

yields
i

r e r

i u r u

i N u r u

 = = → =

 = = → =

       Tangential direction:
 

( )

( )

1,       0 0

,       0 0

yields
i

i

yields
i

e

i u r u

i N u r u

θ θ

θ θ

 = = → =

 = = → =

 (54) 

(b)  Radially restricted and free boundary conditions: if the annular disk is mounted placed on a rigid shaft and the outer 
surface is free of any traction, the FD form of these boundary conditions are: 

Radial direction:
 

( )

( )
( ) ( ) 1

2

1,       0 0

,       0 0 0
(1 )

yields
i

r ri

i i iyields yields
r r r r r

r e

r i

i u r u

du r vu rE u u vu
i N r

v dr r r
σ

δ

−

 = = → =   −   = = → + = → + =   −  

 

Tangential direction:
 

( )

( )
( ) ( ) 1

1,       0 0

1
,       0 0 0

yields
i

i

i i iyields yields

r e

r i

i u r u

du r u r u u u
i N r

G dr r r

θ θ

θ θ θ θ θ
θτ

δ

−

 = = → =   −   = = → − = → − =     

 

(55) 

Eventually, a system of linear algebraic equations is achieved. The radial and tangential displacement of the rotating disk for 
each grid point is determined by solving the system of equations. 

7. Results and Discussions 

7.1. Verification of HPM 

The geometry and material properties used for the disks in this research are listed in Table 1. This section's main objective is 

to demonstrate the ability of the HPM to manage non-uniform thickness and density rotating disks taking into consideration 

angular velocity and acceleration that varies in simulations over time. It's quite interesting to note that the exact solution of the 

Eqs. (16) and (17) for uniform thickness and density rotating disk with constant angular velocity ( ω ) and acceleration ( ω
i

) can be 
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shown as [12, 29]: 

( )
2 2 3

02
1

(1 )

8r

v rC
u r C r

r E

ρ ω−
= + −  (56) 

( ) 3
4

3

2 8

C r
u r C r

Gr Gθ

ωρ
= − −

i

 (57) 

In Finite difference method, for solving equilibrium equations in the FD form as Eqs. (52-53) and to increase the accuracy of 

the solutions, the radial distance, ( )e ir r− is divided into N  steps,   ( ) /r e ir r Nδ = − . Also, a mesh sensitivity analysis was performed 

to ensure that the results are independent on the mesh size, and N  was set to 401 .  

For the case of uniform thickness and density, Fig. 5 compares the HPM and FDM results for both radial and tangential 

displacements-stress distributions. In this figure, the angular velocity and acceleration assumed constant, hence the affected 

parameter in Eqs. (4 and 5) is considered zero ( 0t = ). So, the finding is shown in Fig. 5 are based on the 00
100 /

t
rad sω ω

=
= =  and 

2
0 0 50 /t rad sω ωλω= =− =−→

i i

. Radially restricted-directed and radially restricted-free as boundary conditions are implemented, 

and HPM and FDM results are compared with those results obtained from the exact solution in Eqs. (56-57). As can be seen in this 

figure, the agreement between the results of HPM and FDM solutions for a uniform disk is excellent in comparison with the exact 

solution. Boundary conditions are completely satisfied. For radially restricted-free conditions, all of the radial and tangential 

displacements at the outer radius of a disk ( er r= ) have a maximum value. The radial and shear stress is achieved by their 

maximum values at the inner surface ( ir r= ). The highest values of tangential stress do not 

exist in the disk's inner or outer surface, but occurs in the middle of the disk.  

  

(a) Radially restricted-free: displacements (a) Radially restricted-free: stresses 

  

(b) Radially restricted-directed: displacements (b) Radially restricted-directed: stresses 

Fig. 5. Comparison of results for uniform thickness and density rotating disk: 0, 0.5t λ= =  
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The highest value of radial displacement occurs approximately in the center of the disk for radially restricted-directed 

conditions and its value is very high compared to tangential displacement. The maximum value of tangential stress also occurs 

approximately in the middle of the disk. The radial and shear stress reaches maximum values at both the inner and outer surface 

of the disk. This stress is positive at the inner surface, but it is negative on the disk's outer surface. There is a point along the 

radial direction of a disk with this boundary condition that has zero stresses. The level of displacement and stress in the disk with 

the radially restricted-directed condition is less than disk with the radially restricted-free conditions. This implies that for the 

disk with restricted-directed boundary conditions, the elastic limit of the angular velocity at which yielding starts is higher than 

disk with restricted-free boundary conditions. 

To check the results of HPM for displacement-stress distribution in a rotating disk with non-uniform thickness and density, 

the thickness parameter in Eq. (1) is selected as 0.5n = . The results are compared with the FDM solution in Fig. 6 for two 

prescribed boundary conditions. All the reported results are based on the use of constant angular velocity and acceleration 

( 0(@ 0) 100 /t rad sω ω= = = and 2
0(@ 0) 50 /t rad sω λω ω→= =− =−

i i

) and density function according to Eq. (2). It is important to 

note that there is no exact solution for rotating disks with non-uniform thickness and density. This figure shows the ability of 

these techniques to solve the governing equation of rotating disk at radial and tangential directions in its general form. In HPM, 

two iterations lead to the high precision of the solution in its general form (non-uniform thickness and density) for the governing 

equation of the problem. This solution is in good agreement with the results of both the exact and the FDM. The results show that 

HPM doesn't require specific algorithms, complex calculations, or large computational capacity, it is much simpler and straighter. 

By comparing Figs. 5 and 6, it can be seen that by considering the non-uniform thickness and density in a rotating disk, the level 

of tangential displacement and shear stress decreases as opposed to uniform disk at each affected point of the disk. For both 

boundary conditions, the distribution conditions of radial and tangential displacement are close to the uniform disk. But, unlike 

the uniform disk, values of radial and shear stress on the disk's inner and outer surfaces are not equal for the restricted-directed 

condition. These stresses reach its maximum value at the outer surface. It can be said that the factors that contribute to these 

results are the type of boundary conditions on disks. 

 

 

(a) Radially restricted-free: displacements (a) Radially restricted-free: stresses 

  

(b) Radially restricted-directed: displacements (b) Radially restricted-directed: stresses 

Fig. 6. Comparison of results for rotating an annular disk with thickness parameter 0.5n = and ( )rρ : 0, 0.5t λ= =    
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7.2. Numerical results 

Numerical examples are used in this section, to demonstrate the implementation of the presented analytical model. 

7.2.1. Example 1 

Parametric analysis is done in Fig. 7 for distributions of radial, tangential and shear stress for various thickness parameter n

and constant in angular velocity functionλ . Such results can be used to estimate the von Mises equivalent stress along the radius 

of the disk and identify its effective factors. All of the findings presented in Fig. 7 are calculated in time ( 2t s= ). At this time, 

deformations are still elastic in the rotating disks. According to Eqs. (3 and 4), If 0.5λ =  is considered, angular velocity and 

acceleration are estimated as ( 36.78  /  rad sω = and 218.39  /rad sω =−
i

). If 0.5λ =− is considered, these variables are estimated as 

( 271.82 /rad sω = and 2135.91  /rad sω =
i

). The decelerating effect of constantλ on these calculations is quite obvious. Its angular 

velocity and acceleration approaches to zero when 0.5λ = and 2t s= is considered. As shown at Fig. 7, the levels of shear stress 

compared to other stresses are low for both boundary conditions. As the thickness parameter increases, the level of these stresses 

is decreased. From Fig. 7 the maximum location of radial, tangential and shear stress for different values of the effective 

parameters n andλ are available. 

7.2.2. Example 2 

In this example, the von Mises stress distribution along the radial direction of a disk are discussed for various values of 

thickness parameter n  and constant λ . The findings are illustrated based on two different boundary conditions in Fig. 8. As seen 

in this figure, for each boundary condition and for 0λ> , von Mises stress along the radius of disk trends to zero to stop the disk 

as time increases. In the case of 0λ< , von Mises stress levels increase rapidly as time increases. For radially restricted-free 

conditions and 0λ< , the maximum values of von Mises stress for thickness parameter 0 0.5 n≤ ≤ occurs at the inner radius of a 

disk ( ir r= ) and for the rest of the thickness parameter in the center of the disk approximately. In this case, the value of 

maximum von Mises stress is also decreasing as the thickness parameter increases. But the maximum values of this stress for all 

thickness parameters � occurs at the outer radius of a disk ( er r= ) for radially restricted-directed conditions and 0λ< . In this 

case, the combination of radial, tangential, and shear stress on the disk's outer surface is such that as a thickness parameter 

increases, the value of maximum von Mises stress is increasing. 

 
(a) Radially restricted-free 

 

(b) Radially restricted-directed 

Fig. 7. Comparison of results for stresses in rotating disk with different thickness parameter n  and ( )rρ : 2 , 0.5t s λ= =±   
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(a) Radially restricted-free 

 

(b) Radially restricted-directed 

Fig. 7. Comparison of results for stresses in rotating disk with different thickness parameter n  and ( )rρ : 2 , 0.5t s λ= =±   

7.2.3. Example 3 

In this example, the effect of shear stress on calculations of equivalent von Mises stress is discussed. The von Mises 
equivalent stress is used as a criterion for evaluating the elastic limit angular velocity and acceleration. For rotating disks that are 
in-plane stress conditions, Von Mises stress is determined on the basis of the following relation as a criterion for initiating plastic 
deformations: 

2 2 23eq r r rθ θ θσ σ σ σ σ τ= + − +  (58) 

It is known that if tangential deformation is eliminated, von Mises stress is obtained from the following equation. In this case, 
the radial and tangential stresses are the principal stresses. 

2 2
eq r rθ θσ σ σ σ σ= + −  (59) 

For clarity and for two specified boundary conditions, the distribution of von Mises stress along the radius of a disk for various 
values of thickness parameter n  and constant ( 0.5λ =− ) at a time ( 5t s= ) is demonstrated in Fig.9. As seen in this figure, the 
maximum values of von Mises stress at this time for some of the thickness parameters exceed the yield strength of the disk 
material and this disk with this thickness parameter undergoes plastic deformations. As seen in example 2, for radially restricted-
free conditions, for some of the thickness parameters the maximum value of von Mises stress occurs in the inner surface and for 
the rest of thickness parameters in the middle of the radial direction of the disk. But the value of von Mises stress is maximum 
at the disk's outer surface for radially restricted-directed conditions. The location of maximum von Mises stress is important 
because plastic deformation initiated from this place. 

In the following, the values of maximum von Mises stress and radius with this maximum stress are prepared in Tables 2-4, 
with and without considering shear stress in calculations. The results are reported for various values of thickness parameter n , 
constantλ and two boundary conditions at the time ( 5t s= ). In these tables, the values of angular velocity and acceleration are 

estimated for any combination of constant λ  and time t . As seen, the effect of shear stress in calculating maximum von Mises 

stress decreases by increasing the thickness parameter n  for each value of constant λ . Furthermore, the effect of shear stress on 
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the disk with the radially restricted-free condition in this case is much greater than disk with the radially restricted-directed 
condition. In general and regardless of the type of boundary conditions on the disk, with considering the lower value of constant
λ , the effect of shear stress in calculating maximum von Mises stress is increased. The lower value of constant� is equivalent to 
having lower values of angular velocity and acceleration. It can be concluded that consideration of shear stress in the calculation 
of maximum von Mises stress is important, especially in the region of elastic deformation and must be considered for prediction 
of elastic limit angular velocity and acceleration. 

 

 
(a) Radially restricted-free 

 

(b) Radially restricted-directed 

 

(a) Radially restricted-free 

Fig. 8. Comparison of results for von Mises stress distribution of rotating disk with different thickness parameter n , constant λ , 

time t and ( )rρ  
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(b) Radially restricted-directed 

Fig. 8. Comparison of results for von Mises stress distribution of rotating disk with different thickness parameter n , constant λ , 

time t and ( )rρ  

 
(a) Radially restricted-free 

 

(b) Radially restricted-directed 

Fig. 9. Comparison of results for von Mises stress distribution of rotating an annular disk with different thickness parameter n  

and ( )rρ :   5 , 0.5t s λ= =−  
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Table 2. Results for maximum von Mises stress, a different value of thickness parameter n , 0.5λ =− at time 5t s= . 

Angular velocity
5, 0.5

1218.2
t

rad
sλ

ω
= =−

=  Angular acceleration 2

5, 0.5

609.1
t

rad
s

λ

ω
= =−

=
i

 

Thickness 
parameter 

( n ) 
Boundary conditions 

Radius with 
maximum von 

Mises stress ( r ) 

Von Mises stress with 
considering shear 

stress (MPa) 

Von Mises stress without 
considering shear stress 

(Mpa) 
Percent 

0 
Restricted-free r=0.1 4223.1 4222.2 0.021% 

Restricted-directed r=0.6 1692.16 1692.15 0.000031% 

0.2 
Restricted-free r=0.1 3250.9 3250.3 0.017% 

Restricted-directed r=0.6 1721.1 1721.1 0.000033% 

0.5 
Restricted-free r=0.1 2190.0 2189.8 0.012% 

Restricted-directed r=0.6 1760.3 1760.3 0.000037% 

0.8 
Restricted-free r=0.359 1893.2 1893.1 0.00023% 

Restricted-directed r=0.6 1794.5 1794.5 0.00004% 

1 
Restricted-free r=0.386 1753.1 1753.1 0.00017% 

Restricted-directed r=0.6 1814.6 1814.6 0.000043% 

Table 3. Results for maximum von Mises stress, a different value of thickness parameter n , 0.35λ =− at time 5t s= . 

Angular velocity
5, 0.35

575.4
t

rad
sλ

ω
= =−

=  Angular acceleration 2

5, 0.35

201.4
t

rad
s

λ

ω
= =−

=
i

 

Thickness 
parameter 

( n ) 
Boundary conditions 

Radius with 
maximum von 

Mises stress ( r ) 

Von Mises stress with 
considering shear 

stress (MPa) 

Von Mises stress without 
considering shear stress 

(Mpa) 
Percent 

0 
Restricted-free r=0.1 942.56 942.12 0.0471% 

Restricted-directed r=0.6 377.572 377.571 0.00007% 

0.2 
Restricted-free r=0.1 725.52 725.25 0.0383% 

Restricted-directed r=0.6 384.0318 384.0315 0.000074% 

0.5 
Restricted-free r=0.1 488.75 488.61 0.0285% 

Restricted-directed r=0.6 392.7807 392.7804 0.000081% 

0.8 
Restricted-free r=0.359 422.596 422.594 0.000521% 

Restricted-directed r=0.1 400.4115 400.4111 0.000089% 

1 
Restricted-free r=0.386 391.192 391.190 0.00039% 

Restricted-directed r=0.6 404.907 404.906 0.000096% 

Table 4. Results for maximum von Mises stress, a different value of thickness parameter n , 0.2λ =− at time 5t s= . 

Angular velocity
5, 0.2

271.8
t

rad
sλ

ω
= =−

=  Angular acceleration 2

5, 0.2

54.3
t

rad
s

λ

ω
= =−

=
i

 

Thickness 
parameter 

( n ) 
Boundary conditions 

Radius with 
maximum von 

Mises stress ( r ) 

Von Mises stress with 
considering shear 

stress (MPa) 

Von Mises stress without 
considering shear stress 

(Mpa) 
Percent 

0 
Restricted-free r=0.1 346.81 346.58 0.0653% 

Restricted-directed r=0.6 138.901 138.900 0.000097% 

0.2 
Restricted-free r=0.1 266.94 266.80 0.0531% 

Restricted-directed r=0.6 141.2774 141.2773 0.000102% 

0.5 
Restricted-free r=0.1 179.82 179.75 0.0395% 

Restricted-directed r=0.6 144.496 144.495 0.000112% 

0.8 
Restricted-free r=0.359 155.464 155.463 0.00072% 

Restricted-directed r=0.1 147.3032 147.303 0.000124% 

1 
Restricted-free r=0.386 143.9118 143.9111 0.00054% 

Restricted-directed r=0.6 148.957 148.956 0.000133% 

Table 5. Results for elastic limit angular velocity and acceleration for different values of thickness parameter n  and 0.5λ =−   

Thickness 
parameter ( n ) 

Boundary condition 
Time 

 ( )t s  

Elastic angular velocity 

( )e
rad

sω  

Elastic angular acceleration 

2( )e
rad

s
ω
i

 

 
0 

Restricted-free 2.36 327 163 

Restricted-directed 3.29 518 259 

 
0.2 

Restricted-free 2.61 368 184 
Restricted-directed 3.28 515 257 

 
0.5 

Restricted-free 3.05 448 224 
Restricted-directed 3.25 507 253 

 
0.8 

Restricted-free 3.10 471 235 
Restricted-directed 3.23 502 251 

 
1 

Restricted-free 3.24 505 252 
Restricted-directed 3.16 485 242 

7.2.4. Example 4 

The effect of thickness parameter n and boundary conditions on of elastic limit angular velocity and acceleration values is 
investigated in this example. Tables 5-7 lists the values of angular velocity and acceleration in the elastic limit state for various 
values of constant λ  to achieve this goal. At the time t  in these tables, the maximum of von Mises equivalent stress in the 
rotating disk exceeds the disk material's yield strength 0σ . As seen in these tables, the time at which the disks are yielded is 
increased by decreasing the constant λ  in both boundary conditions. In addition, the influence of constant λ  on the values of 
elastic limit angular acceleration is greater than the influence of its values on the elastic limit angular velocity. In radially 
restricted-free condition the values of elastic limit angular velocity and acceleration increase by increasing the thickness 
parameter n. But, as this parameter increases, the values of elastic limit angular velocity and acceleration decreases for the 
radially restricted-directed conditions. According to Figs. 8 and 9, in this boundary condition, the maximum value of von Mises 
stress occurs on the outer surface of the disk and disk with a higher thickness parameter has a more equivalent von Mises stress. 
In terms of boundary conditions, the disk with the radially restricted-directed conditions has more elastic limit angular velocity 
and acceleration in comparison to the disk with the racially restricted-free conditions. 



Elastic Limit Angular Velocity and Acceleration Investigation in Non-Uniform Rotating Disk   
 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 791-808 

807 

Table 6. Results for elastic limit angular velocity and acceleration for different values of thickness parameter n  and 0.35λ =− . 

Thickness 
parameter ( n ) 

Boundary condition 
Time 

 ( )t s  

Elastic angular velocity 

( )e
rad

sω  

Elastic angular acceleration 

2( )e
rad

s
ω
i

 

 
0 

Restricted-free 3.35 323 113 

Restricted-directed 4.71 519 181 

 
0.2 

Restricted-free 3.75 371 130 
Restricted-directed 4.65 509 178 

 
0.5 

Restricted-free 4.30 450 157 
Restricted-directed 4.57 495 173 

 
0.8 

Restricted-free 4.50 483 169 
Restricted-directed 4.55 491 172 

 
1 

Restricted-free 4.62 503 176 
Restricted-directed 4.53 488 170 

Table 7. Results for elastic limit angular velocity and acceleration for different value of thickness parameter n  and 0.2λ =−   

Thickness 
parameter ( n ) 

Boundary condition 
Time 

 ( )t s  

Elastic angular velocity 

( )e
rad

sω  

Elastic angular acceleration 

2( )e
rad

s
ω
i

 

 
0 

Restricted-free 5.86 322 64 

Restricted-directed 8.20 515 103 

 
0.2 

Restricted-free 6.70 381 76 
Restricted-directed 8.12 507 101 

 
0.5 

Restricted-free 7.55 452 90 
Restricted-directed 8.05 500 100 

 
0.8 

Restricted-free 7.90 485 97 
Restricted-directed 8.00 495 99 

 
1 

Restricted-free 8.05 500 100 
Restricted-directed 7.90 485 97 

8. Conclusions 

In this work, the homotopy perturbation method as an analytical solution and finite difference method as a numerical 
solution were used for the elastic analysis of a rotating annular disk with non-uniform thickness and density under the time-
dependent mechanical loading. HPM was successfully employed to obtain the solutions of the equilibrium equation of rotating 
disk in both radial and tangential directions simultaneously. The obtained results were compared with the FDM solution. In both 
uniform and non-uniform cases, very good agreement was found. It was shown that the proposed analytical model yields 
accurate results without the need to use finite element analysis software which is commercially available. This may lead to time 
and cost-saving in handling complicated cases. The present study also revealed that HPM is a powerful method to be applied to 
advanced studies of such structures. After validation, numerical examples of HPM results were performed to study the elastic 
limit angular velocity and acceleration with consideration tangential displacement and shear stress of rotating disks under 
various thickness parameter n, boundary conditions and constants in angular velocity and acceleration function. The results 
showed that shear stress has more influence on the distribution of equivalent von Mises stress in the elastic region. The time in 
which plastic deformation introduced can be improved by considering the smaller value for constant �. In addition, the type of 
boundary conditions also affected the distribution of equivalent von Mises stress. It can be concluded that the proposed 
analytical model can successfully handle the rotating disk problem in general form under mechanical loading and could be 
expanded to examine more complicated problems of combined loading cases such as thermo-mechanical loadings of gears, 
turbine rotors, flywheels and other mechanical components. 
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