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Abstract. Heat transfer of fluids plays an important role in process flows, as this has significant impacts in process 
configurations, energy pricing and utilization. Therefore, this paper, the heat and mass transfer of a radiating non-Newtonian 
Sodium alginate transported through parallel squeezing plates is examined. The radiating-squeezing fluid flows through the 
parallel plates arranged vertically against each other with multi walled carbon nanotube (MWCNT) particles. Transport 
mechanics and thermal conditions of the Sodium alginate is studied using systems of coupled nonlinear models. This higher 
order, governing ordinary differential models are used to analyze the thermal and mass transfer of the nanofluid using the 
adomian decomposition method. Results obtained from analytical study displayed graphically are used to investigate effect of 
thermal radiation on film flow of MWCNT nanoparticles on the Sodium alginate. As revealed from result, concentration increase 
of MWCNT nanoparticles increases thermal profile significantly. This can be physically explained owing to increasing 
concentration, increases thickness of thermal boundary due to conductivity enhancement of fluid. Improved thermal diffusivity 
drops thermal gradient which reduces heat transfer. Whereas, radiation effect on fluid transport shows decrease in heat transfer 
as thermal conductivity becomes lower than temperature gradient of the flow. Obtained analysis when compared against other 
methods of solution (numerical and approximate analytical) proves satisfactory. Therefore, the results obtained from the work 
provides a good basis for the application and improvement of the Sodium alginate in medical, pharmaceutical and 
manufacturing industries among other practical application. 

Keywords: Sodium Alginate, MWCNT particles, heat transfer, fluid transport, Adomian Decomposition Method.  

1. Introduction 

The study of heat and mass transfer of fluid transport through parallel medium is one of the most important research studies 
in engineering, science and technology. This is due to its application in modern equipment’s including hydraulic lifts, pumps, 
cooling towers and lubricating system utilized industrially. As this equipment’s are of paramount importance to process and 
energy industries, they can be classified therefore as economic drivers. It becomes imperative to study the controlling parameters 
of this transport in the bid to enhance thermal and mass transfer, hence improving energy utilized which in turn reduces cost. 
Utilizing nanofluid in the study of hydrothermal analysis, Hosseinzadeh et al. [1] analyzed magnetohydrodynamic flow using 
analytical methods. Non-Newtonian natural convective flow through flat plate was presented by Ziabaksh and Domairry [2] using 
the homotopy analysis method. Mustafa et al. [3] investigated the mass and heat transfer of squeezing flow unsteadily between 
parallel plates while Jayesimi et al. [4] studied the mass flow of micropolar fluid flowing through a porous channel driven by high 
mass transfer. Analysis of hydro dynamic non-Newtonian third grade fluid was presented by Adesanya and Falade [5] with 
porous medium. Hoshyar et al. [6] studied the incompressible Newtonian unsteady flow behavior using analytical method. 
Liquid- solid interaction of nanofluid was investigated by Ijaz et al. [7] flowing through wavy channel. Analytical study of non-
Newtonian fluid was conducted using parallel plates by Kargar and Akbazade [8]. Turkyilmazoglu [9] investigated single- and 
two-phase lamina film flow through vertically curved walls. Numerical and analytical methods was utilized by Hatami and Ganji 
[10] in the solutions of natural convective Sodium alginate transport. Comparative analysis of Newtonian and non-Newtonian 
fluid flow was conducted by Hatami et al. [11] adopting the differential transform method. Stretching plates comprehensive 
analysis was studied by Ahmadi et al. [12] for heat and mass flow. Squeezing unsteady Eyring -Powell flow in stretching channel 
was analyzed by Ghadikolaei [13] considering thermal radiation and effect of joule heating. Brownian and thermophoresis 
parameter effect of unsteady nanofluid flowing through parallel plates was studied by Sheikholeslami et al. [14]. Investigations 
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on nanofluid flow heat transfer under magnetic field and squeezing was conducted by [15-22] in the bid to enhance mass flow in 
transport mediums. Heat transfer for energy applications considering varying shaped ducts, thermal conditions processes was 
investigated using experimental techniques [23-29]. Further, [30-35] performed reviews of nanofluid transport using numerical 
techniques through flow channels. 

The importance of nanoparticles in fluid flow and heat transfer cannot be over emphasized as it has been proven that 
nanoparticles added to base fluid improve the thermal conductivity of the fluid about thrice [36-39]. Moreso, the carbon nanotube 
(CNTs) nanoparticles are nanoparticles with strong intermolecular bonding, which consist of cylindrically shaped tubes of 
nanometer size. Since the CNTs are allotropes of carbon they have very strong mechanical property. Its shape, thickness and 
length depend on the graphene sheet shape. Therefore, a multi walled carbon nanotube nanoparticles are layers of concentric 
graphene forming a tubular shape. In addition to the mechanical and thermal properties of the CNT. Its finds practical 
applications in the development of structural and thermal materials, biomedicine and electronic applications amongst others 
[41-46]. 

Most practical and yet realistic problems are higher ordered, coupled system of partial or ordinary model equations. In the bid 
to analyze, examine and study the flow mechanics and thermal properties of the fluid transport numerical and analytical 
methods have been applied over the years by researchers [46-78]. These methods include the Homotopy analysis method [HAM], 
homotopy perturbation method [HPM], differential transformation method [DTM], regular perturbation method [RPM], Akbari-
Ganji method [AGM] and the weighted residual methods (collocation, Garlerkins and least square method). With these methods 
having their own linearity, round off errors, discretization, and initial or guess term, strong dependence on perturbation 
parameter and weak nonlinearity. The adomian method of decomposition [ADM] is selected as the preferred analytical scheme to 
provide accurate, reliable solution, coupled with fast convergence rate of approximate analytical solution of the nonlinear system 
of mechanics governing the mass and heat transfer under consideration. Therefore, the ADM been a simplistic approach of 
analyzing nonlinear model problems by decomposing into linear and nonlinear parts makes the ADM attractive to researchers. 
As thermal properties of material of construction/ fabrication of nanoparticles plays a pertinent role in heat transfer. The 
performance of nano crystal was studied by Xiao et al. [79]. Shortly after Lewis et al. [80] investigated the effect of single 
crystalline nanoparticle using winter bottom constructions. The lattice nematicity of triangular crystalline Iron nanostructure 
was performed by Little et al. [81]. Single walled carbon nanotube of nonlinear liquid plasmons was studied by Wang et al. [82]. 
These material were studied and improved in the bid to enhance the performance of nanoparticles during the heat transfer 
process. 

Literatures past, revealed there have been no study on thermal radiating non-Newtonian Sodium alginate flow through 
parallel plate considering combined squeeze and multi walled carbon nanoparticles (MWCNT) .This paper therefore aims to study 
the heat transfer effect of combined squeeze and MWCNT particles on radiating thermal flow of the Sodium alginate through a 
vertical micro-channel, utilizing the adomian decomposition method (ADM). 

2. Model Development and Analytical Solution 

The steady fluid transport and heat transfer of the Sodium alginate, a non-Newtonian fluid containing the multiwall carbon 
nanoparticles (MWCNT) flows under natural convection through vertical parallel plates. The squeezing fluid transport moves 
under natural convection at constant temperature of the walls having opposing magnitude to each other. The distance between 
the walls is represented as 2b, this is shown in Fig.1, since fluid is incompressible, nanoparticles and base fluid are in 
thermodynamic equilibrium. As observed from the conditions at the boundary of the plates, the fluid particles closest to the plate 
and plate have equal velocity whereas temperature of the walls are constant but opposing in magnitude to each other. This 
causes a rise in temperature at the left plate and a fall at the right plate. 

The constitutive relations are formed based on the flow and heat transfer process described above, considering the 
reasonable assumptions stated. Based on the aforementioned and following the model of the Sodium alginate presented by [11, 
22], the combined effect of constant radiating squeeze flow of the base fluid using the MWCNT nanoparticles are stated as:  
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Fig. 1. Physical model of the problem. 
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where the dimensionless parameters take the forms: 
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where A1-3, are the nanofluid parameters, Ec is the Eckert number, Pr is the Prandtl number, Theta is the dimensionless 
temperature, S is the squeeze parameter, R is the radiation parameter, S is the squeeze parameter and δ is the dimensionless 
non-Newtonian parameter. The ranges for the Ec and Pr parameters are selected for laminar and steady flows. The δ parameter 
at zero connotes Newtonian flow, while δ > 0 denotes non-Newtonian flows. The plates come together when S<0 and recedes or 
dilates when S>0. Whereas the R parameter is valid for short distance travels according to [39] for R >1. 

Effect of radiation on the heat transfer is measured utilizing the Rooseland approximation [39]. The Rooseland approximation 
is confirmed valid during short travel distance of the radiation before scattering. The approximation stated by Rooseland is given 
to account for this effect. Since heat transfer due to radiation exit within non-Newtonian fluid before been scattered within thick 
optical fluid. The heat flux due to radiation is presented as follows: 
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Assuming small thermal flow differences, temperature 4T  is expressed linearly. Expanding 4T  using the Taylor series about

mT
 
, which is the free stream temperature. Upon neglecting higher order terms yields 4 3 44 3m mT T T≅ − , this can be simply shown 

as: 
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Utilizing the Non dimensional parameters expressed in Eq. (3). The governing Eqs. (1)- (2) are described as:  
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The nanofluid parameters are described adopting the heat capacitance ������, effective dynamic viscosity ���, thermal 

conductivity ��� and effective density nfρ  of the nanofluid are defined as follows [40]:  
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Taking the boundary condition as 

0, 0.5v θ= =  at x = -1  

0, 0.5v θ= =−  at x = 1 
(12) 

The adomian decomposition approximate method of solution will be utilized in generating solution to the system of coupled, 
higher order, ordinary differential equation. This is an analytical scheme. Utilising the ADM in the applications of the coupled 
governing nonlinear differentials Eqs. (3-4), may be expressed as:  
 
            

Table 1. Thermo physical properties of sodium alginate [22] and MWCNTs nanoparticles [40]. 

 Density (Kg/m3) Specific heat capacity (J/kgK) Thermal conductivity (W/mk) 

Sodium Alginate (SA) 989 4175 0.637 

MWCNT 1600 796 3000 
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In the bid to simplify the difficult integrations associated with the highest order differential operator, taken as 2 2/xxL d dx=  

for the coupled equation.Upon inverting xxL gives 1
xxL− . Thus applying 1

xxL−  to Eqs.(13)-(14) yields 
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With respect to ADM, velocity and temperature may be expressed in the form 
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The nonlinear terms will be explored in the form of Γn and Λn in the Adomian polynomials which yields 
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Utilising Eqs. (18)-(19) the Eqs. (15)-(16) may be expressed as 
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where the boundary conditions takes the form  
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The zeroth order can be obtained from the recursive relations Eqs. (15)- (16) 

1
0 1 2 0xxv C x C L θ−= + −  (23) 

0 1 2 0C x Cθ = + +  (24) 

With leading order boundary condition expressed as 

0 00, 0.5v θ= =   at x = -1 

0 00, 0.5v θ= =−  at x = 1 
(25) 

The remaining order of the solutions is given as 
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with boundary condition expressed as 
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From Eq. (18) the Adomian polynomians, Γn can be obtained as  
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From Eq. (19) the Adomian polynomians, Λn can be obtained as 
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Zeroth order solution can be obtained by simplifying the recursive relation Eqs. (23) -(24) using the leading order boundary 
condition Eq. (25) which yields. 
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First order solution can be obtained from Eqs.(29) and (31) which is expressed as 

1
1 0( )xxv L−= Γ  (35) 

1
1 0( )xxLθ −= Λ  (36) 

with the first order boundary condition as follows 

1 10, 0.5v θ= =   at x = -1 

1 10, 0.5v θ= =−  at x = 1 
(37) 

Upon simplifying Eqs. (35) and (36) with the aid of first order boundary condition Eq. (37).This can be easily shown as 
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Second order solution can be obtained from Eqs.(30) and (32) which is expressed as 

1
2 1( )xxv L−= Γ  (40) 

1
2 1( )xxLθ −= Λ  (41) 

with the second order boundary condition as follows 

 2 20, 0.5v θ= =   at x = -1 

 2 20, 0.5v θ= =−  at x = 1 
(42) 

Upon simplifying Eqs. (40) and (41) with the aid of second order boundary condition Eq. (42) can be easily shown as 
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Table 2. Validations of temperature profiles across varying X values. When Pr = Ec = δ = S = 1,   = R = 0. 

X 
θ(X) Error Error 

NS [8] HPM [8] ADM HPM ADM 

-1.0000 0.5000 0.5000 0.5000 0.0000 0.0000 

-0.8000 0.4007 0.4007 0.4007 0.0000 0.0000 

-0.6000 0.3011 0.3012 0.3012 0.0001 0.0001 

-0.4000 0.2015 0.2016 0.2015 0.0001 0.0000 

-0.2000 0.1018 0.1019 0.1017 0.0001 0.0001 

0.20000 -0.0981 -0.0981 -0.0980 0.0000 0.0000 

0.40000 -0.1984 -0.1984 -0.1984 0.0000 0.0000 

0.60000 -0.2989 -0.2988 -0.2989 0.0001 0.0000 

0.80000 -0.3993 -0.3993 -0.3994 0.0000 0.0001 

1.00000 -0.5000 -0.5000 -0.5000 0.0000 0.0000 

 
Table 3. Effect of MWCNT’S and radiation on the thermal profile. When Pr = Ec = δ = 1,   = 0.05 and R = 5. 

X at (S=1) ϴ (X) X at (S= -1) ϴ (X) 

-1.0000 -0.4190 -1.0000 1.2529 

-0.8000 -0.5387 -0.8000 1.1934 

-0.6000 -0.6227 -0.6000 1.0996 

-0.4000 -0.6983 -0.4000 0.9953 

-0.2000 -0.7640 -0.2000 0.8810 

0.00000 -0.8124 0.00000 0.7518 

0.2000 -0.8400 0.2000 0.6054 

0.4000 -0.8503 0.4000 0.4441 

0.6000 -0.8508 0.6000 0.2727 

0.8000 -0.8428 0.8000 0.0909 

1.0000 -0.7992 1.0000 -0.1252 
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The summations of Eqs. (33),(38) and (43) gives the ADM solutions for the velocity profile while Eqs. (34),(39) and (44) gives the 
solution for temperature profile. Which is expressed as 
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3. Results and Discussion 

This section discusses the results obtained from the analytical solution for the thermal radiating film flow of sodium alginate 
conveying the multi walled carbon nanoparticles through flat plates. The pertinent parameters are fixed for all cases at Pr= 
Ec=0.1, δ=0.5, S=1,  =0.01 and R=1 unless stated otherwise. The natural convecting flowing fluid was examined using the adomian 
method of analytical approximate solution. This was confirmed for correctness against the numerical Runge Kutta fourth order 
method (RK-4) and the analytical homotopy perturbation method (HPM), this is shown in the Table 2, which shows the absolute 
error of the ADM and HPM analytical methods against the numerical RK-4 method. The Table 3, reveals the effect of MWCNT 
nanoparticles and radiation effect on the fluid transport. It is observed that heat transfer rate increases due to enhanced 
kinematic viscosity and thermal conductivity of fluid. As shown in the Table 3 as plate moves together (S=-1) the thermal profile 
decreases while as plate recedes thermal profile further decreases as rapid heat exchange leads to thermal loss. Results reveals 
concentration of the multi walled nanoparticles reduces the flow of the fluid owing to the decrease in the thickness of 
momentum boundary layer which impedes flow velocity, this is observed in Fig.2. The squeezing effect of the plates on the fluid 
transport reveals a converse report. As the plates constrict (S<0) the velocity slightly increases and as plate recedes (S<0) rapid 
increase is observed at the left wall. The transport velocity decrease is seen near the right walls which connotes constant mass 
flow rate which increases gradient of velocity. Ultimately increased velocity of fluid at mid plate will compensate for decreased 
flow near region of wall. However, the situation at the left wall is due to backflow as a result of decreased kinematic viscosity. 

 

Fig. 2. Nanoparticles concentration effect on velocity profile utilizing MWCNT. 

 

Fig. 3. Squeezing parameter effect on velocity profile utilizing MWCNT. 



Thermal Analysis of Radiating Film Flow of Sodium Alginate using MWCNT Nanoparticles 226 

 

Journal of Applied and Computational Mechanics, Vol. 8, No. 1, (2022), 219-231 

 

Fig. 4. Eckert parameter effect on thermal profile utilizing MWCNT. 

 

Fig. 5. Nanoparticles concentration effect on thermal profile utilizing MWCNT. 

Frictional heating enhances by fluid velocity owing to viscous dissipation effect enhances the thickness of the thermal 
boundary layer thickness. This leads to the increase of the Eckert parameter effect on thermal distribution of Sodium alginate 
radiating flow which causes thermal profile decrease. However, the thermal decrease towards the left plate is higher than the 
right plate this is observed in Fig. 4. As revealed from thermal profile Fig. 5, concentration increase of MWCNT nanoparticles 
increases thermal profile significantly. This can be explained physically owing to increasing concentration, increases thickness of 
thermal boundary due to conductivity enhancement of fluid. Improved thermal diffusivity drops thermal gradient which reduces 
heat transfer. The Prandtl’s number effect on the heat transfer is reported in Fig.6, increasing Prandtl’s number depicts dominant 
boundary layer momentum compared to the thermal boundary layer. This depicts thermal diffusivity is recessive against fluid 
kinematic viscosity owing to force balance in thermal boundary layer buoyancy and viscosity consequently decrease in thermal 
profile is observed. The thermal radiating film effect on the nanofluid flow is investigated in Fig. 7, increasing radiation 
parameter during fluid transport enhances heat dissipation which subsequently leads to thermal drop which decreases thickness 
of thermal boundary. Moreso radiation effect on the physical parameter of the heat transfer is observed in Fig. 8, Nusselt number 
reveals quantitative decrease of the radiation parameter causes decrease in heat transfer as plates rescind while as plates 
constrict higher values of heat transfer is noticed.  
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Fig. 6. Prandtl number effect on thermal profile utilizing MWCNT. 

 

 

Fig. 7. Radiation parameter effect on thermal profile utilizing MWCNT. 

4. Conclusion 

The effect of thermal squeezing flow with multi-walled carbon nanotube nanoparticle is investigated in this paper, 
considering radiation. The base fluid of sodium alginate, a non-Newtonian fluid was examined using a system of nonlinear 
ordinary equations. This was decomposed and solved using the adomian decomposition method. The result obtained was 
validated against fourth order Runge kutta and homotopy perturbation method of solution for the correctness which gives 
similar results. Consequently, this renews confidence. As observed, radiation effect on fluid transport shows decrease in heat 
transfer as thermal conductivity becomes lower than temperature gradient of the flow. While the concentration increase of 
nanoparticles improves thickness of thermal boundary due to conductivity enhancement of fluid which drops thermal gradient 
reducing heat transfer. Therefore, the results obtained from the work provides a good basis for applications of the Sodium 
alginate including include in medical, pharmaceutical and manufacturing industries. It is therefore recommended that further 
studies will be conducted for the sodium alginate transport utilizing extended transport channels and improved geometry shape 
nanoparticles. 
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Fig. 8. Squeezing and radiation parameter effect on the Nusselt number utilizing MWCNT. 
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Nomenclature 

Ec Eckert number Greek symbols 
g Acceleration due to gravity α  Thermal diffusivity  
G Material constant σ  Electrical conductivity 

k Thermal conductivity 3β  Activation energy parameter 

�� Base fluid thermal conductivity δ Dimensionless non-Newtonian parameter 
��� Effective thermal conductivity ε  Dimensionless thermal conductivity parameter 

�! Nanoparticle thermal conductivity ��� Effective dynamic viscosity 
Pr Prandtl number � Dimensionless Temperature 

R Radiation parameter 	����
�
 Base fluid heat capacity 

S Squeeze parameter 	����
��

 Effective heat capacity 

T Initial temperature 	����
!
 Nanoparticle heat capacity 

Tm Mean temperature �� Base fluid density 
v Velocity in x Direction ��� Effective density 
" Dimensionless velocity in x direction �! Nanoparticle density 
R Dimensionless Radiation parameter υ  Kinematic viscosity 
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