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Abstract. Recently, fractional calculus theory has been successfully employed in generalized thermoelasticity theory and several 
models with fractional order have been introduced. In this work, a fractional thermoelastic modified Fourier's Law with phase lag 
and two different fractional-orders has been constructed. The previous fractional models of thermoelasticity introduced by Sherief 
et al. [1], Ezzat [2] and Lord and Shulman [3] as well as classical coupled thermoelasticity [4] follow as limiting cases. This proposed 
model is applied to an infinitely annular cylinder that is subject to time-dependent surface temperatures, and whose surfaces are 
free of traction. The method of the Laplace transform is employed to get the solutions of the field variables. A numerical technique 
is utilized to invert the Laplace transforms. Some results are presented in tables and figures to extract the effects of fractional order 
parameters on all variables studied. The theory's predictions have been checked and compared to previous models. 

Keywords: Two fractional thermoelasticity, different order, time-dependent surface temperature, generalized thermoelasticity 
theory, annular cylinder. 

1. Introduction 

Since 1967, many theories and models have been developed and presented, are often called generalized theories of 
thermoelasticity [3-5]. The main objective of proposing these theories is to take care of the imperfection of the uncoupled and 
coupled thermoelasticity theories. The main objective of proposing these theories was to take care of the shortcomings of 
unconnected and associated thermal elasticity theories [6]. Recently, other attempts have been attained to modify the classic 
Fourier law to generalize previous models based on introducing higher-order derivatives into governing equations [7-11]. 

The branch of the fractional calculus (FC) is very important and is useful in describing the development of systems with memory, 
in which these systems are usually dispersed and complex. It can be said that the complete theory of fractional derivatives and 
fractional integrals is not established recently but was founded in the nineteenth century. 

In the last few years, this important branch has been successfully applied in many fields of physical processes such as 
biopolymers, chemistry, porous materials, biology, semiconductors, biological cells, electronics, and viscoelasticity [12]. Padlubny's 
book [13] can be referred to as an important reference in this field and is also a survey of FC applications. In recent decades, the 
definition of the fractional derivative and fractional integration has been generalized in different approaches, and some different 
alternative concepts of the fractional derivative have been developed [14-17]. Based on the new heat-conduction model with the 
fractional derivative defined by Caputo is introduced by Povstenko [18] to study the thermoelastic interactions in an infinite body 
cylindrical cavity. Among the most important contributions are in the field of thermoelasticity with fractional orders were 
investigated in [19-26]. 

Over the past decades, several analytical/approximate methods have been developed to solve nonlinear ordinary and partial 
fractional differential equations. For initial and boundary-value problems in ordinary and partial differential equations, some of 
these techniques include the perturbation method [27, 28], the variational iteration method [29-33], residual power series method 
[34], expansion methods [35-49]. He’s variational iteration method is based on the use of restricted variations and correction 
functional which has found a wide application for the solution of linear and nonlinear ordinary and partial differential equations, 
e.g., [33]. This method does not require the presence of small parameters in the differential equation and provides the solution (or 
an approximation to it as a sequence of iterates. The method does not require that the nonlinearities be differentiable with respect 
to the dependent variable and its derivatives. 

In the current work, a fractional heat conduction model with a single-phase lag is derived based on the concepts of the fractional 
calculus [50]–[52]. In the proposed model, the heat equation including two fractional parameters, unlike the previous models. This 
model introduced is employed to investigate thermoelastic interaction due to time-dependent varying heat in an annular cylinder. 
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Some numerical values are presented in tables and figures to assess the influences of the fractional coefficients on all distributions 
of the physical fields. 

2. Derivation of Fractional thermoelasticity with two fractional derivatives 

In this section, we intend to derive a modified heat conduction model with two fractional derivatives of different orders. We 
will apply the Caputo time-fractional derivative definition [1] of fractional-order � , (0 < � ≤ 1) of any function �(	) which is 
absolutely continuous is defined as 

d�
d	� �(	) = 
����′(	) (1) 

where the operator 
� is defined by [53] 


��(	) = � (���)���
�(�)�� �(�)d�, (2) 

and the function �(	) satisfying the equation 

lim�→� � d�
d	� �(	)� = �′(	). (3) 

The classical Fourier law is given by states the linear dependence between the heat flux vector !  and the gradient of 
temperature ∇#: 

!($, 	) = −'∇#($, 	) (4) 

where ! denotes the heat flux vector, ∇# is the temperature gradient and ' is thermal conductivity. 
The mathematical model of Fourier's law (4) is in a parabolic type and its investigation shows that the disturbance of temperature 
propagates at infinite speed.  

To overcome this contradiction, Cattaneo's [54] has improved the heat-conduction law to be in the form 

(($, 	) + �� **	 (($, 	) = −'∇#($, 	) (5) 

The �� relaxation time appearing. The energy equation is given by [6] 

+,- *#*	 + ./� *0*	 = −∇ ∙ ! + 2 (6) 

During the last decades, theories of non-classical thermoelasticity have been developed, where Eqs. (1) and (3) are replaced by 
more general and appropriate formulas. The generalization of the derivative and integral model of a non-integer order has been 
subjected to several methods and different alternative concepts have emerged for the derivative of the fractional order. 

One of these generalizations was provided by Sherief et al. in [1] where the Fourier's law is replaced by the formula 

(($, 	) + 	� *�
*	� (($, 	) = −'∇#($, 	),     (0 < � ≤ 1) (7) 

Also, Ezzat [2] established another fractional heat conduction model using the definition proposed by Jumarie [17] as 

!($, 	) + ����! *�
*	� !($, 	) = −'∇#($, 	) (8) 

The present work is an effort to construct a generalized model of thermoelasticity with fractional derivative. This modification 
depends on replacing the time derivative founding equation (2) with a fractional derivative. The resulting generalized heat 
conduction equation will be in the form: 

!($, 	) + ��� *�
*	� !($, 	) = −'∇#($, 	),   0 < � ≤ 1. (9) 

Most of the researchers did not address the energy equation of modification or development, but the advances they made were 
based on Fourier law. In this generalization as well, there will be another improvement, not by Fourier's law, but by modifying the 
energy equation. The time derivative in the energy equation (3) is replaced by a fractional derivative of a different order 5. The 
modified energy equation with fractional order, in this case, has the form 

��6�� *6
*	6 (+,-# + ./�0) = −∇ ∙ ! + 2,   0 < 5 ≤ 1 (10) 

In the above equation, the parameter ��6�� is presented to retain the matching dimensions.  
Combining the two equations (9) and (10), we get the new heat conduction equation with two different fractional orders (2FTE) in 
the form 

71 + ��� *�
*	�8 9+,-��6�� *6#*	6 + ./���6�� *60*	6 : = '∇;# + 71 + ��� *�

*	�8 2 (11) 

In addition, the field equations, the constitutive relations and the train–displacement relation for thermoelastic isotropic 
materials at uniform environmental temperature /� are: 

<=> = 2@0=> + A=>BC0=> − .#D (12) 

20=> = E>,= + E=,>  (13) 
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@E=,>> + (C + @)E>,=> − .#,= + F= = +EG =  (14) 

Equation (11) and equation (14) constitute the whole system for governing equations for thermoelasticity theory with two 
fractional orders. 

3. Special cases 

3.1 Fractional thermoelasticity model suggested by Sherief et al. (SFTE)[1]: 

In the limiting case 5 → 1 and 	� = ���, the fractional heat equations of the SFTE-theory can be obtained as 

71 + 	� *�
*	�8 7+,- *#*	 + ./� *0*	8 = '∇;# + 71 + 	� *�

*	�8 2 (15) 

3.2 Fractional order thermoelasticity theory suggested by Ezzat (EFTE) [2]: 

The fractional heat equation (11), when 5 → 1 and 	� = H�! ����  converts to EFTE model as 

71 + 	���! *�
*	�8 7+,- *#*	 + ./� *0*	8 = '∇;# + 71 + ����! *�

*	�8 2 (16) 

3.3 Lord-Shulman theory of generalized thermoelasticity (LS) [3]: 

If 5 → 1 and � → 1 in the Eq. (11), we get the heat equation in the context of LS –theory in the form 

71 + 	� **	8 7+,- *#*	 + ./� *0*	8 = '∇;# + 71 + 	� **	8 2 (17) 

3.4 Classical thermoelasticity theory (CTE) [4] 

If �� = 0 and 5 → 1, the equation (11) reduces to classical heat conduction equation (CTE) 

,- *#*	 + ./� *0*	 − 2 = '∇;# (18) 

4. Application to the modified model 

The Now to investigate and verify the new model we will study a boundary value problem. We study thermoelastic vibration in 
a hollow cylinder of inner I� and outer radii I; respectively.  
The boundary and initial conditions are assumed to be: 
 The surfaces are subjected to time-dependent or constant surrounding temperature. 
 The surfaces are traction free. 
 The initial conditions are supposed to be quiescent. 
 There are no body forces or external heat sources applied to the cylinder. 

The cylindrical polar coordinates (I, J, K) are used. Due to the cylindrical symmetry, the field variables are considered be 
depending only on the radial I and the instant time 	. 
The displacement vector has the components 

EL = E(I, 	), EM(I, 	) = EN(I, 	) = 0 (19) 

The non- vanishing components of strain are  

0LL = *E*I , 0MM = EI (20) 

The constitutive equations (12) have the forms 

<LL = 2@ *E*I + C 7*u*I + EI8 − .#
<MM = 2@ EI + C 7*E*I + EI8 − .#  (21) 

The motion equation (14) will be in the form 

*<LL*I + 1I (<LL − <MM) = + *;E*	;  (22) 

Using Eq. (16), the motion equation (17) can be written as 

(C + 2@) **I 7*E*I + EI8 − . *#*I = + *;E*	;  (23) 

The fractional heat conduction (11) can be reduced to 

71 + ��� *�
*	�8 �+,-��6�� *6#*	6 + ./���6�� *6

*	6 7*E*I + EI8� = '∇;# (24) 

We introduce the following non-dimensional quantities: 

PQ, R, I�, I;S = T�UPI, E, Q�, Q;S,      P�, 	�, 	�S = T�;UP�, ��, ��S,    
Θ = #/� , Σ=> = <=>,@ , U = +,-' ,   T� = XC + 2@+ .  (25) 

Using Eq. (20), Eqs. (16), (18) and (19) in the non-dimensional forms will be in the forms 
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Y; **Q 7*R*Q + RQ8 − Z *Θ*Q = Y; *;R*�;  (26) 

9 *;
*Q; + 1Q **Q: Θ = 71 + 	�� *�

*	�8 �	�6�� *6Θ*�6 + [	�6�� *6
*�6 7*R*Q + RQ8� (27) 

ΣLL = Y; *R*Q + (Y; − 2) RQ − ZΘ
ΣMM = Y; RQ + (Y; − 2) *R*Q − ZΘ (28) 

where 

Y; = C + 2@@ ,     [ = .;/�+;,-T�; , Z = ./�@ . (29) 

Now we can define the potential function \ by 

R = *\*Q   (30) 

Introducing the function \ into Eqs. (21)-(23), we get 

Y; 9∇; − *;
*�;: \ = ZΘ (31) 

9∇; − 	�6�� 71 + 	�� *�
*	�8 *6

*�6: Θ = [	�6�� 71 + 	�� *�
*	�8 *6

*�6 ∇;\ (32) 

ΣLL = Y; *;\*Q; + (Y; − 2)Q *\*Q − ZΘ
ΣMM = (Y; − 2) *;\*Q; + Y;

Q *\*Q − ZΘ   (33) 

5. Initial and boundary conditions 

The system of governing equations has to be solved subject to the homogeneous initial conditions. The initial conditions are 
assumed to be 

R(Q, 0) = *R(Q, 0)*Q = 0,    Θ(Q, 0) = *Θ(Q, 0)*Q = 0 (34) 

 The heat flow and convection boundary conditions can be expressed as: 

((Q�, �) = ℎ�(�� − Θ),   at    Q = Q�,   � > 0 (35) 

((Q;, �) = ℎ;(Θ − �;),   at    Q = Q;,   � > 0 (36) 

where ℎ� and ℎ; are constant coefficients of surface heat transfer of inner and outer surroundings sometimes known as a Biot 
number and �� and �; inner and outer surrounding temperatures. 

 The surfaces of the annular cylinder are subjected to traction free conditions i.e. 

ΣLL(Q, τ) = 0    at    Q = Q�, Q;,   τ > 0. (37) 

6. Solution in the transformed domain 

Applying the technique of the Laplace transform, Eqs. (20)-(23) can be converted to 

Y;(∇; − b;)\c = ZΘd (38) 

(∇; − e)Θd = [e∇;\c (39) 

ΣcLL = Y; d;\cdQ; + (Y; − 2)Q d\cdQ − ZΘd
ΣcMM = (Y; − 2) d;\cdQ; + Y;

Q d\cdQ − ZΘd (40) 

where e = 	�6��b6(1 + 	��b�). By eliminating Θd from the Eqs. (33), and (34), we get: 

(∇; − f�;)(∇; − f;;)\c = 0 (41) 

where f�; and f;; are the roots of the following equation 

fg − he 71 + [ZY 8 + b;i f; + b;e = 0 (42) 
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Solving the differential equation (36), the general solution for \c can be written as 

\c = jkl=
�(f=Q) + m='�(f=Q)n;
=o�

 (43) 

where 
�(K) and '�(K) are the well-known modified Bessel functions and l= , m= (p = 1,2) are integral parameters. 
From Eq. (38) and Eq. (33), we get 

Θd = Y;
Z j(f=; − b;)kl=
�(f=Q) + m='�(f=Q)n;

=o�
 (44) 

It follows from Eq. (38) and Eq. (25) that 

Rd = jkl=f=
�(f=Q) − m=f='�(f=Q)n;
=o�

 (45) 

Introducing the functions \c and Θd into Eq. (35), we have 

ΣcLL = j ql= hY;b;
�(f=Q) − 2f=Q 
�(f=Q)i + m= hY;b;'�(f=Q) + 2f=Q '�(f=Q)ir;
=o�

 (46) 

ΣcMM = j ql= h(Y;b; − 2f=;)
�(f=Q) + 2f=Q 
�(f=Q)i +;
=o�

                           m= h(Y;b; − 2f=;)'�(f=Q) − 2f=Q '�(f=Q)ir
 (47) 

The boundary conditions (32) in the Laplace transform domain have the form 

ΣcLL(Q, s) = 0    at    Q = Q�, Q; (48) 

To convert the boundary conditions (30) and (31), we will employ the modified Fourier’s Law of heat conduction (6) in non-
dimensional form, namely 

71 + 	�� *�
*	�8 (L = − dΘddQ (49) 

Then the non-dimensional boundary conditions (30) and (31) in the Laplace transform domain have the forms 

dΘddQ = ℎ� 71 + 	�� *�
*	�8 (Θd − ��),      at    Q = Q� (50) 

dΘddQ = ℎ; 71 + 	�� *�
*	�8 (�; − Θd),      at    Q = Q; (51) 

Substituting from Eqs. (39) and (40) into the boundary conditions (42), (44) and (45), we get a linear system of equations. Solving 
this system, we can obtain the constants l= , m= , (p = 1,2). 

To obtain inverse transformations for different fields, an efficient and accurate numerical technique will be used to obtain the 
Laplace transform inversion [39]. In this method, any transformed function in the Laplace field can be reversed to the real domain 
using the formula  

[(Q, �) = 0t�
� 712 [̅(Q, T) + Q0 j [̅ 7Q, T + pvw� 8 (−1)xyz

xo� 8 (52) 

where {| is a finite number. The parameter T satisfies T� ≅ 4.7 in order to achieve the fastest convergence [55]. 

 

7. Numerical results 
 

The effect of the time-fractional orders � and 5 on the thermoelastic materials has been investigated in the previous sections. 
The copper material was chosen for the numerical discussion purposes. The material constants of the copper material are [11] 
  C = 7.76 × 10��kg m��s�;,   @ = 3.86 × 10��kg m��s�;,   + = 8954 kg m��,' = 386 W m��K��,   ,- = 3.381 J kg K��,   � = 0.0168,   5 = 2.    

For computational purposes, we take the functions �� and �; as [56] 

��(Q, 	) = 1.5 + 0.5 cos(13	),   �;(Q, 	) = 1.0  (53) 

The numerical results of the studied fields for different values of fractional-order parameters �, 5 and also for the instant time � are introduced along the radial distance Q. Using the numerical procedure given in [55], the distributions of temperature Θ and 
displacement R as well as the stresses ΣLL and ΣMM are acquired and explained in Tables 1–4 and Figures 1–8, respectively. 

Case I: The effect of the time-fractional order parameters 

The influence of the parameters of fractional orders � and 5 on the thermoelastic material has been investigated in the 
previous case. As mentioned earlier in section 3, some models submitted in this field can be obtained from the new model (2FTE) 
as special cases (CTE, LS, SFTE, ESTE). 
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Table 1. The effect of fractional order parameters � and 5 on Θ 

Q CTE 
LS 5 = 1 � = 1 

SFTE 5 = 1 � = 0.5 

EFTE 5 = 1 � = 0.5 

MFTE          ((0 < � < 1),     (0 < 5 < 1)  ) 5 = 0.75 � = 0.75 
5 = 0.5 � = 0.5 

5 = 0.3 � = 0.3 
5 = 0.75 � = 0.5 

5 = 0.75 � = 0.3 

1 0.248149 0.094586 0.1685130 0.134861 0.1397720 0.212465 0.320537 0.1644690 0.175283 

1.1 0.154216 0.0318511 0.085273 0.0591014 0.0714837 0.147784 0.269433 0.0913432 0.112582 

1.2 0.10384 0.0111101 0.0460871 0.0272559 0.0392313 0.113389 0.244039 0.0545810 0.078647 

1.3 0.0790839 0.00412814 0.0279088 0.0137675 0.0242768 0.098087 0.235317 0.0363102 0.061492 

1.4 0.0732624 0.00181642 0.0211817 0.0091635 0.0189580 0.097946 0.240393 0.0295481 0.057276 

1.5 0.0849577 0.0020704 0.0216923 0.0098516 0.0196291 0.111650 0.258017 0.0325825 0.065671 

1.6 0.116175 0.00350852 0.0302073 0.0145813 0.0256098 0.139393 0.287771 0.0479078 0.088394 

1.7 0.170966 0.0101339 0.0566096 0.025980 0.0449633 0.182431 0.329809 0.0812102 0.127879 

1.8 0.254171 0.0254428 0.116796 0.0632962 0.0941547 0.242772 0.384691 0.1385910 0.186087 

1.9 0.370381 0.0538702 0.217712 0.149632 0.1790790 0.322425 0.453210 0.2243780 0.265076 

2.0 0.518045 0.194144 0.357339 0.280393 0.2944410 0.420842 0.536256 0.3394540 0.365007 

Table 2. The effect of fractional order parameters � and 5 on R 

Q CTE 

LS 5 = 1 � = 1 

SFTE � = � � = �. � 

EFTE 5 = 1 � = 0.5 

MFTE          ((0 < � < 1),     (0 < 5 < 1)  ) 5 = 0.75 � = 0.75 
5 = 0.5 � = 0.5 

5 = 0.3 � = 0.3 
5 = 0.75 � = 0.5 

5 = 0.75 � = 0.3 

1 -0.485747 -0.0270063 -0.235478 -0.141843 -0.214805 -0.70828 -1.09578 -0.33112 -0.54947 

1.1 -0.0611974 -0.00273262 -0.0291744 -0.0172706 -0.0267242 -0.0903011 -0.140289 -0.0416189 -0.069913 

1.2 -0.0071778 -0.000100989 -0.0032136 -0.001801 -0.0029942 -0.0111571 -0.0177556 -0.0048523 -0.0085589 

1.3 -0.0006367 6.96376E-05 -0.0001874 -6.39E-05 -0.0001972 -0.0012536 -0.0022552 -0.0004099 -0.0009187 

1.4 -0.0001387 2.41065E-05 -1.259E-05 1.532E-05 -1.621E-05 -0.0002509 -0.0005537 -5.74E-05 -0.0001662 

1.5 -0.0004102 -2.64353E-05 -0.0001858 -9.823E-05 -0.000158 -0.0003973 -0.000638 -0.0002173 -0.0002971 

1.6 -0.0008347 -0.000112003 -0.000448 -0.0002817 -0.0003764 -0.0007238 -0.0009656 -0.0004823 -0.0005722 

1.7 -0.0013703 -0.000256837 -0.0008187 -0.0005719 -0.0006756 -0.0011104 -0.0013045 -0.000844 -0.0009145 

1.8 -0.0017804 -0.000624486 -0.0012275 -0.0009329 -0.0009922 -0.0013146 -0.0012677 -0.0011923 -0.0011491 

1.9 0.0003193 -0.000315496 -0.0002541 -0.0003707 -0.0001853 0.0006561 0.0019042 -5.392E-05 0.0003294 

2 0.0232269 0.00631432 0.0143314 0.0106335 0.0115863 0.0196321 0.0282616 0.0144075 0.0156911 

Table 3. The effect fractional order parameters � and 5 on ΣLL 

Q CTE 
LS � = � � = � 

SFTE 5 = 1 � = 0.5 

EFTE 5 = 1 � = 0.5 

MFTE          ((0 < � < 1),     (0 < 5 < 1)  ) 5 = 0.75 � = 0.75 
5 = 0.5 � = 0.5 

5 = 0.3 � = 0.3 
5 = 0.75 � = 0.5 

5 = 0.75 � = 0.3 

1 0 0 0 0 0 0 0 0 0 

1.1 -0.0030095 -1.61222E-05 -0.0005985 -0.0001591 -0.0005218 -0.0051488 -0.0171114 -0.0010836 -0.0025233 

1.2 -0.0062232 -0.000030257 -0.0013616 -0.0003834 -0.0012059 -0.010376 -0.0323231 -0.0022398 -0.0050615 

1.3 -0.010571 -0.000126929 -0.0025462 -0.0008244 -0.0023005 -0.0167236 -0.0471996 -0.0037747 -0.0083007 

1.4 -0.0172606 -0.00024148 -0.0043951 -0.0017496 -0.004027 -0.0251548 -0.0628869 -0.0061975 -0.0131888 

1.5 -0.0279948 -0.000858765 -0.0072352 -0.0035236 -0.0065566 -0.036662 -0.0803081 -0.0106068 -0.0210585 

1.6 -0.0449907 -0.00181437 -0.0124761 -0.0064977 -0.0104813 -0.0522884 -0.100235 -0.0190741 -0.0335296 

1.7 -0.0705162 -0.00524664 -0.0247529 -0.012084 -0.0195663 -0.0729321 -0.123068 -0.0344343 -0.0519816 

1.8 -0.104525 -0.0120347 -0.0495488 -0.027522 -0.03977 -0.0977021 -0.146839 -0.0579686 -0.0757495 

1.9 -0.129441 -0.0152048 -0.0762575 -0.0522999 -0.0624637 -0.111822 -0.152682 -0.0786064 -0.0920319 

2 0 0 0 0 0 0 0 0 0 

Table 4. The effect of fractional order parameters � and 5 on ΣMM 

Q CTE 

LS 5 = 1 � = 1 

SFTE 5 = 1 � = 0.5 

EFTE 5 = 1 � = 0.5 

MFTE          ((0 < � < 1),     (0 < 5 < 1)  ) 5 = 0.75 � = 0.75 
5 = 0.5 � = 0.5 

5 = 0.3 � = 0.3 
5 = 0.75 � = 0.5 

5 = 0.5 � = 0.75 

1 -0.0068788 -0.00001148 -0.0008853 -0.0001984 -0.0008218 -0.0125104 -0.0564041 -0.0019323 -0.0064777 

1.1 -0.0067542 -1.82196E-05 -0.0009906 -0.0002318 -0.0008938 -0.0125383 -0.0549008 -0.0020347 -0.0061883 

1.2 -0.0082393 -2.82375E-05 -0.0015096 -0.000396 -0.0013533 -0.0147655 -0.0579542 -0.0026817 -0.007128 

1.3 -0.0115902 -0.000113954 -0.0025484 -0.0007933 -0.0023142 -0.0193076 -0.0647373 -0.0039291 -0.0094279 

1.4 -0.0176556 -0.000215484 -0.0042736 -0.0016597 -0.0039303 -0.0266101 -0.0749453 -0.0061575 -0.013733 

1.5 -0.0279345 -0.000768718 -0.0069662 -0.0033274 -0.0063338 -0.0373685 -0.0885987 -0.0103899 -0.0212024 

1.6 -0.0445301 -0.00162784 -0.0120035 -0.006118 -0.0100975 -0.0524638 -0.105915 -0.0186463 -0.0333593 

1.7 -0.0697762 -0.00477953 -0.0240391 -0.0114756 -0.0190125 -0.0728202 -0.127093 -0.0337953 -0.0516254 

1.8 -0.104833 -0.0114471 -0.0492619 -0.0271229 -0.0396053 -0.0985165 -0.151206 -0.0578764 -0.0761901 

1.9 -0.141607 -0.018923 -0.0836503 -0.0575085 -0.0686611 -0.122354 -0.168549 -0.0860925 -0.100906 

2 -0.104351 -0.0396054 -0.0724416 -0.0569626 -0.059718 -0.0843141 -0.105912 -0.0686349 -0.0735342 
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To validate the obtained results, a comparison will be introduced between the different models of thermoelasticity. It is useful 
to organize the numerical results in figures and tabular forms to explain the comparisons between different fractional 
thermoelastic models. Also, the obtained results will be introduced in a tabular form to aid other investigators to compare and 
verify their results. Numerical results are presented in Tables (1-4) as well as graphically in Figures (1-4) for different distances Q. 

From the Tables, it is clear that the parameters of the fractional differentiation �  and 5  have a clear influence on the 
distributions of the different fields. By checking also in the tables, we find that there is a difference in the values of the different 
physical distributions for all different models of thermoelasticity [57]. Although the values differ in the case of different models, 
there are similarities in the behavior of the distributions, and this is evident from the Tables (1-4) and figures (1-4). By comparing 
the results between different models, it can be theoretically said that there is no model of thermoelasticity with fractional order 
that can be more accurate than others. 

From Table 1 and Fig. 1 we can see that: 
 By increasing the parameters of fractional orders � and 5 together, the temperature Θ distribution values decrease. 
 When one of the parameters of fractional order is constant and the other parameter increases, we find a decrease in the 

temperature distribution [45]. 
 The values of temperature at both boundaries of the hollow cylinder do not vanish due to the presence of time-dependent 

heat flow on both surfaces. 
 The temperature values in the case of the modified model with two fractional orders (2FTE model) are large compared to 

other models of thermoelasticity with one fractional order (SFTE and ESTE). 
Table 2 and Fig. 2 display the distribution of displacement E for different values of the fractional order parameters � and 5 

along the radius of the cylinder. By noticing the numerical values, we can find that: 
 The displacement begins with negative values from the inner surface that is affected by time-dependent heat flow, and then 

gradually increases to values approaching zero on the outer surface that is affected by a constant heat flow [58]. 
 The displacement is strongly affected as the fractional differential orders change. 
 The displacement values at the inner boundary of the hollow cylinder in the SFTE and ESTE problems are greater than that 

of the 2FTE problem (see Fig. 2). 

  

Fig. 1. The distribution of temperature Θ Fig. 2. The distribution of displacement R 

  

Fig. 3. The distribution of the stress ΣLL Fig. 4. The distribution of the stress ΣMM 
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The distribution of the thermal stress ΣLL in the hollow cylinder is shown in Table 3 and Fig. 3, respectively. From the thermal 
stress profile, we can see that: 

 The thermal stress ΣLL meets the boundary conditions (stress-free) Table 3 and Fig. 2 and has a coincident starting and 
vanishing points at zero for all models. 

 The magnitude of the stress ΣLL gradually increases slowly from the side of the inner surface until it reaches its largest 
value near the outer surface and then rapidly decreases to zero [59]. 

 With different values in the case of different models of thermoelasticity, the apparent influence of parameters of fractional 
orders � and 5 on the thermal stress ΣLL is evident. 

 There is a clear difference in ΣLLvalues in different theories with fractional order and the amplitude of the thermal stress in 
the new model (2FTE) is larger than that in the SFTE and ESTE models. 

Table 4 and Fig. 4 discuss the effect of fractional order parameters on the distributions of the thermal stress Σ�� against the 
radial distance Q. It can be seen from the numerical results that the behavior of thermal stress Σ�� exhibits the same behavior as 
thermal stress ΣLL, but it differs from it only at the starting point. 

Case II: Effects of time instant 

In this last case, we will study the influence of the time instant on the various distributions studied. To study the discussion of 
the effect more clearly on physical distributions, we will present a set of three-dimensional Figures (see Figs. 5-8). The change will 
be along with the radius I (1 ≤ I ≤ 2) and also over the time � (0.05 ≤ � ≤ 0.15) when fractional order parameters � and 5 are 
fixed. 

The study will also be in the case of using the new model of thermoelasticity with two fractional orders (2FTE). Through the 
Figs. 5-8 it is evident that the variations of the temperature, the thermal stresses and the displacement fields are very responsive 
to the time instant change �. It was also detected that the time instant plays a vital role in formatting various physical fields. The 
influence increases with increasing time and it is more significant in the distributions of displacement and temperature as 
compared to the thermal stresses in the cylinder. It is detected from Fig. 5 that the distribution of temperature Θ at any fixed 
distance I increases with increasing time �. Through Fig. 6, it was seen that the displacement distribution has different distortions 
when time and distance change. Also from Figs. 7 and 8 it is observed that the instant time � causes an increase in the thermal 
stresses ΣLL and Σ��. Figure 7 displays that the radial pressure ΣLL meets the stress-free condition at Q = Q� and Q = Q; and has a 
behavior that may be different. 
 

 
 

Fig. 5. The distribution of temperature Θ Fig. 6. The distribution of displacement R 

  

Fig. 7. The distribution of the stress ΣLL Fig. 8. The distribution of the stress ΣMM 
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8. Conclusion 

The present article is an effort to construct a modified novel model of fractional thermoelasticity by performing a fractional 
calculus. The heat conduction equation has been developed based on the Riemann-Liouville fractional integral operators. To clarify 
the presented model, a problem was examined for a hollow cylinder due to ambient time-dependent temperatures and traction 
free surfaces. The Laplace transform technique is employed to solve the system of the governing equations. Laplace inverse 
transformations are performed using a numerical approach technique. Some previous models and some earlier results can also be 
inferred from the current investigation as special cases. The influence of changing the parameters of fractional order � and 5 on 
the studied fields has been studied. To investigate the influences of the parameters of the fractional-order and instant time, some 
comparisons between different models are tabulated and illustrated graphically. From the discussions, it is clear that the 
parameters of the fractional order have a strong influence on the physical fields. The discussed fractional heat conduction model 
with a single-phase lag can be derived based on the concepts of the fractal calculus [51, 60]. It is clear from the study presented and 
the discussions above that the proposed model and the numerical results in this research are very significant for scientists, 
engineering and researchers, especially working in the thermodynamics and solid mechanics as well as thermoelasticity fields. 

Nomenclature 

C, @ Lam´e’s constants  ' thermal conductivity�� thermal expansion coefficient ∇; Laplacian operator. = (3C + 2@)�� coupling parameter 	 the time/� environmental temperature   + material density # = / − /� temperature increment    E= displacement vector / absolute temperature F= body force vector  ,- specific heat 2 heat source <=> stress tensor ��, �� relaxation times0 = E¢,¢ dilatation �  fractional derivative of order 0=> strain tensor A=>  Kronecker′s deltaQ�  inner radius Q; outer radius�� inner surrounding temperature �; outer surrounding temperatureℎ� dimensionless heat transfer ℎ; dimensionless heat transfer
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