[1] SOWERBY, L. The three-dimensional laminar boundary-layer on a ﬂat plate. Journal of Fluid Mechanics, 22, 1965, 587-598.
[2] BANKS, W. H. H. A three-dimensional laminar boundary-layer calculation. Journal of Fluid Mechanics, 28, 1967, 769-792.
[3] DAVEY, A. Boundary layer ﬂow at a saddle point of attachment. Journal of Fluid Mechanics, 10, 1961, 593-610.
[4] DAVEY, A. & SCHOFIELD, D. Three-dimensional ﬂow near a two -dimensional stagnation point. Journal of Fluid Mechanics, 28, 1967, 149-151.
[5] WEIDMAN, P. D. Non-axisymmetric Homann stagnation-point ﬂows, Journal of Fluid Mechanics, 702, 2012, 460-469.
[6] HIRSCHEL, E. H, COUSTEIX, J. & KORADULLA, W. Three-Dimensional Attached viscous ﬂow, Springer, 2014.
[7] DUCK, P. W., STOW, S. R.& DHANAK, M. R. Boundary-layer ﬂow along a ridge: alternatives to the Falkner-Skan solutions, Philosophical Transactions of the Royal Society A, 358, 2000, 3075-3090.
[8] ROSENHEAD, L. Laminar boundary layers, Oxford, Eng., Clarendon Press, 1963.
[9] DUCK, P. W. & DRY, S. L. On a class of unsteady, nonparallel, three-dimensional disturbances to boundary-layer ﬂows, Journal of Fluid Mechanics, 441, 2001, 31-65.
[10] HAYAT, T. NASEEM, A. FAROOQ, M. & ALSAEDI, A. Unsteady MHD three-dimensional ﬂow with viscous dissipation and Joule heating, The European Physical Journal Plus, 2013, 128-158.
[11] OSKAM, B. & VELDMAN, A. E. P. Branching of the Falkner-Skan solutions for λ < 0, Journal of Engineering Mathematics, 16, 1982, 295-308.
[12] SOMMERIA, J. & MOREAU, R. Why, how, and when, MHD turbulence becomes two dimensional, Journal of Fluid Mechanics, 118, 1981, 507-518.
[13] TAKHAR, H. S., CHAMKHA, A. J. & NATH, G. Unsteady three dimensional MHD boundary layer ﬂow due to the impulsive motion of a stretching surface, Acta Mechanica, 146, 2001, 59-71.
[14] HAYAT, T., QASIM, M. & ABBAS, Z. Homotopy solution for the unsteady three dimensional MHD ﬂow and mass transfer in a porous space, Communications in Nonlinear Science and Numerical Simulation, 15, 2010, 2375-2387.
[15] ISHAK, A., NAZAR, R., POP, I. MHD boundary-layer ﬂow due to a moving extensible surface, Journal of Engineering Mathematics, 62, 2008, 23-33.
[16] AWALUDIN, I.S., ISHAK, A., POP, I. On the stability of MHD Boundary layer ﬂow over a stretching/shrinking wedge, Sci. Rep., 8(1), 2018, 1-8.
[17] SINGH, J., MAHABALESHWAR, U.S., BOGNAR, G. Mass transpiration in nonlinear MHD ﬂow due to porous stretching sheet, Sci. Rep., 9(1), 2019, 1-15.
[18] KELLER, H. B. A new difference scheme for parabolic problems, in numerical solutions of partial difference equations, Academic Press, New York, 1970, 369-377.
[19] BATCHELOR, G. K. An introduction to ﬂuid dynamics, 1st edition, Cambridge University Press, 1967.
[20] BENZI, R., CHING, E. S. C. & CHU, V. W. S. Heat transport by laminar boundary layer ﬂow with polymers, Journal of Fluid Mechanics, 696, 2012, 330-344.
[21] BENZI, R., CHING, E. S. C., YU, W. C. K. & WANG, Y. Heat transport modiﬁcation by ﬁnitely extensible polymers in laminar boundary-layer ﬂow, Journal of Fluid Mechanics, 788, 2016, 337-357.
[22] HOWARTH, L. Note on the boundary layers on a rotating sphere, Phil. Magz., 1951, 1308-1315.
[23] CEBECI, T. & BRADSHAW, P. Momentum transfer in boundary layers, Mc.Graw Hill, New York, 1977.
[24] KUDENATTI. R. B., KIRSUR, S. R., ACHALA, L. N. & BUJURKE, N. M. MHD boundary layer ﬂow over a non-linear stretching boundary with suction and injection, International Journal of Non-linear Mechanics, 50, 2013, 58-67.
[25] KUDENATTI, R. B., KIRSUR, S. R., ACHALA, L. N. & BUJURKE, N. M. Exact solution of two-dimensional MHD boundary layer ﬂow over a semi-inﬁnite ﬂat plate, Communications in Nonlinear Science and Numerical Simulation, 18, 2013, 1151-1161.
[26] ABRAMOWITZ, M. & STEGUN, I. Handbook of mathematical functions with formulas, graph and mathematical tables, 9th edition, Dover Publications, 1970.
[27] ANDREWS, L. Special functions of mathematics for engineers, 2nd edition, Oxford University Press, 1988.
[28] KUDENATTI. R. B. & KIRSUR, S. R. Numerical and asymptotic study of nonaxisymmetric magnetohydrodynamic boundary layer stagnation-point ﬂows, Math. Meth. Appl. Sci., 40(16), 2017, 5841-5850.