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Abstract. High-resolution schemes are designed for resolving shocks without significant numerical dissipation and dispersion. 
Achieving higher-order and high-resolution is a challenging task because of the non-monotonicity of the higher-order schemes. In 
this article, we have presented second-order and third-order slope limiters having an improved shock resolution and accuracy. 
The present limiters are tested on one-dimensional and two-dimensional unstructured grids and compared with the existing 
limiters. The numerical result shows that the present limiters have an excellent shock resolving property and accuracy than other 
limiters. In blast wave problems, it has shown over 200% more accurate results than the other limiters. 

Keywords: Finite volume method, high-resolution method, higher-order methods, slope-limiter. 

1. Introduction 

Lightweight structures are commonly used in aerospace applications for greater performance and efficiency. The safety factor 
(FOS) used in airframes is less than 1.4 [1] to reduce the overall weight. Due to the lightweight and low FOS, an accurate estimate 
of the load is essential for aircraft design. Airframes are generally subject to thermal and mechanical loading. These loads are 
highly sensitive to Mach number, pressure and temperature. These loads increase exponentially with Mach number. Small 
inaccuracy in estimating the Mach number may lead to an inefficient design or failure of aircraft due to loads. We need a very 
accurate numerical scheme to precisely solve the shock and other parameters that affect the load. In this work, we have proposed 
a scheme that is more accurate than other numerical schemes for shock resolution and other key parameters such as pressure, 
temperature, velocity, etc. 

Euler equations are the most common form of equations that describe the adiabatic, inviscid, compressible flow. These 
equations represent the Cauchy equations of the conservation of mass, momentum and energy, which constitute a set of coupled 
nonlinear differential equations. It is relatively complicated to obtain an analytical solution for this equation. The complex delta 
shock structure for the isentropic relativistic Chaplygin-Euler equations can be found in [2, 3]. The complete analytical solution of 
the Euler equation is very complicated, and there is no general solution for all kinds of initial and boundary conditions. The Euler 
equation with initial conditions that are piecewise constant is generally referred to as the Riemann problem. They lead to some 
complex wave phenomena, such as shock waves, expansion waves, shock-shock interactions, blast waves, etc. These complex 
structures arise from the interaction of nonlinear acoustic waves present in the Euler equation. Various test cases are proposed to 
study these waves in the literature, and a commonly used test case is the shock-tube problem. The shock tube is one of the 
experimental devices used to study the flow properties in the supersonic and hypersonic flows. 

The numerical solution of the Euler equation using piecewise parabolic [4] approach with high-resolution property is 
presented. The Finite Volume Method (FVM) discretization with high-resolution framework significantly improved the ability to 
resolve shocks in high-speed flows. The accuracy of FVM depends mainly on the discretization stencil, the Riemann solver, and 
the quality of the grid. Popular approaches commonly used in the reconstruction of the left and the right state are flux-limiters 
and weighted essentially non-oscillatory (WENO) schemes [5, 6]. The flux-limiters are widely used in Computational Fluid 
Dynamics (CFD) because of their robustness, accuracy and higher stability compared to other high-resolution schemes [7]. The 
flux-limiters are based on the concept of total variation diminishing (TVD), that is, they will not allow the solution to explode by 
bounding its value. TVD schemes are relativity less accurate at extrema, and they may give diffused result at shocks. 

The reduction in the order of accuracy of the shock TVD schemes is intended to maintain monotony [8]. The basics of these 
limiters can be found in [9, 10]. The classical Monotone Upstream-Central Scheme for Conservation Laws (MUSCL) scheme is a 
second-order scheme that is extended to third-order [11]. A fourth-order polynomial reconstruction with monotony preserving 
properties is presented in [12]. Parabolic reconstructions are subject to Runge's phenomena, so hyperbolic reconstitution is 
explored in [13]. All the second-order conservative discretization schemes can be expressed in a general form - such schemes are 
called κ -schemes [14]. 
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Equation (1) can be viewed as a central difference scheme with the addition of an artificial dissipation term. Without an 
artificial dissipation term, schemes become unstable when combined with an explicit Euler time integration. Thus, all higher-
order schemes use bias that leads to numerical dissipation. This biasing is required to provide upwinding for hyperbolic equations 
[15]. Equation (1) will reduce to different schemes for different values of κ . For example, it will be reduced to the linear-upwind 
scheme [16] for 1κ =− . Equation (1) becomes the Fromm scheme [17] for 0κ =  because the dispersion term in truncation error 
disappears at that value. Cubic-upwind interpolation [18] scheme is recovered for 1 / 3κ = . The quadratic-upwind interpolation 
scheme [19] can be obtained by substituting 1 / 2κ =  in eq. (1). For 1κ =  central difference scheme is obtained. A comparison of 
the performance of different limiters is presented in [7, 14]. 

Minmod limiter [20] is relatively more diffusive but can handle poor quality mesh and a variety of flow conditions. Superbee 
limiter [21] was proposed to improve the shock-resolving properties of the limiter. Due to the aggressive switching nature of 
superb, the solution may produce oscillations. To make a compromise between resolution and dispersion, a limiter that is 
smoothly varying in the Sweby diagram [10] is proposed in [22]. A popular limiter that does not fall into the monotone region of 
the Sweby diagram for the negative values of r  is introduced in [23]. CHARM [24] is a limiter in which flux limiter value can go up 
to three. This maximum value of flux-limiter can be viewed as an anti-diffusion term for slope correction in the face flux 
calculation. This value cannot be increased arbitrarily because it can lead to unphysical oscillations in the solution. Minmod 
limiter with sign preserving property can be found in [25]. 

Other popular flux-limiters are Koren limiter [26], Chakravarthy limiter [27], OSPRE [28], SMART [29], UMIST [30]. Most of the 
TVD schemes that ensure monotonicity in one-dimension may not work well on multi-dimensional problems [31], and it can be 
even worse on unstructured grids. To overcome this, a multi-dimensional unstructured edge-based limiter is presented in [31]. An 
efficient high-resolution relaxation scheme for hyperbolic conservation law systems is explored in [32]. Second-order TVD 
schemes with added artificial viscosity are studied in [33]. A unified, universal total variation stability region and a new flux-
limiter are proposed in [34]. 

In this paper, a second-order and a third-order limiter having high accuracy and high shock resolving property are proposed 
and compared with the existing limiters. The limiters are tested on one-dimensional and two-dimensional test cases and found 
improvement over other limiters considered in this work. The following test cases are studied in the present work. 

1. Shock tube problem: This is a critical test case in the solution of compressible flow equations, as the exact time-dependent 
solution is known for some initial conditions. The initial solution to this problem is made up of two uniform states 
separated by a discontinuity at the origin. This initial value problem is known as the Riemann problem. In experiments, 
this initial solution represents a tube with left and right regions separated by a diaphragm and filled with the same gas in 
two different thermodynamic states. When the diaphragm bursts, the discontinuity between the two initial states breaks 
into moving waves to the left and the right, separated by a contact surface. The wave pattern consists of a contact 
discontinuity in the middle and a shock or expansion wave on either side. Different initial states give moving 
discontinuities of different strengths and speeds, making this an excellent test case for numerical schemes. Figure 1 (a) 
shows a schematic of the problem. 

2. Flow past a supersonic wedge: When the supersonic flow encounters a corner, the flow is turned into itself and 
compressed. At the turn, an oblique shock is produced. An exact solution to this problem is available, and applications 
include the supersonic aircraft engine intakes and the wings of the supersonic aircraft. The strength of the shock and 
angle changes with the wedge angle and inflow Mach number. Figure 1 (b) shows a schematic of the problem. 

3. Flow past a wedge with the shoulder: This test case has an inward turning of flow due to a wedge followed by an outward 
turning of the flow, at the shoulder. The results in an oblique shock at the inward turning and expansion fans at the 
shoulder. This test case is relevant to supersonic intakes and a sharp nose of supersonic configurations. Exact solutions for 
different angles of the wedge are available once again. Figure 1 (c) shows a schematic of the problem.  

4. Blast wave problem: The Woodward-Colella interacting blast wave problem consists of an initial solution with a low-
pressure region is placed between two high-pressure regions on either side. These types of problems are observed in 
volcanic eruptions, oceanic blasts, the explosion of explosives, etc. This test case results in the interaction between the 
shock wave, contact wave, and rarefaction wave. Figure 1 (d) shows a schematic of the problem. 

  

a) Shock tube problem b) Supersonic flow past wedge 

  

c) Supersonic flow past wedge with shoulder d) Blast wave problem 

Fig. 1. Test cases for the Euler equation 
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2. Governing Equation and Discretization 

The governing differential equation considered in this work is Euler equation. One-dimensional Euler equation is 
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Formulating weak form of the equation by doing volume averaging in the cell [ 0.5, 0.5]iI i i≡ − +  using the method of line leads 

to 
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where 0.5i+F  is numerical flux at the cell face computed from 0.5 0.5 0.5( , )R L
i i i+ + +=F F U U  and 3R∈U . The second-order numerical flux 

may be achieved by evaluating 0.5
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i+U  given in eq. (5), but it may end up in oscillations in the non-smooth data because of 

non-monotonicity. 
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We should limit the gradients, as given in eq. (6). 
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where L  is the limiter operator. Unlike the incompressible flow, one cannot directly calculate 0.5
L
i+U  or 0.5

R
i+U  because of the 

presence of shocks in the compressible flow. Limiting the value of dU and 2d U using slope-limiter should be carried out, else this 

will create non-physical oscillations in the solution. The left and right states are calculated by Monotonic Upwind Scheme for 

Conservation Laws (MUSCL) approach using the limiters proposed here. Because the Roe scheme violated entropy condition, 

Harten entropy fix [35] based on the jump present in the conserved variable is employed. For time integration, the hyperbolic 

Runge-Kutta method [36] is used. 

2.1 Discretization of FVM on unstructured mesh 

Integrating the Euler equation over the control volume Ω  along the boundary Γ  and applying Green-Gauss divergence 
theorem, 
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where n
�

 is unit normal vector at edge of control volume. For 2-D it can be written as [37] 
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where pΣ  is a the cell, pΣ ⊂Σ  and iΓ  is the edge and iΓ ⊂Γ . xF and yF are x  and y  components of the flux. The Jacobian of flux 

is 
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where x yun vn= +nq , [1 0]T=tn , [ ]u v=v . I  is identity matrix of size 2 2× . 

3. Second-order Slope Limiter 

In this section, a second-order limiter is presented and the numerical properties of these limiters are discussed. Second-order 
flux-limiters are commonly used in CFD, but obtaining a high-resolution solution without significant wiggles is always a 
challenging task using an aggressive limiter. In this section, a computationally economical the second-order limiter is presented. 
Second-order limiter used here is similar to the form presented in [14]. The representation and implementation of the limiter 
used in the present work slightly differ from flux-limiters in [10]. The interpolation scheme can be written as 
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3.1 MMF1 

This limiter is a modification of the minmod limiter. Here, a different approach is used to choose the limiting parameter. 

1
1 1 1 1 1

1

1
1 1 1 1 1

1

( ) , if ( ) ( )

[ ( , )]

( ) , if ( ) ( )

c abs abs abs

L

c abs abs abs

ψ

ψ

+
+ − + + −

−
+ −

−
− + − + −

+

     + − <    +  ∂ =     + − ≥    + 

U
U U U U U

U
U U U

U
U U U U U

U

ε

ε

 (11) 

where 1 1abs([sign( ) sign( )] / 2)ψ − += +U U , 1c = 9and 10ε −= . 

As the classical minmod chooses the absolute minimum of the slopes between right and left slopes, for a second-order 
scheme it diffuses the result. If the highest slope is chosen, it gives oscillations. To reduce dissipation, a small anti-diffusion term 
is added to the slope obtained from minmod. The resultant slope value is in-between the original highest and lowest value. The 
magnitude of anti-diffusion is controlled by the r  such that the limiter stays in the monotone region. Regardless of the value of 
r , the present limiter always lies in the monotone region. 

4. Third Order Slope-limiters 

A third-order TVD limiter is presented where the first and second derivative in the interpolation of the left and right fluxes 

have been limited. The general third-order scheme to calculate face value at 0.5i+  is 
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where L  is the limiter operator which operates on the gradients. In the stencil, [ ]2,  2i i− +  there are three ways to calculate 
2∂ U  and they are 
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4.1 Minmod_s2 

Equation (6) gives the three possible second gradient calculation expressions for the stencil [ ]  2,   2i i− + . The safest choice is 
to choose the minimum among 2| |+U , 2| |−U  and 0

2| |U . The minmod_s2 limiter is: 
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where 2 2(sign( ) sign( )) / 2ψ + −= +U U . 

This limiter is similar to convex-ENO (C-ENO) proposed in [38]. However, they have used limiters on 2
−U  and 0

2U , but not on 

2
+U . In the present limiter, extra conditions are implemented to improve the stability and accuracy of the scheme, but the limiter 

is computationally expensive than C-ENO. C-ENO and the present scheme are compared for Shu-Osher problem. The initial 

condition used for this problem is: 
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Figure 2 shows the solution of Shu-Osher problem with 400 grid points at flow time 1.8 s. The problem is solved using 
Courant-Friedrichs-Lewy ( )CFL  number 0.8. CFL  is defined as ( ( ) ) /CFL abs u a t x= + ∆ ∆ , u  where is velocity of flow, a  speed of 
sound. The reference solution is obtained using minmod limiter with 2000 grid points. C-ENO produced oscillations when high 
CFL  number is used. When CFL  number is less than 0.7, C-ENO did not produce any oscillations on this grid. The various 
combinations of first and second-order term treatment used is listed in the Table 1. 

5. Results of the Second-order Limiter 

In this section, the behavior of MMF1 limiter on different standard test cases for 1-D and 2-D Euler equations are studied. The 
performance of the present limiters on the unstructured triangular grid is also evaluated.  

5.1 Sod shock tube problem 

The initial conditions for the problem are  
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u p

x
ρ
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Table 1. List of the reconstruction schemes used. 

Notation 1st derivative 2nd derivative 

MMF1 MMF1 - 

Cada [39] Cada - 

MM-S2 minmod minmod_s2 

MMF1-S2 MMF1 minmod_s2 

Convex-ENO [38] minmod Minmod 

Table 2. L2 error in Sod shock tube problem using different limiters. 

Limiters Eρ Eu Ep % Eρ 

Minmod 0.029949108 0.097347997 0.034681065 125.7823 

Superbee 0.023958118 0.087255857 0.026877834 100.6209 

Van Albada 0.028097104 0.093829356 0.032254258 118.0041 

MMF1 0.023810274 0.079651239 0.026100415 100 

 

This problem is solved using 200 grid points with 0.5CFL= . A second-order four-stage hyperbolic Runge-Kutta method 
(HRK42) [36] is used for time integration. Interpolation is carried out in the primitive variables using the MUSCL scheme using 
different limiters. Standard Roe scheme with entropy fix as used for Riemann solver. A comparison of various limiters with MMF1 
is presented in Fig. 3. From the figure, it is clear that MMF1 has better discontinuity resolving capability than all the limiters 
considered in this paper. The result of MMF1 is comparable to the superb limiter. 2L

 
error of the solution with different limiters is 

shown in Table 2.  

The error is calculated using eq. (17). 
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The relative error % Eρ is calculated using eq. (18). 
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In eq. (18), 1MMFEρ is root mean square (RMS) error of MMF1. lim iterEρ is the RMS error of other limiters. In this test case, MMF1 is 

more accurate than other limiters. The result of superb and MMF1 is more or less the same, but MMF1 is more accurate than 
superb in velocity (Table 2). The present limiter is 25% more accurate than minmod limiter. 

  

a)    Density b)    Zoomed view of density 

Fig. 2. Density plot of Shu-Osher problem with 400 grid points with CFL = 0.8. 
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Table 3. L2 error in right expansion and left strong shock problem using different limiters. 

Limiters Eρ Eu Ep % Eρ 

Minmod 0.0345567 0.0876217 0.2968190 106.6815 

Superbee 0.0315612 0.0870069 0.2947563 97.434 

Van Albada 0.0336739 0.0878657 0.2977279 103.9563 

MMF1 0.0323924 0.0867438 0.2942133 100 

5.2 Right expansion and left strong shock 

This case has a pressure jump in the initial condition, and other variables do not have any jumps. The initial conditions used 
are 

(1,0,7) 0.5
( , , )

(1,0,10) 0.5

x
u p

x
ρ

 ≤=  >
 (19) 

The numerical simulation is carried out using 200 grid points with 0.9CFL= . The solution is obtained up to flow time of T = 
0.1 s and the results are shown in Fig. 4. L2 error of this test case is presented in Table 3. The performances of all the limiters are 
similar, but superb has a lower density error. MMF1 is better than others in velocity and pressure fields. In general, MMF1 limiter 
is more accurate than superb limiter on a coarse grid and superb limiter is more accurate on a finer grid. 

  

a)    Density b)    Zoomed view of discontinuity 

  

c)    Zoomed view of discontinuity d)    Zoomed view of discontinuity 

Fig. 3. Density plot of Sod shock tube problem with 200 grid points with CFL = 0.5 at 0.15t = . 
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Table 4. L2 error in in Mach number 3 problem using different limiters. 

Limiters Eρ Eu Ep % Eρ 

Minmod 0.081226 0.073182 0.234189 137.6793 

Superbee 0.060195 0.039913 0.154488 102.0321 

Van Albada 0.073034 0.063915 0.202328 123.7938 

MMF1 0.058996 0.057073 0.170774 100 
 

  

a) Density b) Zoomed view of discontinuity 

  

c) Zoomed view of discontinuity d) Zoomed view of discontinuity 

Fig. 4. Density plot of Right Expansion and left strong shock tube problem with 200 grids CFL=0.9 at 0.1 s 

 

5.3 Mach number 3 test case 

The initial conditions used are: 

(3.857,0.92,10.333) 0.5
(  , , )

(1,3.55,1) 0.5

x
u p

x
ρ

 ≤=  >
 (20) 

The problem is solved using 200 grid points with 0.9CFL= . The problem is simulated up to flow time of 0.09 s and the results 
are shown in Fig. 5. For this problem, MMF1 limiter outperformed other limiters. The RMS error of this test case is tabulated in 
Table 4. MMF1 limiter is 37% more accurate than minmod limiter. 

5.4 Supersonic flow over a wedge 

Supersonic flow at Mach number 6.5 over 010 wedge is solved. The problem is solved using a 401 401×  quadrilateral grid. The 
boundary condition used a slip wall on the wedge and free stream condition at other boundaries. The gradients are limited using 
MMF1 limiter. Time integration is carried using implicit Euler method. The Mach number contour is shown in Fig. 6. There is no 
significant variation in the solution between MMF1 and minmod, but the resolution of MMF1 is better than minmod and superb 
as shown in Fig. 7. 

Root mean square (RMS) error of minmod and MMF1 are 0.106882 and 0.097375 respectiv1ely. In terms of RMS error, MMF1 is 
9.7% more accurate than minmod. For this configuration, in the pressure load estimation of wing design, MMF1 limiter can save 
up to 5 newtons per square meter than minmod limiter. For a standard fighter aircraft, it can save up to 500 N, which is more than 
two times the war-head of Asthira missile of India. 
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a) Density b) Zoomed view of discontinuity 

  

c) Zoomed view of discontinuity d) Zoomed view of discontinuity 

 

Fig. 5. Density plot of Mach = 3 test with 200 grids CFL = 0.9 at T= 0.09s 

 

  

a)   Using MMF1 limiter b)   Using minmod limiter 

 

Fig. 6. Supersonic flow past 010  wedge with M = 6.5 
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a)    Variation of Mach number at y = 0.5 b)    Zoomed view of discontinuity 

  

c)    Zoomed view of discontinuity d)    Zoomed view of discontinuity 

Fig. 7. Supersonic flow past 10° wedge with M = 6.5 

  

a) Pressure contour of the wedge b) Pressure on the surface of the wedge 

Fig. 8. Supersonic flow past 10° wedge with M = 6.5 
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a) Density b) Zoomed view of discontinuity 

  

c) Zoomed view of discontinuity d) Zoomed view of discontinuity 

Fig. 9. Density plot of Sod shock tube problem using 400 grids CFL = 0.5 at T = 0.1 s 

 

Table 5. L2 error in Sod shock tube problem. 

Limiters Eρ Eu Ep % Eρ 

MMF1 0.012085929 0.055583416 0.012893991 100 

CADA 0.014126912 0.059664611 0.014680221 116.8873 

MM-S2 0.015526093 0.059992679 0.015825881 128.4642 

MMF1-S2 0.012049288 0.054684266 0.012724591 99.6968 

Convex-ENO 0.01010391 0.03618296 0.0090118 83.6006 

Table 6. L2 error of Shu-Osher problem. 

Limiters Eρ Eu Ep % Eρ 

MMF1 0.121069366 0.047402636 0.190404816 100 

Cada 0.094859715 0.022425722 0.094337962 78.3515 

MM-S2 0.091178647 0.020078345 0.09260607 75.3111 

MMF1-S2 0.078841668 0.021502648 0.094778111 65.1211 

Convex-ENO 0.11988841 0.04358392 0.18415129 99.0246 
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Table 7. L2 error in Blast wave interaction test case. 

Limiters Eρ Eu Ep % Eρ 

MMF1 0.07925544 21.44495695 21.7792556 100 

Cada 0.19745523 21.40694564 30.2437603 249.1378 

MM-S2 0.33655261 21.37375978 38.0867291 424.6429 

MMF1-S2 0.07987625 21.44441891 18.9531758 100.7833 

Convex-ENO 0.3359265 21.3678743 39.063563 423.8529 
 

  
a) Density b) Zoomed view of discontinuity 

  
c) Zoomed view of discontinuity d) Zoomed view of discontinuity 

 
Fig. 10. Comparison of limiters on Shu-Osher problem. 

  

a) Density b) Zoomed view of density 
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c) Density d) Zoomed view of density 

Fig. 11. Density plot of blast wave interaction at T = 0.025 s 

5.5 Supersonic flow over a wedge with expansion fan 

To ensure the capability of the present limiter on the unstructured grid, the limiter is tested on a wedge with turning angle of 
26.6o  followed by a shoulder. The simulation is carried on a 500×200 grid at a free stream Mach ( M ) number 1.44. The boundary 
conditions are zero normal velocity on the lower boundary (wall), and free-stream condition at other boundaries. Moving least 
square with Gaussian kernel is used for interpolation. Time integration is carried out using the implicit Euler method. The vertex-
centered scheme is more accurate than the cell-centered scheme for isotopic mesh so the vertex-centered scheme is used. Here, 
an unstructured triangle grid is generated and edge-based limiting procedure is followed. The pressure contours for the test case 
are shown in Fig. 8a. The comparison of the experimental [40] and the theoretical result with the computational result is shown in 
Fig. 8b. 

6. Results of the Third-order Limiter 

In this section, the results of the third-order limiters are presented. The results of third-order limiters are better than the 
second-order limiters. In general, third-order limiter works well for problems having curvatures. 

6.1 Sod shock tube problem 

Sod shock tube problem is solved using 200 grid points using CFL = 0.5. The test case is solved up to flow time 0.1 s. The initial 
condition is given in eq. (16). The density plot of the test case is shown in Fig. 9. From the figure, it is clear that second-order 
limiter MMs2 is relatively more oscillatory than others, but it has better shock resolution capability.  
Cada limiter [39] has shown a better trade between shock resolution and over-shoots. Error of the test case is shown in Table 5. 
Though MMF1-S2 limiter has some over-shoots in the contact discontinuity than other limiters, it gives the least RMS error. The 
result of MMF1 is comparable to the second-order limiter. MMF1-S2 is 16% more accurate than Cada limiter. 

6.2 Shu-Osher problem 

The initial condition used is given in eq. (15). The problem is solved over the domain [-5, 5]. The simulation is carried up to 
flow time 1.8 s using 400 grid points. CFL number used is 0.5. MMF1 unable to resolve some peaks present in the solution. All the 
second-order limiters are outperformed by the third-order limiter MMF1-S2. The comparison of the different limiters is presented 
in Fig. 10. The reference solution is obtained using minmod limiter on 2000 grid points. The performance of Cada limiter and 
MMF1-S2 are good.  

The RMS error of this problem is shown in Table 6. MMF1-S2 limiter is more accurate than other limiters and has the least 
RMS error. It is 53% and 20% more accurate than MMF1 limiter and Cada limiter respectively. 

6.3 Blast waves interaction 

In this test case, a low-pressure region is placed between two high-pressure regions on either side. The initial condition for 
this problem is: 

(1,0,1000) 0 0.1

( , , ) (1,0,0.01) 0.1 0.9

(1,0,1000) 0.9 1

x and x

u p x and x

x and x

ρ

 ≥ ≤= > <= > <=

 (21) 

This creates two blast waves moving towards the central low-pressure region and they intact with each other. When these 
waves meet each other, it produces high pressures. After that, they move outwards and the pressure at the centre reduces. This 
problem has a pressure ratio of 510  and the interacting blast wave can raise the pressure more than the thrice the initial pressure 
at the end of the shock tube. The solution is obtained by discretizing the domain [0, 1] with 400 grid point. The problem is solved 
up to 0.025 s. The reference solution is obtained using 2000 grid points. The solution is shown in Fig. 11. The 2L  error of this test 
case is shown in Table 7. 
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7. Conclusion 

This paper discusses new second-order and third-order limiters. The shock resolution property and the limiter's accuracy are 
compared to other conventional limiters for standard benchmark problems. Flux extrapolation can be done either with the first 
derivative term alone or with both the first and the second derivatives (eq. (6)). Most of the limiters use higher-order first 
derivative information without considering the second-order gradient information. In this paper, second gradient terms are 
successfully incorporated in the limiter without oscillations. The present limiters are tested on the uniform and unstructured 
grid. The present limiters have shown a better shock resolving property and accuracy compared to other limiters. The 
performance of the present limiters on blast-wave problems is noteworthy, and it is 247% more accurate and 420% more accurate 
than the Cada limiter and Convex-ENO scheme. The method presented in this work is based on discretization. Because of the 
advancement of the computational power, similar equations could be solved with better accuracy using deep neural network [41] 
using global or non-gradient based optimization algorithms. 
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Nomenclature 

ρ  Density [kg/m3] U Velocity [m/s] 
p  Pressure [N/m2] E  Root mean square error 

M  Mach number CFL  Courant–Friedrichs–Lewy 
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