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Abstract. Multi-body dynamics is used to calculate the physical quantities required for component design, such as calculating the 
dynamic response of mechanical components and the time history of dynamic loads. Advances in analysis software, including 
DADS, ADAMS, RecurDyn, and DAFUL, have made it possible to easily calculate dynamic responses by defining relationships 
between components and operating environments from 3D modeling on user-created components. However, when the 
understating of dynamic analysis is lacking, it is difficult to apply multi-body dynamics analysis in the design process, and it is 
difficult to analyze the acquired response data. In this study, we developed an automatic code to derive equations of motion in 
the matrix format and calculate dynamic responses of multi-body systems using GNU Octave, a free high level language. In 
particular, the process of defining matrices and vectors such as inertia matrix, stiffness matrix, and external force vector 
concerning the degrees of freedom of components by using Euler-Lagrange equations is shown to understand the structure and 
process of dynamic analysis. The code application by explaining how to use the code in a different mechanical system is also 
shown to help understand the usage method for who wants to study Multi-body dynamics. 

Keywords: Multi-body dynamics, Equation of motion, Euler-Lagrange equation, Numerical integration, GNU Octave. 

1. Introduction 

Multi-body dynamics analysis is a study that analyzes the dynamic characteristics of a multi-body system in which multiple 
objects are connected and have been developed mainly in the fields of machinery, aerospace, and robots. In the machinery field 
dealing with closed chain systems, the system design process brought a lot of attention to deriving the optimal design through 
sensitivity analysis between design variables and dynamic characteristics, and in the aerospace field dealing with open-chain 
systems, research on the safety of dynamic response of the system was mainly considered [1]. About the history of multi-body 
dynamics, improving the method of deriving equations of motion, expanding the scope of analysis, deriving efficient calculation 
algorithms with improved hardware computational performance, and improving the software for user convenience were 
developed in priority. As a result of the development, several multi-body dynamics software such as ADAMS, MESA VERDE, and 
NEWEUL have been commercialized in overseas, and RecurDyn and DAFUL programs were commercialized in South Korea [2]. 
Multi-body dynamics has become an essential discipline for designing a dynamic mechanical system because it can calculate 
position, velocity, and acceleration, and calculate essential physical quantities such as time history of dynamic loads acting on 
each component. Even though most large manufacturers dealing with the finished system, have prepared the process to study 
the relationship among each mechanical element with Multi-body dynamics, small manufacturers dealing with the mechanical 
element only think about the strength and stiffness of the component and do not have human resources that can analyze the 
product in the variety of ways of engineering. In other words, they have insufficient opportunity to learn multi-body dynamics 
analysis and could not consider how to apply the technology to their work due to the limitation of the business model. In 
particular, the business structure of small manufacturer depending on the large manufacturer can no longer be competitive, 
because it is difficult to secure sales channels, such as the narrow domestic market and emerging countries' participation in the 
world manufacturing industry. From this point of view, they need to expand their engineering activities such as multi-body 
dynamics analysis to expand their products. Multi-body dynamics can play a very good role in enhancing the ability to look at the 
design from the view of the system. Additionally, they will have some opportunities to work with other manufacturers by Mass 
customization and by providing a solution service that assists customer’s engineering activities. Accordingly, it is necessary to 
develop a free program for small and medium-sized manufacturers of workers, prospective workers, or students to understand 
the basic theory of multi-body dynamics and partially utilize it in production activities. 

However, commercial software capable of inducing motion of equations automatically and calculating dynamic characteristics 
has already been developed [3], and theoretical study on the method of deriving dynamic models for efficient control in the robot 
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industry [4-7] have been studied actively, so the need for program development is rather ambiguous. In particular, a MATLAB 
package program has been developed to derive a linear motion equation of a robot using the TMT method and calculate dynamic 
characteristics automatically [8-9]. However, it is hard to understand the theory for those who lack experience in the robot field, 
because some mathematical and scientific background are needed to understand the structure of the program before using it. 
Besides, the additional cost investment, such as purchasing commercial software and requiring human resources to operate and 
maintain it, also causes difficulties in access. 

In this study, a basic program of multi-body dynamics analysis was developed to enable small manufactures to produce 
traditional mechanical elements such as fastening, power transmission, and shaft to cultivate design ability from a system 
perspective. Using the GNU Octave program and the Symbolic package, we developed the code of derivation of motion of 
equations and matrix transformation for the multi degree of freedom system and combined the code to derive numerical 
solutions using the Newmark integration method. By introducing the mathematical expression and symbolic processing method 
represented by the code, a manual that is easy for beginners such as a worker and student was provided. 

2. Theoretical background 

2.1 Numerical integration 

Before deriving equations of motion regarding the generalized coordinate, the code has a structure that derives a numerical 
solution starting with input including design variables and environmental conditions and calculates the dynamic responses with 
the Newmark method (Fig. 1). The Newmark method updates the state variables by calculating the initial acceleration by 
substituting the initial displacement and initial velocity of each coordinate into the equations of motion. Then, based on the 
assumptions of the time integration method, such as the average acceleration method and the constant acceleration method, 
calculating the displacement, velocity, and acceleration of each time proceeds as a certain unit time passes sequentially [10]. 
Since various calculation methods and codes have been established to calculate the response, it is not a big problem to apply the 
numerical integration method necessary for the problem that the user wants to deal with the specific area [11]. The important 
thing is to derive the equations of motion of the system, to derive mass, damping, and stiffness matrices from the equations of 
motion and input the matrices into the numerical integration code. In other words, if you can define the number of degrees of 
freedom and coordinates required to express the system, can derive the equation of motion, and can express it in the matrix form, 
it is very helpful in understanding the process of dynamic analysis. 

2.2 Equation of motion 

An equation of motion that describes the motion, which is the position, velocity, and acceleration of an object over time, is 
expressed as a second order differential equation [12]. Various types of equations can be derived according to the method of 
deriving the equation of motion, but Newton's second law is the basis (Eqs. (1-2)). F and T are external force and torque 
respectively, M and I are mass and moment of inertia respectively, x, v, and a are displacement, velocity, and acceleration 
respectively, and θ, ω, and α are angular displacement, angular velocity, and angular acceleration, respectively. 

 

Fig. 1. Flow of the numerical integration 
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The Newton’s second law may vary depending on the translational and rotational motions, but represents the relationship 
between external force or moment, mass or moment of inertia, and acceleration or angular acceleration. When the object is 
converted from a simple object to a system with a mechanical element, the second law is used as Eqs. (3-4), because the 
mechanical element must maintain a shape to enable repetitive motion, and it must be able to perform a role of transmitting 
motion by combining with other mechanical elements. In other words, it must have the resistance to withstand the mechanical 
forces such as the reaction force from other elements. Damping C and stiffness K are included in the equation of motion to 
express the mechanical forces. 

The equation of motion of the mechanical system is standardized only depending on the number of the degree of freedom. 
The degree of freedom is the product of the number of objects such as mass or moment inertia and the number of motion types 
each object can move. In Fig. 2, there are 2 masses in the system, and each mass has one type of motion that moves in the 
horizontal direction, so the degree of freedom of the system is 2 × 1 = 2. When the number of the degree of freedom is determined, 
the equations of motion and the matrices such as mass matrix [M], damping matrix [C], and stiffness matrix [K] from the 
equations of motion, are determined. For instance, the size of the matrices is 1 by 1 in case of a single degree of freedom, and the 
size of the matrices is N by N in case of an N-th degree of freedom. In Fig. 2, two equations of motion are derived and the size of 
the matrix is 2 by 2. 

F Ma Mv Mx= = =ɺ ɺɺ  (1) 

T I I Iα ω θ= = = ɺɺɺ  (2) 

F Mx Cx Kx= + +ɺɺ ɺ  (3) 

t tT I C Kθ θ θ= + +ɺɺ ɺ  (4) 

It is easy to derive the equations of motion by defining the relationship between mass, damping, and stiffness around each 
mass in Fig. 2. However, when deriving the equations of motion of a system in which the number of the degree of freedom 
increases and both translational and rotational motions exists, the Newtonian approach to vector perspective that synthesizes or 
decomposes a force component according to each direction of the coordinate needs a unique sense and lots of training. To solve 
this difficulty for an complex system, several methods including derivation of the equations of motion with singular mass 
matrices [13], derivation of the equations of motion with highly nonlinear, non-autonomous, and possibly yield motion [14], and 
estimation of the actual uncertainties [15], have been proposed, but Lagrange mechanics is most effective to derive the equations 
of motion regarding the generalized coordinates for an non-complex system. Lagrange’s mechanics is an approach to describing 
motion in terms of scalars using invariants with the generalized coordinate. It has the advantage of deriving the equations of 
motion in a formalized form. After defining the Lagrangian that includes the kinetic energy and potential energy of the system 
(Eq. (5)), the equation of motion regarding the generalized coordinate is derived from the mathematical operation as Eq. (6). This 
process is based on the principle of least action that chooses a minimum value with respect to all paths between the points that 
correspond to the same energy when motion between any two points is in a conservative dynamical system. 

L T V= −  (5) 

( ) ( )T V T Vd L L d
Q

dt q q dt q q

∂ − ∂ −∂ ∂
− = − =

∂ ∂ ∂ ∂ɺ ɺ
 (6) 

Even though it is hard to understand the theory that is based on Lagrange mechanics, including the Hamiltonian principle, 
there is no great difficulty in understanding the process of deriving the equation of motion mechanically using Eqs. (5-6). In the 
next chapter, the automatic process to derive the equations of motion and the matrices using Eqs. (5-6) is represented. The user 
needs to derive a Lagrange equation by defining the number of the degree of freedom and a generalized coordinate system and to 
define the Lagrangian extracting kinetic and potential energy from a system. To show how to use the code for users that are 
inexperienced in dynamic analysis, the derivation of the equations of motion and the calculating procedure of dynamic response 
by applying some examples are contained. 

3. Code 

3.1 System definition 

Fig. 3 is a target system selected to explain the use of the developed code. It has two rigid bodies that have 2m [kg] and 5m [kg] 
respectively, and three translational springs are interconnected to two rigid bodies or between the 2m rigid body and the ground 
[16]. To obtain the dynamic response of the two bodies, the equations of motion should be derived firstly. The most important 
thing is to extract the kinetic and potential energy of the system to define the Lagrangian. The kinetic energy of the 2m body is 
about the translational motion qG and the rotational motion θG about the center of mass of the rigid rod. The kinetic energy of the 
5m body is about the translational motion q2 about the center of mass of the rigid body (Eq. (7)). About the potential energy, if the 
spring is connected to the bodies, the potential energy terms by the motion between both ends of the rigid rod and the ground, 
between qA and q2 should be defined. Additionally, if gravity is applied to the system, the potential energy terms of the 2m rigid 
rod and the 5m rigid body by gravity should be defined (Eq.(8)). 

 

Fig. 2. Example of degree of freedom 
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Fig. 3. Example of the system 

After defining the kinetic and potential energy, some coordinates that have a geometric relationship to each other can be 
omitted. That is, unnecessary coordinates are present in Eqs. (7-8) can be removed. Eqs. (9-11) are about the translational and 
rotational coordinates of the 2m rigid rod and the translational coordinate of the eccentric position A by representing them with 
the other coordinates. 

2 2 2
2

1 1 1
(2 ) ( ) (5 )

2 2 2G G GT m q J m qθ= + +ɺɺ ɺ  (7) 

2 2 2
1 3 2 2

1 1 1
( ) (2 ) (5 )

2 2 2 A GV kq kq k q q m gq m gq= + + − + +  (8) 

1 3

5G

q q

l
θ

−
=  (9) 

1 3

2G

q q
q

+
=  (10) 

1 1 3

3 2
2

5 5A Gq q l q qθ= − = +  (11) 

3.2 Derivation of the equations of motion 

This section deals with the automatic induction process of the equations of motion from Eqs. (7-11) by applying the process 
Eq. (6). The Python and GNU Octave & Symbolic packages should be installed on your computer before using the code. The main 
script consists of the derivation of the equations of motion, the derivation of the mass and stiffness matrix and external force 
vector, and the calculation of the dynamic response (Fig. 4). The derivation of the equations of motion consists of two sub codes. 
In the first part of the unconservation_MakingEquation code, the displacements q1, q2, q3, the velocity coordinates dq1, dq2, dq3, and 
system variables such as m, l, k, t, and g are defined as symbolic variables (Fig. 5). Unlike the other variables, the displacements are 
represented as a function depending on the time variable, and the velocity coordinates are re-defined as the derivation of the 
displacement respect to the time variable since the displacement and velocity depend on the time variable. 

 

 

Fig. 4. Main script 
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After defining the basic variables, the second part defines the geometrical relationship to the coordinates and physical 
quantities defined in Eqs. (9-11). And in the third part, the total kinetic energy T defined in Eq. (7) is represented by using the 
defined coordinates. The fourth part is the derivation of the kinetic energy respect to the displacement coordinates as shown in 
the underline display part in Eq. (12), corresponding to the partial process of the derivation of the Lagrangian (Eq. (6)) In the case 
of the closed system, the kinetic energy is differentially derived concerning the generalized displacement coordinate, resulting in 
zero. However, if a system has coupled translational and rotational motions among different objects or is an open system, 
additional consideration should be given because the terms have non-zero values. For example, in the trailer composite 
pendulum, a nonlinear term should be applied as an external force due to the coupled motion between the translational motion 
of the trailer and the rotational motion of the composite pendulum [16]. Through this procedure, dtuc term that is sub-lined in Eq. 
(12) is obtained and is stored as a temporary file to load the results easily for calculating other terms of the main script to derive 
the equation of motion. 

d T V T V
Q

dt q q q q

  ∂ ∂ ∂ ∂  − − − =    ∂ ∂ ∂ ∂    ɺ ɺ
 (12) 

The second code, MakingEquation, is deriving the other terms of the equations of motion. The code from the definition of the 
symbolic variable to the definition of the total kinetic energy T is omitted as it is the same as unconservation_MakingEquation (Fig. 5). 
Part 1 calculates the term that is sub-lined in Eq. (13). To be possible of differentiating the Lagrange’s equation regarding the 
velocity coordinates dq1, dq2, and dq3, the velocity variables of diff(q1(t),t), diff(q2(t),t), and diff(q3(t),t) were replaced into dq1, dq2, 
and dq3 temporarily, and the velocity variables were changed into dq1(t), dq2(t), and dq3(t) by applying the time variable to be 
possible of the time derivative. 

d T d V T V
Q

dt q dt q q q

 ∂ ∂ ∂ ∂  − − − =  ∂ ∂ ∂ ∂ ɺ ɺ
 (13) 

To perform the sub-lined calculation in Eq. (14), the sum of potential energies V by the spring was calculated, and the partial 
derivative regarding the generalized coordinate was performed in Part 2. 

d T d V T V
Q

dt q dt q q q

 ∂ ∂ ∂ ∂  − − − = ∂ ∂ ∂ ∂  ɺ ɺ
 (14) 

Part 3 is the derivation process of the equations of motion (Eq. (6)) by using the terms derived from Eqs. (12-14). The term with 
the partial derivative of the potential energy regarding the velocity is not defined because the term is zero in a conservative 
system without energy loss. Through the above process, the equations of motion for q1, q2, and q3 were derived (Fig. 7). Gravity is 
applied to the external force of the equation of motion and is similar to derive the terms as the MakingEquation code. 

 
 

 

Fig. 5. The script of unconservation_MakingEquation 

Part 1 

Part 2 

Part 3 

Part 4 
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Fig. 6. The partial script of MakingEquation 

3.3 Derivation of matrix 

The equations of motion derived from Section 3.2 are needed to be applied to the numerical integration method to calculate 
the response. However, it is necessary to convert the obtained equations of motion into a form acceptable to the numerical 
integration method. In other words, the equations of motion obtained in Fig. 7 should be converted into the matrix from regarding 
the generalized acceleration, velocity, and displacement coordinates as Eq. (3). 

To substitute the equations of motion into the numerical integration method, the equations of motion should be organized as 
the inertia matrix and acceleration vector, and stiffness matrix and displacement vector (Eqs. (3), (6)). The mmass code removes all 
non-acceleration terms and extracts the mass matrix by expressing the remaining terms as the multiple of the mass matrix and 
the acceleration vector (Fig. 8). The mstiff code removes all non-displacement terms and extracts the stiffness matrix by 
expressing the remaining terms as the multiple of the stiffness matrix and the displacement vector. Especially, nonlinear terms 
that can’t be arranged as a matrix form, is extracted as an external force (Fig. 9). By using two codes, the equations of motion 
defined in Eq. (15) are replaced in the multiplication of the inertia matrix and acceleration vector and the stiffness matrix and 
displacement vector as Eq. (16). 

1 3 1 2 3

2 1 2 3

1 3 1 2 3

2 34 3 6
(1)

3 3 25 5 25
3 2

(2) 5
5 5

2 6 2 29
(3)

3 3 25 5 25

m m k k k
Eq q q q q q

k k
Eq mq q kq q

m m k k k
Eq q q q q q

= + + − +

= − + −

= + + − +

ɺɺ ɺɺ

ɺɺ

ɺɺ ɺɺ

 (15) 

1 1

2 2

3 3

34 3 6
2

0 25 5 25
3 3

3 2
0 5 0

5 5
2

6 2 290
3 3

25 5 25

k k k
m m

q q
k k

Eq m q k q

m m q q
k k k

 
   −
                         = + − −      

                        
−       

ɺɺ

ɺɺ

ɺɺ

 (16) 

Part 2 

Part 3 

 

 

Part 1 
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Fig. 7. Equations of motion in the command window 

 

Fig. 8. The script of mmass 

3.4 Dynamic response 

After executing the codes introduced in Sections 3.1 to 3.3, the function of the mass matrix, the function of the stiffness 
matrix, the function of the nonlinear force vector, and the gravity force vector are derived. These functions take design variables 
as input values and derive results in matrix and vector form as output values. Table 1 shows the design variables and parameters 
for numerical integration. By substituting the values into the numerical integration code shown in Fig. 1, the dynamic responses 
of each generalized coordinate are represented graphically, and a Fourier Transform of the responses is executed to derive the 
main peak frequency appearing. Through the process, the operating conditions and responses can be checked by changing the 
values of the operating conditions and design variables to avoid critical vibrations that can make the system unstable (Fig. 10). 
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Fig. 9. The script of mstiff 

4. Code application 

4.1 System definition 

In this section, we reviewed whether the GNU code can be used to derive equations of motion and to calculate dynamic 
responses easily when an arbitrary system is given. Fig. 11 is a drive train system that has a mechanism in which each Gi rotor 
rotates due to torque applied to the G1 rotor, and the G6 rotor rotates through the power transmission. Each Gi rotor has the 
number of ni teeth as a gear, and the adjacent gears, except the gear engagement, are connected by the shaft with torsional 
stiffness. 

 To apply the definition of the system to the code for calculating the response from the system, it is necessary to set the 
generalized coordinates by deriving the number of degrees of freedom and to define the kinetic energy and potential energy. Even 
though the system has six rotors, the number of the generalized coordinates is only four, because G3 and G5 rotors have the 
geometrical relationship of gear engagement with G2 and G4 respectively. In other words, the generalized coordinates of G3 and G5 
can be expressed by the generalized coordinates of the G2 and G4. Therefore, the two coordinates are reduced. Additionally, the 
rotational direction of G3 and G4 rotors rotate in the opposite direction to the direction indicated in Fig. 11. The kinetic energy and 
potential energy considering the above facts are shown in Eqs. (17)-(18). To proceed with the further process to derive the 
equations of motion, some corrections are required in all the codes mentioned in Part 3 below.  

 

Table 1. Design variable and simulation condition 

Design variable Value Simulation condition Value 

m 10 kg t 0 ~ 10 sec 

l 10 m Δt 0.001 sec 

k 10,000 N/m b 1/4 

g 9.81 m/s2 gamma 0.5 
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Fig. 10. Displacement in the time domain and acceleration in the time and frequency domain 

 

Fig. 11. Drive-train system 

- Update the symbolic expression of the generalized coordinates and design variables 
- As the number of the generalized coordinates changes from 3 to 4, the number of ‘subs’ process, the number of iteration of 

‘for’ loop, and the number of ‘diff’ derivative processing should be increased. 
- Update the kinetic energy and potential energy. 
- Apply the number of process 4 instead of 3 in other processing. 

2 2
2 2 2 22 4

1 1 2 3 2 4 5 3 6 42 2
3 5

1 1 1 1

2 2 2 2

n n
T I I I I I I

n n
θ θ θ θ

      = + + + + +        
ɺ ɺ ɺ ɺ  (17) 

2 2

2 32
1 2 1 2 3 2 3 4 3

3 5

1 1 1
( )

2 2 2t t t

nn
V k k k

n n
θ θ θ θ θ θ

              = − + − − + − −                
 (18) 

4.2 Response 

The results obtained from the derivation of the equations of motion and matrix transformation and the dynamic responses of 
substituting arbitrary design variables and operating conditions shown in Table 2 into the numerical integration are shown in Fig. 
12.The angular displacement of each rotor may be increased or decreased constantly in one rotational direction by a constant 
torque applied to I1, but if you check the angular velocity and acceleration responses, each rotor has the vibrational displacement 
due to the torsional stiffness of the shaft that makes the reaction torque when the angular displacement of the relative rotor is 
different. The peak frequencies shown in the Fast Fourier Transform result are natural characteristics of the system caused by the 
coupled motion among rotors. When the angular velocity of the rotor has the same value corresponding to the natural frequency, 
the vibrations are amplified, so the operating condition or the design variable should be changed to avoid this phenomenon in the 
design stage. 
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Table 2. Design variable and simulation condition 

Design variable Value Simulation condition Value 

I1 10 kg·m2 
t 0 ~ 10 sec 

I2 20 kg·m2 

I3 30 kg·m2 
Δt 0.001 sec 

I4 40 kg·m2 

I5 50 kg·m2 
T 

(Torque on I1) 
10 N·m 

I6 60 kg·m2 

n2 ~ n5 10/30/15/20 
b 1/4 

kt1 109 N·m/rad 

kt2 109 N·m/rad 
gamma 0.5 

kt3 109 N·m/rad 

 

Fig. 12. Drive-train system 

5. Conclusion 

   In this paper, we developed the automatic GNU Octave codes that can derive the equations of motion based on Lagrange 
dynamics and can apply the equations of motion to the Newmark numerical integration method to calculate the responses. By 
showing the structure of the code and the application, users that are not familiar with multi-body dynamics can easily calculate 
the dynamic characteristics of the system. To validate the code whether the dynamic characteristics of the system is correct or 
not, some arbitrary mechanical systems were analyzed by deriving the equations of motion, by calculating the dynamic 
characteristics with the numerical integration, and by comparing them to the analytical solution. Through the processes, the fact 
that the user can easily deal with the matrix transformation problem by defining the system definition such as the kinetic-
potential energies and system variables and by classifying them based on the rule was confirmed. In the future, we plan to 
expand the usability of the code in the industry and to be possible to use it as educational materials in the course and lecture by 
upgrading the application of the code such as an open-chain system. 
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