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Abstract. Application of the rotational phenomena in the curved ducts plays an important role in many engineering areas, so 
researchers are attracted to innovate something new in this area nowadays. In this regard, the current paper has performed the 
fluid flow through the curved duct for an extensive range of negative rotation (-10 ≤ Tr ≤ -1500). The other useful parameters such 
as Dean number (Dn), Curvature (), Grashof number (Gr), and Prandtl number (Pr) are considered fixed. The investigations are 
divided into four parts. In the first portion, linear stability of the flows through the duct is discussed. Then time evolution 
calculations of the unsteady solutions for different Taylor numbers are demonstrated in the “time vs. heat flux” plane. This inquiry 
shows that the flow undergoes various instabilities for increasing the Taylor number. Thirdly, two types of flow velocity, axial flow 
and secondary flow and the temperature profiles are represented. It is obtained that two up to six vortex secondary flows are 
found for the regular and irregular oscillation and the flow patterns are different for a fixed period for regular oscillation. To show 
more clarity of the periodic and chaotic flow, power spectrum density is further examined. However, it is observed that the flows 
are mixed and enhanced heat transfer because of the acting of centrifugal force, Coriolis force, and heating induced buoyancy 
force on the duct. Finally, the numerical results are compared with the experimental data which shows that the numerical data 
fully matches with the experimental outcome. 

Keywords: Linear stability, Secondary flow, Time-dependent solutions, Power spectrum density, Experimental results. 

1. Introduction 

Curved duct flows are incredibly used in the engineering applications such as gas turbines blades, heat exchangers, lab-on-a-
chip device, aircraft engineering, nuclear reactors, solar energy system, plastic industry, cooling on smart vessels. The duct which 
is rolling with a specific axis is known as a rotational duct and when the duct is rotated reversely to z-axis then it is acquainted as 
a negative rotational duct. There are various shapes in a curved square duct, for example, S-shaped duct, U-shaped duct, Y-shaped 
duct, cylindrical duct, semi-circular duct, V-shaped duct, elliptical duct, square and rectangular duct, twisted duct, etc. Among 
them, some excellent cited article on curved ducts are given by Elsamni et al. [1], Du et al. [2], Chandratilleke and Nadim [3], 
Mondal et al. [4], Anand and Sandeep  [5], Fiola and Agarwal [6], Rumsey et al. [7], Chamkha et al. [8]. To investigate various 
phenomena in a curved duct, scholars are very much attracted to examine the solution structure as well as the linear stability. 
Very recently, Nowruzi et al. [9] have reported to find out the effect of hydrodynamic instability through duct for a wide range of 
aspect ratio (from 0.2 to 2) by using energy gradient method. Linear stability theory for two and three-dimensional cases have 
been demonstrated by Watanabe et al. [10]. They further obtained a relation between linear stability and the time-dependent 
solution. A detailed study of linear stability for isothermal flows through curved square duct has been carried out by Mondal et al. 
[11]. Here, all authors have conducted their work for rotational and non-rotational case. But stability analysis for negative rotation 
has not been done yet. The ongoing paper has first illustrated the linear stability analysis for negative rotation. 

To change the flow structure with respect to the time is another important objective in mechanics because it is widely used in 
metallic industry and other fields of biomedical engineering. Time-dependent behaviors with respect to the drag and the lift 
coefficient have been narrated by Nazeer et al. [12]. Using flow visualization and computational fluid dynamics techniques, 
Krishna et al. [13] studied the unsteady solution for fixed curvature 0.3. For both positive and negative rotation, various types of 
flow patterns were obtained by Islam et al. [14]. Time-dependent oscillations for rotating duct have been detected for different 
curvatures and a wide range of Taylor number by Sultana et al. [15]. They have also shown an unsteady diagram in the Tr vs. 
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Curvature plane for both positive and negative rotation. Hasan et al. [16] represented a relation between the bifurcation structure 
and the unsteady flow behavior through non-rotating curved duct. They observed that the irregular oscillation has come after the 
steady-state and regular oscillation respectively. Dynamic responses of the flow through a curved duct have been visualized by 
Wang et al. [17]. Chamkha et al. [18] considered a magnetic field in a rotating vertical cone and observed the time-dependent 
fluctuation of angular velocity with respect to different temperatures. An outstanding concept on the flow transition for curved 
rectangular duct has been described by Yanase et al. [19]. They tried to get a strong connection between the steady branches and 
the time evolution calculation. Later, Mondal et al. [20-21] considered the Adam Bashforth method together with function 
collocation method to examine the unsteady behavior only for the positive rotation. In their research, they revealed the phase 
space to be sure about the periodic, multi-periodic and chaotic flows. But in the entire cited paper, they did not disclose the power 
spectrum density where power spectrum density is an important tool for finding out whether the flow oscillates or non-oscillate. 
The present study has filled up this gap.  

It is alluded that the governing equation of the flows through the curved duct was first introduced by Dean [22]. He also 
discussed that there are two types of forces are acted in the curved square duct. One is the centrifugal force and the other is body 
force. By simplifying his equation subsequently, another parameter was produced, which has addressed as the Coriolis force. Here, 
the centrifugal force is produced from the curvature of the duct and the Coriolis force is affected by the rotation of the duct. For 
small Reynold number, Harding et al. [23] focused on the acting forces in a spherical particle suspended in the flow-through 
square, rectangular and trapezoidal cross-section of the duct. Using pressure gradient method, Nowruzi et al. [24] obtained 
various types of flow patterns. They have also validated their results with the experimental data. The vector plot of the secondary 
flow where suction blow process has been also produced has been drawn by Kabanemi et al. [25] numerically. By applying flow 
visualization and computational fluid dynamics technique to perform the flow structures in a curved pipe have been conducted 
by Krishna et al. [13] where the feature of the secondary flow and the regions of the boundary layer separation have been 
illustrated by Fiola and Agarwal [6]. Parvin et al. [26] revealed the different types of parameter effects in secondary flow including 
Grashof number and Prandtl number where they considered the nanoparticles through the annulus. Recently, Mondal et al. [27] 
got two to ten vortex secondary flows for large aspect ratio 4. They have also shown in the Grashof number vs. aspect ratio plane 
that for increasing the required parameters, the number of vortexes has enhanced. Dolon et al. [28] exposed the flows with 
changing the Dean number for the non-isothermal case. They have also delivered a clear idea about Dean vortex. Arifuzzaman et 
al. [29] tried to give a detailed explanation of centrifugal and Coriolis effect in the unsteady flows on the curved square duct. Two- 
and three-dimensional flow patterns through the duct have been first manifested by Yanase et al. [30]. Numerical as well as an 
experimental investigation of the flow have been first carried out by Yamamoto et al. [31]. Nivedita et al. [32] analyzed the 
influence of vortices in cell separation through the spiral duct for different Reynolds numbers. The experimental results for both 
positive and negative rotation have first exhibited by them. Here, most of the cited paper has not explored the axial flow, but the 
present study has shown the secondary flow, temperature profile along with this kind of flow velocity. Besides, the secondary 
flows have been validated with the experimental result. 

Analyzing heat transfer in curved ducts is an important issue because it helps to elucidate the stability and the flow variation 
easily. Yanase et al. [33] assayed to give a clear idea of heat transfer and the temperature gradients for rectangular duct. They have 
expressed the figure with the help of the steady branches as well as the average of unsteady solution. Later, Mondal et al. [34] 
accomplished almost the same work for square duct. Very recently, Du et al. [2] calculated flow and heat transfer for fixed Reynold 
number (7000) where the rotational number is varied from 0 to 1. Umavathi et al. [35] studied the influence of viscosity in the 
horizontal channel temperature and the flow velocity. Chandratilleke et al. [36] displayed the heat transmission among the 
elliptical and rectangular duct for both numerically and experimentally. Hasan et al. [37-38] narrated the heat transfer as well as 
the temperature gradient for both rotating and non-rotating curved square duct.  

In the existent study, the governing equation of the curved duct has been formulated first and then the numerical accuracy 
has been presented. Then, in the result and discussion section, linear stability, time-history analysis with the velocity and 
temperature profiles of the curved square duct has been performed for an extensive range of negative rotation. Furthermore, 
validation of numerical results with the experimental data has been also represented. The outcomes of the investigation and the 
applications have been included in brief at concluding remarks.  

2. Governing Equations 

Figure 1 illustrates a two-dimensional rotating curved duct model that can rotate in both positive and negative direction along 

the z′ − axis. The fluid flow goes through the duct and the fluid is considered as viscous incompressible. As the article is based on 

the square duct so the height and width of the duct are equal. The temperature is conducted at the lower wall of the duct and the 

other walls are at room temperature. So it can be said that the body heat at the lower wall of the duct is T T+∆0 , where T∆ > 0 . 

Here, x′  and y′  are assumed in the horizontal and vertical directions consecutively. For two-dimensional flow, the axial flow 

moves with a fixed pressure gradient, G , along the centerline which is taken to be in z′ − direction. The required non-

dimensional governing equations are represented as:  
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Fig. 1. Co-ordinate system of the rotating curved square duct. 

 

Energy equation: 
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Here, the velocity components u' , v' , w'  are worked in x' , y' , z' -axis respectively. The notations P' , T ' , and t '  are 
addressed respectively as dimensional pressure, temperature and time and the Greek notations ρ , υ , β , κ  and g  are named 
as density, kinematic viscosity, coefficient of thermal expansion, coefficient of thermal diffusivity and gravitational acceleration 
consecutively. The dimensional variables have been nondimensionalized by using the representative length d , the representative 
velocity U d=0 /υ , where υ  is the kinematic viscosity of the fluid. The non-dimensional variables are as follows:  
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The representative velocity U0  is identified as U d=0 /υ  and the stream function ( )ψ  is defined as 

u
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∂
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Herein, the notation δ  is curvature and defined as d L= /δ . After using the non-dimensional variables and stream function in 
equations (1) to (5) and then simplifying and combining the equations, we get,  
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Here, w , ψ  and T  are non-dimensional variables. From equation (7) to (9), some new parameters are consisted and 

parameters are defined as,  

T g T dGd d d
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L

∆Ω
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In equation (10), Dn , Tr , Gr , Pr  is the short designation of Dean number, Taylor number, Grashof number and Prandtl 
number respectively.  

Now the boundary conditions for axial ( )w  and secondary ( )ψ  flow is 

w y w x y x y x
x y

∂ ∂
± = ± = ± = ± = ± = ± =
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( 1, ) ( , 1) ( 1, ) ( , 1) ( 1, ) ( , 1) 0
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and for temperature ( )T   

T x T x T y y= − =− ± =( ,1) 1, ( , 1) 1, ( 1, )  (12) 
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There is a group of solutions which satisfy the following symmetry condition with respect to the horizontal plane y= 0 . 

w x y t w x y t

x y t x y t

T x y t T x y t

⇒ − ⇒− − =− − 

( , , ) ( , , ),

( , , ) ( , , ),

( , , ) ( , , )

ψ ψ  (13) 

A symmetric solution is found when the solution satisfies the equation (13) and an asymmetric solution appears for all the 
other cases. In the current study, effects of rotation in negative direction have been represented. So, all parameters are assumed 

as constant ( )( )Dn = 1000,  =0.001, Gr=100, Pr=7.0 waterδ without the rotational parameter (Taylor number is varied from -10 to -

1500). 

3. Numerical Calculations 

3.1 Method of Numerical Calculations 

To calculate the flow behavior numerically, Spectral method is considered. This method is mainly based on the expansion of the 
series. More explicitly, the variables in the governing equations are stretched to series expansion formed with Chebychev 

polynomials. The expansion functions ( )n xϕ  and ( )n xψ  are expressed as: 
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where, ( )nC x n x−= 1( ) cos cos ( )  is defined as the Chebyshev polynomial of thn  order. Here the axial flow ( )w , stream function 

( )ψ  and isotherms ( )T  are taken into account as the function of x-axis, y-axis and time respectively and ( )w x,  y, t , ( )x,  y, tψ , 

and ( )T x,  y, t
 
are extended separately in terms of the expansion functions ( )n xϕ  and ( )n xψ  as: 
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Here, M and N represent the grid size in x and y direction consecutively and mnw , mnψ  
 and mnT  are the coefficients of 

expansion. To seek out the unsteady solution w x y x y( , ),  ( , )ψ  and T x y( , ) , the expansion series (15) is confine into the non-

dimensional equations (7) - (9) and the collocation method is then used. As a consequence, a set of nonlinear algebraic equations 

for mnw , mnψ  
and mnT  are formed. The collocation points i jx y( , )  are assumed to be  

i j
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where i M= +1, , 1… and j N= +1, , 1… . For investing the time dependent behavior, the collocation theory is used together 

with equation (5) and the Crank-Nicolson as well as the Adams-Bashforth methods and then put into equations (7) - (9).  

3.2 Grid Efficiency 

Here, grid accuracy of the numerical algorithm has been represented. As the paper has illustrated the flow behavior through 
curved square duct, so the grid sizes are equal. In this investigation, M and N are addressed as the grid size where M N=  is 
cosidered due to square duct. Table 1 displays the grid accuracy table for different grid sizes with observing the value of heat flux 
and axial flow. It is certainly said that there is no dramatic change for changing the grid size. To compare more explicitly, 
percentage relative errors are also calculated, where percentive relative error (pre) is designated as, 

( )pre present previous value present value= − ×[  ] / [  ] 100% . Percentage relative error for both heat flux and axial value demonstrated 
that for increasing the grid size the errors have been reduced.  

Figure 2 exposes the pie chart for the percentage relative error of heat flux and axial flow respectively where the values are 
taken from the table. It is illustrated from the figure that the accuracy of the algorithm is accurate enough for the large grid sizes. 
In this study, M N= = 20  has been taken, because it gives almost accurate value and reduces the cost.   

3.3 Flux Through the channel 

In the impending work, the total flux through the channel in the rotating coordinate system is elucidated as, 

d d

d d
Q w dx dy VdQ

− −
= =∫ ∫' ' ' '  (17) 

Table 1. The values of Q  and ( )w 0,  0  for various M and N at Dn = 1000 , Gr = 100 , Tr = −1500  and = 0.001.δ  

M N Q Percentage relative error of  Q w (0, 0) Percentage relative error of  w 

16 16 261.545967 0.314662 387.844757
 

0.307387 
18 18 262.371550 0.133469 389.040618 0.726774

 20 20 262.021832 0.049784 386.233572 0.104173
 22 22 262.152341 0.007508 386.636344 0.055168
 24 24 262.132659 ----- 386.849762 ----- 
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Fig. 2. Pie chart of the grid sizes of percentage relative error. 

 

where, Q '  is the dimensional total heat flux and w'  is the mean axial velocity which is enumerated by, 

Q
w

d
='

4

ν
 (18) 

However, after dimensionless the equation (17), the total flux Q  is written as, 

Q wdxdy
− −

= ∫ ∫
1 1

1 1
 (19) 

Here, the heat flux is important for investigating the unsteady behavior of the rotating curved duct. 

4. Result and Discussion 

4.1 Linear stability analysis 

Linear Stability of the curved duct of negative rotation is investigated here for an extensive range of Taylor number. In this 
study, linear stability is enumerated only for two-dimensional cases where the z-axis is assumed as independent. To calculate 
linear stability, function expansion together with the collocation method is used to the linear perturbation of ( )w x y,

 
and 

( )x y,ψ . The time-dependent of perturbation is considered as teσ , where r ii= +σ σ σ . If all the vales of rσ  
are negative, then the 

solution shows linear stability. On the other hand, if rσ  bears single positive value then it reveals linear unstable. In the unstable 
region, the perturbation generates oscillatory for i ≠ 0σ  and monotonically for i = 0σ . Table 2 displays the linear stability table. 
Linear stable regions are designated by bold italics sign. It has obtained that linear stable points have occurred between two 
different regions ( )Tr Tr− ≤ ≤− ≤ ≤−182.50 370.99 & -590.99 912.12 . It is also noticed that there is a strong connection between 
the linear stability and the time-dependent behavior which is shown in the time evolution section. Now, two types of flow 
velocity axial and secondary flow and their isotherms are shown in Figure 3 for different Taylor number. It is demonstrated that 
two types of axial flow behavior has been found between Tr− ≤ ≤−10 1500 . From Tr =−10  to Tr ≤−250 , the flow velocity has 
pushed to the outer wall of the duct while the opposite behavior of axial velocity has been found from Tr>−250  to Tr =−1500 . 
The secondary flow narrates that two- up to six-vortex flow has built up for the required Taylor number. 

4.2 Time Evolution Calculation 

In this section, time evolution calculations of the unsteady solution are investigated here for a wide range of negative 
rotations ( )Tr− ≤ ≤−10 1500  where other parameter values are fixed. To find out the data, Code::Blocks works as the subordinate 
toll, where the algorithm of governing equations is built up with Crank-Nicolson as well as the Adam-Bashforth method together 
with the function collocation method.   

Time evolution calculation at Tr =−10  exposes the multi-periodic solution as shown in Fig. 4 (a) in time vs. heat flux plane. To 
understand more clearly about multi-periodic behavior, power spectrum density is further calculated as shown in Fig. 4 (b). It is 
noted that power spectrum density has enumerated in log scale. It is illustrated that the harmonics as well as its frequencies 
oscillated frequently. Two different velocity profiles such as axial ( )w  and secondary ( )ψ  flow and their isotherms ( )T  are 
shown in Fig. 5. Before interpreting the flow patterns, it is seen that two different types such as solid and dotted lines are found. 
The solid line is named as outward flow, constructed when it works at the anti-clockwise direction ( )w ≥,  , T 0ψ . The dotted lines 
are addressed as the inward flow, operated when it works as clockwise direction ( )w,  , T<0ψ . However, the axial flow 
demonstrates that the flow velocity pushes to the inner wall of the duct. The secondary vortices explain that the vortices create at 
the outer wall of the duct. It is also observed from the secondary flow that the multi-periodic oscillation initiates consecutively 
after 30 seconds (See t = 25.80  to t = 26.10 ). It is moreover seen that there is an interaction between these flow velocities and 
the isotherms. If there is no high-velocity region in the axial flow, only two vortex asymmetric solutions are found in the 
secondary velocity. On the contrary, when the axial velocity consists of two high-velocity regions at the outer wall of the duct, at 
the same time, secondary velocity shows four vortex solutions. The newly (additional) two vortexes are called Ekman vortex and 
the two vortexes are named as Dean vortex. Moreover, when the velocity region at outer upper side is larger than the outer lower 
side, then the additional two vortexes display that the lower vortex is smaller than the upper vortex. The isotherms narrate that 
the density of the streamlines is more at which the two high-velocity regions of axial flow and the four vortexes of secondary 
flow are built up. 

A significant change occurs if the Taylor number increases. Generally, chaotic oscillations come after periodic or multi-
periodic oscillation as seen by many scholars' articles (Hasan et al. [16]). But the multi-periodic oscillation turns into steady-state 
in this instance. The steady state oscillation starts from Tr =−182.50  and continues to Tr =−370.99  which is also proved by 
linear stability analysis. Figure 6 (a) displays the unsteady behavior for Tr =−190,  -250 & -370  respectively which is steady-state 
solution. Axial flow, secondary flow, and isotherms are shown in Fig. 6 (b). Two-, four-, six vortex solution is found for the 
respective Taylor numbers. 
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Table 2. Linear Stability of the negative solution for = 0.001δ . 

Tr Q
 

r
σ  

i
σ  Criteria 

-10 450.71543312 1.394101 2.61101 Linearly Unstable 

-182.49 416.62665602 1.109101 0 Linearly Unstable 

-182.50 412.35699527 -1.0210-1 0 Linearly Stable 

-370.99 350.85006447 -1.1091 0 Linearly Stable 

-371.00 350.67594665 4.2531 0 Linearly Unstable 

-500 324.01841233 1.238101 2.337101 Linearly Unstable 

-590.91 313.68463171 1.0345101 0.0346 Linearly Unstable 

-590.92 311.27454532 -.020139 0 Linearly Stable 

-912.12 287.22507638 -1.1091 0 Linearly Stable 

-912.13 285.45369203 4.6798101 -2.392101 Linearly Unstable 

-1000 282.17392705 7.625101 -4.279101 Linearly Unstable 

-1500 262.02183223 1.136102 6.568101 Linearly Unstable 

 

Tr         -20     -200    -300   -500     -1100 -1300 

w  

 

ψ  

T  

                                        
Fig. 3. Contours of axial velocity (topmost), stream function (central), isotherm (lowermost) for Tr=-10, -250, -500, -1000, -1250, -1500 . 

  

(a) (b) 

Fig. 4. (a) Time dependent behavior in t Q−
 
plane, (b) Power spectrum density. 

When Tr is crossed over 370.99, the steady-state solution coverts into periodic oscillation as illustrated in Fig. 7 (a). The periodic 

oscillation is also well justified by the power spectrum density as shown in Fig. 7 (b). Two different types of flow velocity, axial and 

secondary flow, and isotherms are shown in Fig. 8. A dramatic change is observed in the flow velocities. From Tr =−10  to 

Tr =−370.99 , the axial velocity pushes to the inner wall of the duct but from Tr =−371 , the axial velocity pushes to the outer 

wall of the duct. Due to the change in the direction of axial velocity, the creation of the vortices changes, i.e., the vortices creates 

at the inner wall of the duct. Two-, three- and four-vortex solutions are found for the secondary flows. 
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              t         25.60              25.70               25.80              25.90              26.00               26.10 

            
 

         

           w  
 
 
 
 
 
 

           
ψ  

 
 
 
 
 
 
 

           T  
 
 
 

Fig. 5. Contours of axial velocity (topmost), stream function (middle), isotherm (lowermost) for Tr=-10 . 

 
                                                                      t         17.50               15.10               12.35 

  
 
   

                                                                     w  
      
 
 
 
 
 

 
   ψ  

 
 
 
 
 

 

                                                                      T  
                                                                                  
 
                                                                     Tr         -190                -250                -370 

          (a)       (b) 

Fig. 6. (a) Time dependent behavior in t Q−  plane, (b) Contours of axial velocity (topmost), stream function (middle), isotherm (lowermost) for 

Tr = −190,  -250 & -370 . 

 

  

(a) (b) 

Fig. 7. (a) Time dependent behavior in t Q−
 
plane, (b) Power spectrum density. 
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           t          26.00            26.10           26.20            26.30            26.40            26.50 
  
 
                

          w  
 
 
 
 
 
 
 

          
ψ  

 
 
 
 
 
 

          T  
 
 

 

Fig. 8. Contours of axial velocity (topmost), stream function (middle), isotherm (lowermost) for Tr=-380 . 

 

 
 

(a) (b) 

Fig. 9. (a) Time dependent behavior in t Q−
 
plane, (b) Power spectrum density. 
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Fig. 10. Contours of axial velocity (topmost), stream function (middle), isotherm (lowermost) for Tr=-500 . 
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(a) (b) 

Fig. 11. (a) Time dependent behavior in t Q−
 
plane, (b) Power spectrum density. 

            t          21.30              21.35              21.40               21.45              21.50               21.55 
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Fig. 12. Contours of axial velocity (topmost), stream function (middle), isotherm (lowermost) for Tr=-570 . 
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        (a)       (b) 

Fig. 13. (a) Time dependent behavior in t Q−
 
plane, (b) Contours of axial velocity (topmost), stream function (middle), isotherm (lowermost). 
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The vibration of the flow particle is increased if the Taylor number raises more. It is seen that at Tr =−500 , the vibration is 
enhanced more than Tr =−380 , and the vibrations as well as its frequencies is also analyzed by power spectrum density. Figures 
9 (a) and 9 (b) show the time evolution calculation and the power spectrum density. Thus it is demonstrated from the figure that 
the multi-periodic solution has occurred at Tr =−500 . Axial flow, secondary flow, and isotherms are shown in Fig. 10. Axial and 
secondary flows demonstrate that despite of the change of flow direction from Tr =−380 , they behave in consisting of flow 
patterns are almost the same as in earlier ( )Tr− ≤ ≤−10 380 . More explicitly, at t = 23.60 , it has seen that two high-velocity 
regions are created to the inner wall of the duct and the upper region is fewer than the lower region. For this reason, four vortex 
solution is found at the inner wall of the duct where among the two additional vortexes, the lower vortex is bigger than the upper 
vortex. 

If the Taylor number has increased further, the flow oscillates irregularly, i.e, chaotic oscillation is occurred. At Tr =−570 , 
chaotic oscillation is obtained as sketched in Fig. 11 (a). To ensure the chaotic oscillation, power spectrum density is also 
enumerated as shown in Fig. 11 (b). It has observed that because of the flow oscillation more in t Q−  plane, the harmonics have 
created irregular frequencies with a strong density. Axial flow, asymmetric two vortexes secondary flow, and isotherms are shown 
in Fig. 12. 

Now, the transition of flow phenomena is calculated for further Taylor number in negative rotation and it is seen that from 
Tr =−590.92 , the steady-state solution again starts and it is continued up to Tr =−912.12  which has also confirmed by the 
linear stability analysis. Figure 13 (a) explores the steady-state solutions for Tr =−600,  -675, -750, -825 & -910  respectively. It is 
described from the figure that the magnitude of the heat flux is decreased for increasing the Taylor number. Axial flow, symmetric 
two vortexes secondary flow, and isotherms are shown in Figure 13 (b). It is observed that the flow velocity and the isotherms are 
the same whatever the Taylor number is.  

 

  

(a) (b) 

Fig. 14. (a) Time dependent behavior in t Q−
 
plane, (b) Power spectrum density. 

                 t         19.51              19.52              19.53               19.54              19.55               19.56     
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           T  
 

 
 

Fig. 15. Contours of axial velocity (topmost), stream function (middle), isotherm (lowermost) for Tr=-1000 . 
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(a) (b) 

Fig. 16. (a) Time dependent behavior in t Q−
 
plane, (b) Power spectrum density. 

     
             t         16.80               16.90               17.00              17.10              17.20              17.30 
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           T  
 

 

Fig. 17. Contours of axial velocity (topmost), stream function (middle), isotherm (lowermost) for Tr=-1500 . 

 
 
 
 
 
      (a)                                                     (b) 
 
 
 

 
 

                        Dn=102                    De=100.8                               Dn=47                   De=45.6 

Fig. 18. Numerical vs. experimental results for rotating curved square duct flow at Tr = −150 , (a) & (b) numerical result by the authors (left) and 

experimental result by Yamamoto et al. [31] (right). 

The steady-state solution turns into a periodic solution from Tr =−912.13 . Figures 14 (a) and 14 (b) represent the time-
dependent solution and the power spectrum density for Tr =−1000  and it is certainly said that the unsteady solution shows 
periodic behavior. The oscillations and the frequencies illustrates that the oscillation and the frequency spectrum at Tr =−1000  
are not stronger enough than Tr =−380 . Because of the weaker oscillation, the axial flow, secondary flow, and isotherms are also 
influenced. The flow velocities and the isotherms are shown in Figure 15. It is seen that only two vortex asymmetric solutions are 
found for the Taylor number. 
A dramatic phenomenon is found for raising Taylor number in the negative direction. As usual, multi-periodic oscillation starts 
after the periodic oscillation. But this is not happened between Tr− ≤ ≤−1000 1150 . The periodic oscillation directly converts 

into chaotic oscillation if the Taylor number is increased and this chaotic oscillation is continued up to Tr =−1500 . Figures 16 (a) 

& 16 (b) depict the unsteady solution and the power spectrum for Tr =−1500 . It is narrated that the oscillations are stronger 
more for growing up the Taylor number. The power spectrum density indicates that the line spectrum and its frequencies density 
has become enhanced more for increasing the Taylor number. Flow velocity such as axial flow and the secondary flow and 
isotherms are shown in Fig. 17. The axial flow demonstrates that the flow velocity creates strong velocity regions, as a 
consequence, two- up to four-vortex solutions have been found. The isotherms disclosed that the fluid has mixed and enhanced 
due to the rotation of the duct. 
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4.3 Numerical vs. experimental validation 

To compare the numerical results with the experimental outcome express the accuracy of the computational work. Here, the 
numerical results presented in the present article have been also compared with the experimental data. Yamamoto et al. [31] was 
the only scholar who revealed the experimental outcomes only for the curved rotating duct of the square cross-section. In their 
investigation, they setted up the mechanical instruments properly. In the water flow tank, they took dye which was mixed with 
alcohol so that the weight of water and dye were same. They injected the liquid with different pressure. A motor was included 
with the inner disk so that the duct was rotated in both positive and negative directions. After initiating the fluid flow through the 
curved duct, the motor was moved with angular velocity and then the flow phenomena captured with a camera. However, the 
experimental outcomes in Figure 18 found out by Yamamoto et al. [31] for negative rotation (fixed Taylor number, Tr =−150 ) with 
different pressure gradient. So, we have converted the value of the parameter same as their considering value. Then we have 
obtained some flow structures as seen in Figure 18. It is observed that the numerical results totally coincide with the 
experimental data.   

5. Conclusion 

A computational based investigation on curved rotating duct was presented in the ongoing exploration. At first, governing 
equations were presented, and then the numerical accuracy was checked. The numerical accuracy has ensured us that the 
collocation method was more reliable than the other methods. After that, linear stability of the curved square duct was searched 
for a comprehensive range of negative rotation, Tr− ≤ ≤−10 1500 ; with curvature, = 0.001δ  and Grashof number, Gr = 100 . A 
connection between the linear stability and the unsteady solutions has also formed in this study. Moreover, the transition of the 
flow with respect to time for different Taylor numbers was performed. It was said that the unsteady flow undergoes through 
various flow transitions. The multi-periodic flows turned into chaotic via steady-state and periodic flows between 

Tr− ≤ ≤−10 570 . If the rotational parameter was risen up in negative direction further, it again converted into chaotic flow 
through the steady-state and periodic flow. Thus the scheme of the unsteady flows were written as, “multi-periodic→ steady-
state→ periodic→ chaotic→ steady-state→ periodic→ chaotic.” For better confirmation of the vibrating flows in the unsteady solution, 
power spectrum density was disclosed. Two types of flow velocities, axial and secondary flow, and the temperature profiles were 
obtained for unsteady flows. It was described that for enhancing the temperature, the fluids have mixed. As a result, two vortex 
flows were grown up to six vortex flows. The secondary flows which were consisted of numerically were the same as the 
experimental result which has found by the other intellectual reviewer. This validation has ascertained us that the governing 
equation structure is completely correct. 
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Nomenclature 

Dn  Dean number                                   T  Temperature 
Tr  Taylor number                                  u  Velocity components in the x-direction                 

Gr  Grashof number                               v  Velocity components in the y-direction 

h  Half height of the cross section         w  Velocity components in the z-direction 

d  Half width of the cross section          x  Horizontal axis 

L  Radius of the curvature                      y  Vertical axis                                   

Pr  Prandtl number                                  z  Axis in the direction of the main flow 

t  Time λ  Resistance coefficient 

Greek Letters 

δ  Curvature of the duct ρ  Density 
µ  Viscosity κ  Thermal diffusivity     
υ  Kinematic viscosity ψ  Sectional stream function 
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