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Abstract. The present article reports the transient response of longitudinal fins having linear and non-linear temperature 
dependent thermal conductivity, convection coefficient and internal heat generation under two cases of base boundary condition, 
(i) step change in base temperature and (ii) step change in base heat flux. The fin tip is assumed to be adiabatic. Both, linear and 
non-linear, temperature dependency of thermo-physical properties is addressed in the mathematical formulation and the 
solution for the above cases is obtained using Lattice Boltzmann method (LBM) implemented in an in-house source code. LBM, 
being a dynamic method, simulates the macroscopic behavior by using a simple mesoscopic model and offers enormous 
advantages in terms of simple algorithm to handle even the most typical of boundary conditions that are easy and compact to 
program even in case of complicated geometries too. Although the transient response of longitudinal fins has been reported 
earlier, however power law variation of thermophysical properties for the above two base condition has not been reported till date. 
The present article first establishes the validity of LBM code with existing result and then extends the code for solving the 
transient response of the longitudinal fin under different sets of application-wise relevant conditions that have not been treated 
before. Results are reported for several combination of thermal parameter and are depicted in form of graphs. 

Keywords: Transient response, Longitudinal fins, Lattice Boltzmann Method, Base heat flux, Base temperature. 

1. Introduction 

Although, Lattice Boltzmann method (LBM) came into light [1-3] in late eighties and since then it is used as an alternate 
approach for simulating the fluid flow problem, it is only in the recent past that it has been extended to solve the heat transfer 
problems [4-18]. Computational Fluid Dynamics (CFD) is based on continuum scale, which disregards the reality that matter is 
made up of individual molecules. In contrast, Lattice Boltzmann method is based on mesoscopic scale in which the collection of 
molecules is considered as single unit and is represented by a distribution function. In traditional approximation techniques, the 
nodal value of the field variable at any successive nodes is dependent on the nodal value at previous nodes. One may recall that 
in FDM, a value at a particular node in a grid is obtained by linear interpolation of the known value at the surrounding nodes of 
the grid. In FVM and FEM, the function interpolation might not be linear depending on the choice of basis function that are used 
to approximate the field variable. Such is not the case in LBM wherein the distribution functions, which represent a unit of 
collection of molecule, stream along a given direction (depending dimension of problem) and collide at successive node. These 
successive nodes are known as lattice sites wherein upon collision the distribution function further stream to different direction. 
It has been observed that in LBM, unlike CFD, the need to solve the energy equation at each time step is not essential and thus 
less computational effort/time is required to arrive at solution. 

Under transient state, heat transfer through surfaces arise with step changes in boundary conditions till the field attains the 
steady state. In addition to these, under severely high temperature applications, the thermophysical properties vary non-linearly 
with temperature for many thermally conductive materials. In such high-temperature heat transfer related studies, fins arrest 
large interest among the researchers due to their wide and versatile applications under different operating conditions. These are 
extended surfaces for enhancing the heat transfer from heat sources/surfaces by exposing the larger surface area to convection. 
These extended surfaces are fabricated by extruding, welding, or wrapping a thin metal sheet on a surface. Numerous 
applications of fins are found in highly intricate installations of gas turbine engine, internal combustion engine, heat exchangers 
[19] and many more. For applications of fins in thermoelectric power generator, Zebarjadi [20] designed a fin model where 
convection coefficient of side wall were also addressed. Further, Dannelley and Baker [21] reported enhanced effectiveness of 
fractal fins due to structure obtained from the transformation of longitudinal fins. Such fractal fins find vast application in Micro-
Electro-Mechanical-Systems [22]. Fins are used in majority of the applications, though steady state study of extended surface are 
justifiable, the transient study is very pertinent in certain application such as jet engines, reactors, space vehicles and, in the 
present digital era electronic component.  
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Review of literature indicates that although LBM has been widely applied to solve conduction-radiation problems, its 
application in solving conduction-convection heat transfer problems have been rarely been reported. Mishra et al. [4] reported the 
solution of energy equation assuming negligible heat transfer through convection for a conduction-radiation problem with 
constant thermo-physical properties. In [4], the radiative information is calculated using DTM and then implemented in 
governing differential equation which is then solved using LBM. Mishra et al. [5] also reported the solution of energy equation of 
two-dimensional rectangular plate under conduction radiation heat transfer using LBM and FVM. Gupta et al. [6] extended these 
studies for solving heat transfer problems with temperature dependent thermal conductivity using LBM-FDM wherein the 
radiation information is obtained using DOM and variable thermal conductivity is incorporated with the help of modified 
relaxation time. In another work, Mishra et al. [7] used DTM to compute the radiation information for a conduction-radiation 
problem with variable refractive index. This is followed by implementation of LBM with variable relaxation time to solve the 
energy equation. Mahmoudi [8] and Mahmoudi et al. [9] also reported the solution of conduction-radiation problem wherein the 
radiation information is first obtained using LBM and is extended to solve the conduction-radiation problem with variable 
conductivity and variable refractive index. Hamila et al. [10] also used LBM to investigate the heat transfer problems with variable 
thermal conductivity by altering the equilibrium distribution function. Rahmati et al [11] reported the solution of 2-D non-Fourier 
heat conduction problem with variable thermal conductivity using LBM.  

While a host of literature is available reporting different methods for solving the heat transfer problems applicable to different 
geometries, these solutions are quite broad and several attempts had been carried out to report the performances of typical 
geometries pertaining to different applications. One such application is that of heat transfer through extended surfaces and 
numerous articles are reported predicting their performance under a given set of conditions. Suryanarayna [23] and Donaldson 
[24] presented the analytical solution of longitudinal transient fins with insulated tip using Laplace transformation. In these 
studies fin base temperature or fin base heat flux is assumed to be a function of time while other properties treated as constant. 
Suryanaryana [25] further extended this work to analyse the transient performance of fin with time dependent base fluid temp. In 
another work, Assis and Kalman [26] reported the solution of fins of different profile with base flux and base transient boundary 
condition.  

It is well established that in heat transfer problem, with large temperature differences between two extremities, the fin 
material properties become temperature dependent. In common practice this dependency is ignored as it renders non-linearity to 
the differential equation at the cost of accuracy of solution. In most of these practical applications, heat transfer coefficient varies 
non-linearly with the temperature (as a power law function of temperature) as reported by [28] and [29]. In recent times, 
researchers have reported advanced mathematical routines to handle such non-linearity and predict the fin performance more 
accurately. Malekzadeh et al. [30] used differential quadrature element method (DQM) to solve the non-linear steady and transient 
state fins with variable thermal conductivity. Mottsheki et al. [31] reported the transient behaviour of longitudinal fin with 
variable thermal conductivity and heat transfer coefficient for different profiles. In some situations, thermal conductivity of the 
material is considered as power law function of temperature [31]. Such variation of thermal conductivity in the application 
problem of fins is reported in [33] and [34]. However in these reports, heat generation is not considered whereas in some practical 
application of the fin, such as nuclear rod, jet engines or current carrying conductors, the performance is greatly affected by heat 
generation within the fin. Internal heat generation in thin fins were first reported by Minkler and Rouleau [35]. Further Unal [36] 
analytically determined the temperature distribution of straight fins with uniform and non-uniform heat generation along with 
the non-uniform heat transfer coefficient, in which non-uniform heat generation is treated with a third degree polynomial 
function of temperature. Razelos and Satyaprakash [37] optimized the convective trapezoidal pin fins under constant as well as 
spatially varying heat generation. In another work Kundu and Das [38] reported the optimum profile of thin fin under volumetric 
heat generation. In this context, study of the steady state longitudinal fin with temperature dependent thermal conductivity and 
internal heat generation has been reported by Sobamowo [39] using FDM  and Ghasemi et al. [40] using DTM. Sobhan et al. [41] 
implemented the DTM-FDM technique to examine the performance of longitudinal fins of different profile with temperature 
dependent thermal conductivity, heat transfer coefficient and temperature dependent internal heat generation. Mhlonge et al. [42] 
studied the response of transient fin under step change in base temperature and step change in base heat flux with power law 
variation in thermo-physical properties. However, these mathematical approaches are quite involving and require substantial 
computational effort. Study of extended surface or fins with LBM has seldom being done and literature reviews indicate towards 
the scarcity of such studies. LBM, being a dynamic method, simulates the macroscopic behaviour by using a simple mesoscopic 
model and offers enormous advantages in terms of simple algorithm to handle even the most typical of boundary conditions that 
are easy and compact to program even in case of complicated geometries too. Bamdad et al. [14] used the inverse method to 
determine the temperature profile under transient condition and then used LBM and ACGM to determine the heat flux of 
longitudinal fin.  

An extensive survey of literature reveals that the transient response of longitudinal fins in high temperature applications 
wherein the thermo-physical properties vary with temperature (and time), subject to step change in base temperature/step 
change in base heat flux with internal heat generation is not yet been reported. The complexity of the problem presents a 
hindrance to applicability of common and popular approximation and hence calls for the ingenuity of Lattice Boltzmann Method 
and is proposed in the present work. 

2. Mathematical formulation of the transient response of longitudinal fin 

A longitudinal fin of rectangular cross-section (width along z-axis, w and thickness along y-axis, t) of length (along x-axis), l, 
as shown in Fig 1(a-e), with adiabatic tip is studied under different base boundary conditions. The unsteady (transient) state is 
formulated using one dimensional energy balance with heat generation for fin materials having temperature depended 
thermophysical properties. Schematic representation of energy balance equation is shown in Fig 1(f) wherein it is assumed the fin 
material is homogeneous and isotropic and thermal condition at the tip of the fin does not vary along the width and thickness of 
the fin. At the contact surface of the fin to the base wall of the heat source, thermal resistance due to contact is assumed to be 
negligible.  

The different base boundary conditions, as mentioned above, treated in the mathematical formulation are as follows: 
Case 1: Step change in base temperature  
Case 2: Step change in base heat flux 
In high temperature applications, under transient conditions, when substantial heat dissipates through the fin, the above-

stated two cases of base boundary conditions mathematically simulate the practical scenario in the most apposite manner. 
Particularly in the application of the reactor, air cooled engine or combustion chamber etc., the transient state of heat flow is an 
important area of research wherein, in the transient state, the base boundary  condition of the extended surface or fins could be 
best handled mathematically by assuming any one the two case motioned above. Further, it is observed that under high 



Transient Response of Longitudinal Fins under Step Changes in Base Temperature and Heat Flux using Lattice Boltzmann Method  
 

 

Journal of Applied and Computational Mechanics, Vol. 8, No. 3, (2022), 925-939 

927 

temperature application the thermal conductivity of different fin material exhibit a dependency on the temperature. Although 
literature review indicates that most of the studies assume linear dependence of thermal conductivity on temperature however, 
for most of the fin materials, this dependency is nonlinear at high operating temperature ranges [32]. As a result, the present 
study proposes the mathematical formulation of longitudinal rectangular fins under heat generating conditions with non-linear 
temperature dependency of thermophysical properties. Further the formulation is generalized for variable heat transfer 
coefficient and varying internal heat generation. The mathematical formulation is derived using energy balance applied to 
element shown in Fig 1(f) as follows (Eq. 1-2): 

cond cond conv
x g Ex dxQ Q Q Q Q+− + = +  (1) 

Here, cond
xQ and cond

x dxQ +  is the rate of heat conducted at x and x+dx respectively, convQ is the rate of heat convection from the 

surface of the element,
g

Q is the rate of heat generation inside the element and EQ is the rate of change of energy content of the 

element 

( )c g c A c

d dT dT
A k dx Q A dx hP T T dx CA dx

dx dx dt
ρ

    + = − +    
 (2) 

Eq. 2 is the governing equation for heat transfer through structures and is treated with temperature dependent thermophysical 
properties, k and h under heat generation Qg in the following discussion. Various categories of temperature dependence of 
thermophysical properties are addressed in the present article and each is solved with both possible base boundary conditions as 
mentioned above. The normalized variables representing space, time and fin parameter are as follows: 
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2.1 Transient response under step change in base temperature  

The heat transfer coefficient (h) is assumed to be a power law function of temperature as follows:  
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Excess temperature is normalized using the following expression: 
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Further, the normalized heat generation is expressed as:  
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For determining the transient response, the boundary conditions in normalized coordinates of fins having step change in base 
temperature are treated as:  
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Fig. 1. Longitudinal rectangular fin: (a) Condenser pipe (finned heat sink) with array of longitudinal fins, (b) Half section of pipe carrying fins, (c) 
Sectional top view of pipe carrying fins, (d) Isometric view of removed section of pipe and fins with fin geometry, (e) Removed section of pipe and fin 

(top view) and (f) Heat balance over an element within the fin. 
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2.1.1 Conductivity and heat generation being linearly dependent on temperature 

The following equations are derived for longitudinal fin with thermal conductivity (k) and heat generation (Qg) assumed to be 
a linear function of temperature as defined in Eq. 3(a-b). 

( )1a t Ak k T Tξ = + −   (3a) 

( )1g go t AQ Q T Tγ = + −   (3b) 

Upon substituting Eq. 3(a-b), the governing equation is obtained as follows: 

( ) ( )
2

02
0

1 1 ( )
t

A
a t A go t A A

A c

d T T T P dT
k T T Q T T h T T C

dx T T A dt

ε

ξ γ ρ
   −      + − + + − = − +        −  

 (4) 

In the above equation, TA is the ambient temperature and T0 is the suddenly imposed base temperature (at t = 0). In terms of 
thermal parameters, the normalized coefficient of heat generation variation and normalized coefficient of thermal conductivity 
variation for the first case (Eq. 4) are as follows: 

( )

( )
t t A

t t A

T T

T T

λ γ

β ξ

= −

= −
  

Substituting the normalized variables in Eq. 4, the governing equation for first case is obtained as follows: 

( ) ( )
2

12 2
2 *1 1 tt t

t t t t t t

d d
Q N N

dX dt
εθ θ

β θ λ θ θ ++ + + − =  (5) 

2.1.2 Conductivity and heat generation varying with power law function of temperature 

In this case, the mathematical formulation is reported with step change in base temperature boundary condition for fin 
material having thermal conductivity and internal heat generation varying as a power law function of temperature as given in Eq. 
6 (a-b). The variation of heat transfer coefficient is given in Eq. 3(a). 
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 (6a) 
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κ
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 (6b) 

The governing equation for transient response of longitudinal fin having power law variation of thermal conductivity, heat 
transfer coefficient and heat generation under step change in base temperature is, thus, obtained as (Eq. 7): 

2
12 2

2 *
t t tt t

t t t t

d d
Q N N

dX dt
κ ζ εθ θ
θ θ θ ++ − =  (7) 

2.2 Transient response under step change in base heat flux 

Several thermal phenomenon are recoded in real life applications wherein the transient condition is initiated (at time t = 0) 
due to sudden variation in base heat flux. The base boundary condition, in this case, is step change in heat flux at the base of the 
fin. The formulation is carried out for two different possible variations of thermophysical properties. Similar to the derivation 
reported in the preceding section, excess temperature and heat generation is normalized as follows: 
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 (8b) 

The heat transfer coefficient (h) varies with temperature according to power law as follows: 

( )
0
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q
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Q L
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 (9) 

The transient response for longitudinal fins is obtained under the following boundary conditions in normalized coordinates for 
step change in base heat flux:  
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2.2.1 Conductivity and heat generation being linearly dependent on temperature 

Thermal conductivity (k) and internal heat generation (Qg) are assumed to be linearly dependent on temperature (Eq. 10 a-b)) 
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and power law variation of heat transfer coefficient is considered according to Eq. 9.  

( )1a q Ak k T Tξ = + −    (10a) 

( )1g go q AQ Q T Tγ = + −    (10b) 

Upon substituting Eq. 10(a-b), the governing equation in non-dimensional coordinates is obtained as follows:  

( ) ( )
2

12
2 *1 1 qq q

q q q q q q

d d
Q N

dX dt
εθ θ

β θ λ θ θ
+

+ + + − =  (11) 

In Eq. 11,  
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2.2.2 Conductivity and heat generation varying with power law function of temperature 

The thermal conductivity and internal heat generation are assumed to vary non-linearly according to power law function of 
temperature as given by Eq. 12 (a-b). Heat transfer coefficient follows the relation given in Eq. 9. Upon substituting the parameters, 
the normalized governing differential equation is obtained as given in Eq. 13.  
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q
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2
12

2 *
q q qq q

q q q q

d d
Q N

dX dt
κ ζ εθ θ
θ θ θ

+
+ − =  (13) 

3. Lattice Boltzmann Solver 

  In the preceding section, the governing differential equation modeling the transient response of longitudinal fins with 
temperature dependent thermal conductivity, internal heat generation and heat transfer coefficient is derived for step change in 
base temperature (Eq. 5 and Eq.7) and step change in base heat flux (Eq. 11 and Eq.13). The non-linear governing differential 
equations (Eqs. 5, 7, 11 and 13) are then solved using LB-Solver, an in-house MATLAB® source code (flowchart shown in Fig 3). 
Although, in recent years, as an alternative to CFD, Lattice Boltzmann Equations have paved deeply into the sphere of numerical 
schemes based on Methods of Approximations, these have proved equally efficient to simulate transport equations involving heat 
and thermal energy. In one of the popularly adopted approaches, the mathematical model of transport equations, being partial 
differential equations (PDEs), are treated by different discretization based numerical schemes at macroscopic scales wherein 
these are converted into set of linear algebraic equations. In another approach for solving the transport equations, the tiny 
particles are simulated at microscopic scale and treated with Hamilton’s equation. However, the drawback of the first approach is 
the difficulty to arrive at a solution in presence of non-linearity and other complexities, while the second approach is simply too 
large to handle if applied at problems of macroscopic dimensions. Lattice Boltzmann equation exists at the mesoscopic scale and 
has been reported widely to have the ability to close the gap between simulations at macroscopic and microscopic levels. This is 
possible due to the setting up of simplified mesoscopic kinetic models based on the microscopic processes such that the 
macroscopic averaged properties comply with conservation laws. LB equation is spatially and temporally second order accurate, 
sufficient in terms of precision requirement in most applications. In LBM, spatial discretization is carried out using blocks called 
lattices and at each lattice site, a complete set of particle distribution functions are located. The dimension of the problem (n) and 
the number of velocity vectors (m) generate the nomenclature (DnQm) for the types of lattice node arrangements (Fig. 2. a-c). In 
general, for one dimensional problems, the commonly used lattice models are D1Q2, D1Q3 and D1Q5 (Fig. 2.a-c). 

3.1 Discretized Boltzmann equation with Bhatnagar-Gross-Krook-Welander (BGKW) approximation 

The discretized form of Boltzmann Equation, in absence of external forces is reported as follows [1]: 

.i
i i

f
c f

t

∂
+ ∇ =Ω

∂
 (14) 

 

 

Fig. 2(a-c). Lattice models commonly used in 1D formulation with respective nomenclatures (fi are the distribution functions). 
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Table 1: Normalized variable relaxation time *( )τ and source terms (S) for discretized LB equations 

S.N0. Case Governing Equation *
τ  S 

1 Step change in base temperature 

Eq. 5 
*

* 2

(1 )
( / ) 2

t t t

X t

β θ+ ∆
+

∆ ∆
12 2(1 ) t

t t t tQ N N ελ θ θ ++ −  

Eq. 7 
*

* 2( / ) 2

t

t t

X t

κθ ∆
+
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12 2t t

t t tQ N Nζ εθ θ +−
 

2 Step change in base heat flux 

Eq. 11 
*

* 2

(1 )

( / ) 2
q q t

X t

β θ+ ∆
+

∆ ∆

12(1 ) q

q q q qQ N
ε

λ θ θ
+

+ −
 

Eq. 13 
*

* 2( / ) 2

q

q t

X t

κ
θ ∆

+
∆ ∆

 
12q q

q q qQ N
ζ ε
θ θ

+
−  

 
In Eq. 14, fi are the distribution functions at the lattice nodes of the Boltzmann model, ci are the discretized velocities for 
streaming of the distribution functions from one node to the subsequent node and Ω  is the collision operator in terms of 
distribution function, f. Eq. 14 is difficult to solve due to the presence of the collision term Ω  and hence a simple term based on 
BGKW approximation is used to replace the collision term without introducing significant error.  Upon substituting Ωwith 
BGKW approximation in Eq. 14: 

( )
. ( )

eq
eqi i i

i i i i

f f f
c f f f

t
ω

τ

∂ −
+ ∇ = − =

∂
 (15) 

In discretized form, Eq. 15 is written as: 

( ) ( )
( , ) ( , )

, ,
eq
i i

i i i

t f x t f x t
f x c dt t dt f x t

τ

 ∆ −  + + − =  (16) 

In Eq. 14 and 15, fi
eq is the (equilibrium) distribution function at relaxation time τ  when equilibrium is attained and is 

determined by the type of problem or application. In Eq. 16, fi
eq is defined as: 

( )
2

2 4 2

.
( ) 1

2 2
eq ii

i i i
s s s

ucuc u u
f f w

c c c

  = + + −    
∑  (17) 

In diffusion problems, macroscopic velocity, u in Eq. 17 is zero. Eq. 16 is a linear PDE wherein the expression at LHS represents 
streaming meaning that the distribution function advects along the lattice link with velocity ci (and weightage, wi) and the 
expression at the RHS represents collision. The completion of these two steps completes one time step. Relaxation time, τ is 
related to diffusion coefficient by Chapman-Enskong expansion as follows [1]: 

2 2 1
0.5 0.5

x x

t D t t D

τ
α

ω

   ∆ ∆  = − = −       ∆ × ∆ ∆ ×
  

Accuracy and stability Guidelines for LBM-BGKW approximation have been reported by [2, 43], wherein the necessary stability 
condition is reported match for / 0.5.tτ ∆ >  Hereby, following the same, the constraint of non-negativity of distribution 
function is also fulfilled.  
  

 

Fig. 3. Solution algorithm of Lattice Boltzmann Solver in-house code.  
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3.2 Lattice Boltzmann equations for simulating transient response of longitudinal fins 

For the present study, normalized Boltzmann equation for determining the transient response of longitudinal fins subject to 
cases described in the preceding sections is derived using D1Q3 lattice model and reported as follows: 

* * * * *

* * * * *
*

( , ) ( , )
( , ) ( , )

eq
i i

i i i

t f X t f X t
f X dX t dt f X t w S t

τ
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In Eq. 19, the last term of the expression in the RHS is the source term (S) for the heat diffusion problems arising out of the 
convection, heat generation and other similar terms present in the governing differential equation. The normalized field variable 
and normalized equilibrium distribution function are converted to an equivalent terms in Boltzmann equation and are as follows: 

* * *( , ) ( , )iX t f X tθ =∑   

*eq
i if w θ=   

Eq. 19 is the governing equation in LB discretized form. When compared to the governing differential equations (Eq. 5, 7, 11 and 
13), the normalized relaxation time ( *τ ) and source terms (S) for each case is given in Table 1. Corresponding to eq. 7 and eq. 13 in 
Table 1, the relaxation time ( *τ ) is taken as a nonlinear term thereby taking into account the nonlinear material properties 
prevailing in most of the application of heat transfer. Also, the value of relaxation time varies according to the value of 
temperature at each node. Kruger et al. [2] have reported the accuracy and stability for BGKW approximation, in terms of 

*τ . 

4. Results and validations  

  In this section, results obtained from the solution of governing equations (Eq. 5, 7, 9 and 13) using LBM solvers are reported 
under different boundary condition respectively. As reported in the previous section, the variation of heat transfer coefficient is 
assumed to be a power law function for all the cases. The power law index (), has been assumed to be -0.25, 0, 0.25, 0.33, 2 and 3 
throughout the study. The assumed values of power law indices represent most of the practical applications such as boiling and 
condensation (laminar), turbulent natural convection, nucleate boiling, radiation heat transfer [27] and many more. The 
normalized fin parameter, N is taken in the range of 0.1 to 4.0. Larger value of N helps in attaining the steady state readily [23]. 
Normalized heat generation parameter, Q, is varied from 0.0 to 1.0. The scalar multipliers, β and λ, used to define the linear 
dependence of thermal conductivity and heat generation on temperature (Eq. 5 and 11) respectively are varied from 0.0 to 1.0 
while in case of power law variation of thermal conductivity () and heat generation () with temperature (Eq. 7 and 13), the 
normalized indices are varied from 0.0 to 2.0 and 0.0 to 3.0 respectively. The proposed formulation is validated as shown in Figs 
4(a-b). The effects of thermo-physical parameters (N, Q, β and λ) and indices (,  and ) on temperature distribution along the fin 
length are investigated and reported in Figs. 5-24(a-b). The variation of normalized fin temperature (at t* = 1.0) and instantaneous 
fin tip temperature (at X = 1.0) with different combinations of thermo-physical parameters are reported in Figs 5-9(a-b) and Figs 
10-14(a-b) for linear and power law varying properties of fins subject to step change in base temperature while similar plots are 
reported in Figs 15-19(a-b) and 20-24(a-b) for fins having linear and power law varying properties subject to step change in base 
heat flux. The combination of parameter values are given in the legends of the respective figures. In case of high temperature 
applications, the value of thermal conductivity and heat generation may increase or decrease due to temperature dependence, 
these variation are assumed to be linear or nonlinear, depending upon the value β, , λ and  . Values of β > 0 and  <0 represent 
increase in thermal conductivity with temperature and vice-versa. Similar behaviours were found for λ and  . 

4.1 Validation 

Temperature profile obtained along the fin length for the step change in base temperature and step change in base heat flux 
using Lattice Boltzmann solver is compared with results obtained from Moitsheki and Harley [31] and Mhlonge et al. [42] 
respectively and plotted in Fig 4(a) and 4(b). In both cases, [31] and [42], the governing differential equations were solved using lie 
symmetry analysis wherein depending upon the symmetry of differential equation, exact solution and numerical solution are 
obtained. The insights of lie principle are available in the texts [44-45]. The obtained results are found to be in good agreement 
with the benchmarks results. Fig. 4 (a-b) also depicts the effect of normalized time (t*) on normalized temperature (θt). The 
normalized time (t*) is the final time up to which the fin behaviour is explored in the code. In this case, t*=1.0. It is to be noted 
from the figures that at each time step, the temperature recorded along the fin length is the instantaneous temperature.  

 

 

Fig. 4. Normalized temperature distribution in transient fin (a) for constant base temperature having Qt = λt = 0.0, N = 1.0, βt = 1.0 and t = 1.0 and 4(b) 
for constant base flux having Qq = 0.0, N = 2.0, kq = 0.1 and q = 4.0. 
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Fig. 5. Effect of N on temperature for fin with linear property variation under step change in base temperature. 

 

Fig. 6. Effect of β on temperature for fin with linear property variation under step change in base temperature. 

 

Fig. 7. Effect of Q on temperature for fin with linear property variation under step change in base temperature. 

 

Fig. 8. Effect of λ on temperature for fin with linear property variation under step change in base temperature. 
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4.2 Response of fin temperature due to step change in base temperature 

   In this case, transient response within the fin is initiated by sudden change in base temperature. The temperature 
response is reported for both cases of linear and power law variation of thermal conductivity and heat generation with 
temperature. In Figs. 5(a)-9(a), first, the temperature distribution is plotted along the normalized fin length at t* = 1.0 followed by 
the plot of instantaneous temperature of the fin tip (at X = 1.0) throughout the runtime in Figs. 5(b)-9(b). 
In Fig 5, the effect of fin parameter (N) on normalized temperature (θt) is first plotted along the normalized length (X) followed by 
the transient response of instantaneous fin tip temperature till the steady state is attained. It is evident that with increase in fin 
parameter, N, more heat is transferred to environment and normalized temperature decreases along the length of fin. Fig 6 
reports the effect of normalized thermal conductivity parameter (βt) on normalized temperature distribution for given N, Qt, t and 
λt. It is observed that as βt increases, heat conduction through fin increases and consequently the heat transfer rate through the 
fin increases. In Fig 7 and Fig 8, the effect of normalized heat generation parameter (Qt and λt) on normalized temperature profile 
for constant value of t, N and βt respectively is plotted. It is observed that with increase in normalized internal heat generation 
parameter, temperature gradient of fin decreases. Fig 9 shows the effect of t on fin temperature distribution for given values of N, 
Qt, βt and λt. It is to be noted that in subsequent plots, the temperature at fin tip (X = 1.0) in Figs 5-9(a) corroborates with the 
instantaneous temperature recorded in Figs 5-9(b) at t* = 1.0.   
Similar results are plotted in Figs 10-14 (a-b) for power law dependent heat generation parameter and thermal conductivity. 
Temperature decreases along the fin length with increase in normalized fin parameter (N) since more heat is transferred to 
environment as shown in Fig. 10 (a-b). The effect of non-linear heat generation is clearly evident from Fig. 10(b) wherein the 
instantaneous temperature of fin tip is plotted with normalized time (t*). It is observed that with increase in normalized fin 
parameter, N, the steady state is attained at a faster rate. Interestingly, it is also observed that for smaller N (< 1.0), the 
temperature at fin tip rises after a time lag. This, in other words, could be termed as a response delay of the fin tip to experience 
rise in temperature. The power dependent thermal conductivity, heat transfer coefficient, along with the geometry parameters of 
the fin play a significant role in determining N and subsequently in determining the response delay. In other words, the delay in 
response could be explained as the dissipation of entire heat flowing through the fin before reaching the tip. This phenomenon is 
termed as response delay and the normalized time till response delay could be termed as time lag. 
To further investigate this phenomenon, the effect of thermal conductivity (t) on response delay is studied and reported in Fig 
11(a-b) for N = 0.5. It is observed that as the value t increases, heat conduction through fin decreases and consequently the heat 
transfer rate through the fin decreases. In Fig 12(a), the temperature at X = 1.0 represents the fin tip temperature at t* = 1.0 and 
points at the occurrence of response delay resulting into inevitable time lag. This is corroborated in Fig 12(b) wherein the 
instantaneous temperature is plotted against normalized time. Fig 12 and Fig 13 shows the effect of normalized heat generation 
parameter (Qt and t) on normalized temperature for constant value of t, N and t respectively and similar observations are 
plotted. It is observed that with increase in normalized internal heat generation parameter (Qt), temperature gradient of fin 
decreases and with increase in normalized internal heat generation parameter (t) temperature gradient of fin increases. In Fig 14, 
the effect of t on temperature profile with constant value of N, Qt, t and t is plotted. 

 
 

 

Fig. 9. Effect of ε on temperature for fin with linear property variation under step change in base temperature. 

 

 

Fig. 10. Effect of N on temperature for fin with power law variation under step change in base temperature. 
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Fig. 11. Effect of k on temperature for fin with power law variation under step change in base temperature. 

 

Fig. 12. Effect of Q on temperature for fin with power law variation under step change in base temperature. 

 

Fig. 13. Effect of  on temperature for fin with power law variation under step change in base temperature. 

 

Fig. 14. Effect of ε on temperature for fin with power law variation under step change in base temperature. 
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Fig. 15. Effect of N on temperature for fin with linear property variation under step change in base heat flux. 

 

Fig. 16. Effect of β on temperature for fin with linear property variation under step change in base heat flux 

 

Fig. 17. Effect of Q on temperature for fin with linear property variation under step change in base heat flux. 

 

Fig. 18. Effect of λ on temperature for fin with linear property variation under step change in base heat flux 
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Fig. 19. Effect of ε on temperature for fin with linear property variation under step change in base heat flux. 

 

Fig. 20. Effect of N on temperature for fin with power law variation under step change in base heat flux. 

 

Fig. 21. Effect of k on temperature for fin with power law variation under step change in base heat flux 

 

Fig. 22. Effect of Q on temperature for fin with power law variation under step change in base heat flux 
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Fig. 23. Effect of  on temperature for fin with power law variation under step change in base heat flux 

 

Fig. 24. Effect of ε on temperature for fin with power law variation under step change in base heat flux 

4.3 Response of fin temperature due to step change in base heat flux 

In this case, the transient state within the fin is initiated by sudden change in base heat flux (q0). The distribution of 
normalized temperature θq along the normalized length (X) and variation of normalized fin tip temperature with normalized time 
(t*) for linear and power law variation of thermal conductivity and heat generation parameter is reported. In Fig. 15 (a-b), the effect 
of normalized fin parameter on temperature distribution along the fin length and instantaneous fin tip temperature is reported 
for given values of heat generation and thermal conductivity parameters. From Fig 15 (b) it is observed that for higher value of N 
the fin tip attains steady state readily at relatively low temperature compared to smaller values of N. In Fig 16(a) the temperature 
distribution is plotted at normalized time t* = 1.0.  
Similar plots are shown in Figs. 16-19 (a-b). In these Figs the effect of variation of different thermal parameters on fin 
temperatures is reported like the effect of normalized thermal conductivity parameter (βq), normalized heat generation parameter 
(Qq and λq) and q on temperature profile is reported in Fig. 16(a-b)-19(a-b) respectively. 
Similarly Fig. 20(a-b)-24 (a-b) reports the effect of variation of different thermo-physical parameters on temperature distribution 
along the fin length and instantaneous tip temperature for power law dependent conductivity and heat generation parameters. It 
is observed from Fig. 20 that normalized temperature decreases along the length of fin with increase in normalized fin parameter 
(N) as more heat is transferred to environment for higher values of N. Fig. 21 shows the effect of normalized thermal conductivity 
parameter (q) on normalized temperature distribution for constant value of N, Qq, q and q. It is observed that as the value q 
increases heat conduction through fin decreases consequently the heat transfer rate through the fin decreases. Fig. 22 and Fig. 23 
shows the effect of normalized heat generation parameter (Qq and q) on normalized temperature profile for constant value of q, 
N and q respectively. It is observed from this Fig that fin temperature varies inversely with Qq and directly with q. Fig. 24 shows 
the effect of q on temperature profile with constant value of N, Qq, q and q. 

5. Conclusion 

A newly developed method, Lattice Boltzmann method is successfully implemented to determine the transient response of a 
longitudinal fin having temperature dependent thermo-physical properties. In this work fin temperature along the fin length and 
instantaneous fin tip temperature are reported for fin with step change in base temperature and step change in base heat flux 
respectively. The results obtained using LBM are successfully validated with available literature and are found to be in good 
agreement. The temperature dependence of thermo-physical parameters treated in this article are based on linear as well as 
power law function. It is observed that the fin temperature attains its steady state readily for larger values of fin parameter N. In 
case of power law dependent thermal conductivity and heat generation, an interesting occurrence of response delay in fins is 
reported. The reason for this is attributed to the fact that in such cases the heat transfer takes place entirely before reaching the 
fin tip. The non-linearity of thermal conductivity, heat generation and convection coefficient, all taken together in the 
mathematical model, physically represents the practical application scenario of heat transfer through fins under extreme 
temperature conditions as the material property behaviour becomes non-linear at excessively high temperature conditions. The 
methods readily reported in available literature so far could not easily deal with these accumulated non-linearity arising in high-
temperature applications. The proposed solution based on LBM is more suitable, in this respect, for high temperature application 
because the inherent nature of LBM model deals with the accumulated non-linearity in a linear manner by means of 
manipulations using the local streaming and collision process. Moreover non-linear geometry arising out of variable profile of fin 
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can also solved by this method. 
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Nomenclature 

Ac 

cs 

D 

fi 

fi
*
 

ci   

h 

h0 

L 

k 

ka 

 

Cross-section area  
Speed of sound 
Dimension of problem 
Particle distribution function 
Normalized particle distribution function 
Particle velocity 
Convective heat transfer coefficient 
Convective heat transfer coefficient at fin base 
Length of Fin 
Thermal conductivity of material 
Thermal conductivity of fin material at ambient 
temperature 

N2 

P 

Q0 

t* 

T0 

TA 

X(x/L) 

α 

τ 



Normalized thermo-physical properties  
Fin Perimeter  
Heat transfer at base of fin 
Normalized time 
Temperature at the base of fin  
Temperature of ambient air   
Normalized length 
Thermal diffusivity 
Relaxation time                
Relaxation frequency 
Subscripts t and q: for the cases of step 
change in base temperature and step change 
in heat flux respectively. 
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