

Research Paper

# The Relations between the Various Critical Temperatures of Thin FGM Plates

Ahmed Hassan Ahmed Hassan<sup>10</sup>, Naci Kurgan<sup>20</sup>, Nihat Can<sup>30</sup>

<sup>1</sup> Department of Mechanical Engineering, Ondokuz Mayis University, Samsun, 55139, Turkey, Email: 15210457@stu.omu.edu.tr

<sup>2</sup> Department of Mechanical Engineering, Ondokuz Mayis University, Samsun, 55139, Turkey, Email: naci.kurgan@omu.edu.tr

<sup>3</sup> Department of Mechanical Engineering, Ondokuz Mayis University, Samsun, 55139, Turkey, Email: 13210381@stu.omu.edu.tr

Received August 20 2020; Revised September 07 2020; Accepted for publication September 07 2020. Corresponding author: A.H.A. Hassan (15210457@stu.omu.edu.tr) © 2020 Published by Shahid Chamran University of Ahvaz

**Abstract.** This work investigates the relations between the critical temperature of the thin FGM plates under various temperature distributions through the thickness resting on the Pasternak elastic foundation. Both rectangular and skew plates are investigated. The uniform, linear, and nonlinear temperature distributions through the plate's thickness are considered. Formulations are derived based on the classical plate theory (CPT) considering the von Karman geometrical nonlinearity taking the physical neutral plane as the reference plane. The partial differential formulation is separated into two sets of ordinary differential equations using the extended Kantorovich method (EKM). The stability equations and boundary conditions terms are derived according to Trefftz criteria using the variational calculus expressed in an oblique coordinate system. Novel multi-scale plots are presented to show the linear relations between the critical temperatures under various temperature distributions. The critical temperature of plates with different materials are also found linearly related. Resulting relations should be a huge time saver in the analysis process, as by knowing one critical temperature of the one FGM plate under one temperature distribution many other critical temperatures of many other FGM plates under any temperature distributions can be obtained instantly.

**Keywords**: Multi-term extended Kantorovich method; Classical plate theory; Thermal buckling; Functionally graded material; Pasternak elastic foundation.

# 1. Introduction

Back in 1972, an advanced inhomogeneous composite material that has its composition changes gradually between different phases through one or more dimension was theoretically proposed in [1, 2] as an effort to reduce or eliminate the stress concentration that occurs due to the sudden change in the material properties at the interfaces between different phases in the conventional composite materials [3]. That advanced inhomogeneous composite material is called the functionally graded material (FGM). In 1984, the concept of the FGM was implemented in the design of thermal resistant structures [4], as the first engineering application of FGM. Since then, many engineering components have been designed as FGM. Examples of FGM engineering applications and products are presented in [5-10]. When a FGM structure has a wide flat planar surface with relatively small thickness it can be reasonably modeled as a FGM plate. Due to the relative simplicity of the flat plate's structure, many simplified two-dimensional theories were proposed to model the plates. Those plate theories provide accurate enough models while being much simpler to use than the general three-dimensional elasticity theory.

While moderately thick and thick plates have a considerable effect of the transverse shear deformations [11, 12], and the very thin plates as micro- and nano-plates have a considerable scale effect [13-17], thin plates have negligible transverse shear deformations as well as negligible scale effect. This makes thin plates describable with the most simplified plate theory which is the classical plate theory (CPT), developed in 1881 [18]. Many engineering parts and structures are modeled as rectangular or skew plates [19], for example, the tail-fin and swept wings of airplanes [20] are modeled as skew plates. FGM face sheets attached to isotropic core material can be modeled as FGM plates resting on an elastic foundation [21]. The Pasternak model of the elastic foundation is widely used to describe the mechanical interactions between structure and foundation [22]. It treats the bond between the structure and the foundation as two elastic layers, the first has only out-of-plane extension stiffness ( $k_p$ ), as shown in **Fig. 1**. If only the first layer of normal stiffness is considered, the model reduces to the simpler Winkler model.

Mainly, analysis of plates include dynamic [23, 24], and static analyses. The latter analyses include bending [25, 26] and buckling [27, 28] analysis. Selecting an analysis to conduct should be based on the application and conditions for which the plate is designed. In applications where a plate experiences thermal loads, thermal buckling should be one of the conducted analyses in the design process to obtain a correct prediction of the behavior of the plate. Thermal buckling of simply supported rectangular FGM plates not resting on an elastic foundation is solved analytically in [29, 30]. However, for the cases of skew FGM plates as well



as FGM plates resting on elastic foundation, there are only numerical solutions and no analytical ones are found in the literature. The commonly implemented numerical methods in the thermal buckling analysis of FGM plates are the element-free Galerkin's solution (EFG) [31] and the finite element method (FEM) [32, 33]. Another method has gained increasingly interest in the field of computational mechanics is the extended Kantorovich method (EKM). EKM was first proposed by Kerr [34] to solve partial differential equations (PDE) by simplifying the problem to a set of ordinary differential equations (ODE), which are then solved iteratively starting from arbitrary trail functions. Singhatanadgid and Singhanart [35] presented a comprehensive review of the implementation of EKM in the analysis of plates. Just a few studies implemented EKM in the bending analysis of FGM skew plates resting on an elastic foundation. Those studies are [25, 36-39]. However, the only study found in the literature that implemented EKM to the buckling analysis of the skew plates is [27], in which buckling under mechanical loading was considered.

Javaheri and Eslami [29] presented the relation between the critical uniform temperature and the critical rise of linearly changing temperature through the length of the rectangular FGM plate. To the best of the authors' knowledge, the relations between the critical temperatures of FGM plates under various temperature distributions through the thickness have not been investigated yet. In addition, to the best of the authors' knowledge the thermal buckling of skew FGM plates has not been investigated using EKM yet. Implementing EKM to investigate the thermal buckling of skew plates is presented here for the first time. This article aims to use EKM to obtain the numerical solution of the critical temperatures of thin skew plates resting on the Pasternak elastic foundation, and then investigate the relations between those critical temperatures.

Formulations are derived based on the classical plate theory (CPT) considering the von Karman geometrical nonlinearity and taking the physical neutral plane as the reference plane. The stability equations and boundary conditions terms are derived according to Trefftz criteria of the minimum total potential energy using the variational calculus expressed in an oblique coordinate system. This derivation is different in concept than the ones shown in [27, 40-43] in which the stability equations are confused with the equilibrium equations, as they are obtained by equating the first variation of the total potential energy to zero, which is fundamentally wrong, as explained in [44]. This article illustrates in detail the correct derivation of the stability equations and the boundary conditions of the plates resting on elastic foundation using EKM.

The previously published works on this topic, e.g., the recent book [45], investigate each of the critical temperatures individually. In other words, they intend to find the analytical or numerical solutions of the critical temperature of the FGM plate under each different temperature distribution separately. In this article, in addition to the derivation of the numerical solution method using EKM, further investigation of the linear relations between the critical temperatures is also presented. The relations between the critical temperatures of plates with different materials are also investigated. Resulting relations should be a huge time saver in the analysis process, as by knowing one critical temperature of the one FGM plate under one temperature distribution many other critical temperatures of many other FGM plates under any temperature distribution through the thickness can be obtained instantly.

The article starts with the derivation of the separated stability equations and boundary conditions, and then the validation of the method by comparing the results with those found in the literature. Lastly, the linear relations between the critical temperatures are derived and discussed.

# 2. Oblique Coordinate System and Transformations

Considering the coordinate systems presented in **Fig. 2**, the transformation between the oblique ( $\xi - \eta$ ) and the Cartesian (x - y) coordinate systems is governed by the skew angle  $\phi$  as

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{s} \\ \mathbf{0} & \mathbf{c} \end{bmatrix} \begin{bmatrix} \xi \\ \eta \end{bmatrix} \qquad \mathbf{c} = \cos \phi \qquad \mathbf{s} = \sin \phi$$
 (1)

As shown in [25, 27] the functions in the (x - y) coordinates can be transformed into the corresponding functions in the ( $\xi$  -  $\eta$ ) coordinate system by using eq. (1). The considered oblique coordinate system is the one having each axis parallel to two opposite edges of the plate.

# 3. Stability Equations and Boundary Conditions

The stability equation and boundary conditions are derived here based on the minimum potential energy criterion, also known as Trefftz criterion [44], expressed as

$$\delta\left(\overline{\delta}^{2}\boldsymbol{e}_{p}\right)=\boldsymbol{0}\tag{2}$$







Fig. 2. Coordinate systems convention and edge labeling



where  $\overline{\delta}^2 e_p$  is the second variation of the potential energy evaluated at the equilibrium state prior to the buckling, i.e.  $(\delta e_p = 0)$ . The total potential energy  $e_p$  of a plate resting on the Pasternak elastic foundation is the summation of the potential energy of the plate  $U_p$  and the potential energy of the elastic foundation  $F_p$ .

$$e_p = U_p + F_p \tag{3}$$

 $U_p$  of a thin rectangular plate having dimension  $2a \times 2b$  and thickness h, is given as

$$U_{p} = \frac{1}{2} \int_{-a}^{a} \int_{-b}^{b/2} \int_{-h/2}^{h/2} \left[ \sigma_{xx} \overline{\epsilon}_{xx} + \sigma_{yy} \overline{\epsilon}_{yy} + \sigma_{zz} \overline{\epsilon}_{zz} + 2\overline{\gamma}_{xy} \tau_{xy} + 2\overline{\gamma}_{xz} \tau_{xz} + 2\overline{\gamma}_{yz} \tau_{yz} \right] dz dx dy$$
(4)

where  $\bar{\epsilon}_{xx}$ ,  $\bar{\epsilon}_{yy}$ , and  $\bar{\epsilon}_{zz}$  are the normal strains, and  $\bar{\gamma}_{xy}$ ,  $\bar{\gamma}_{yz}$ , and  $\bar{\gamma}_{xz}$  are the shear strains in the stated directions. Normal stress components are  $\sigma_{xx}$ ,  $\sigma_{yy}$ , and  $\sigma_{zz}$ , and the shear stress components are  $\tau_{xy}$ ,  $\tau_{yz}$ , and  $\tau_{xz}$  in the stated directions. To find those stress and strain components for a thin plate, the classical plate theory (CPT) is adopted. CPT states the following constitutive equations.

$$\overline{\boldsymbol{v}} = \boldsymbol{w} \qquad \overline{\boldsymbol{u}} = \boldsymbol{u} - (\boldsymbol{z} - \boldsymbol{z}_0)\boldsymbol{w}_{,x} \qquad \overline{\boldsymbol{v}} = \boldsymbol{v} - (\boldsymbol{z} - \boldsymbol{z}_0)\boldsymbol{w}_{,y}$$
(5)

where  $\bar{u}$ ,  $\bar{v}$ , and  $\bar{w}$  are the displacements of any point of the plate in the directions x, y, and z, respectively.  $z_0$  is the offset between the midplane and the physical neutral plane through the thickness of the plate. u, v, and w are the displacements of any point at the physical neutral plane. The physical neutral plane is the plane at which the resultant of the bending moment  $B_0$  vanishes [46]. The distance between the midplane (z = 0) and the physical neutral plane ( $z = z_0$ ) is obtained from the following equation [46].

$$B_{0} = \int_{-h/2}^{h/2} \left[ (z - z_{0}) E_{(z)} \right] dz = 0$$
(6)

where  $E_{(z)}$  is Young's elasticity modulus as a function of z. Note that if  $E_{(z)}$  is constant or symmetric about the midplane then  $z_0$  vanishes and the physical neutral plane will coincide with the midplane. The cross-section of a typical FGM plate is shown in **Fig. 3**.

Considering the von Karman nonlinearities, strains are related to the displacements by the following equations.

$$\overline{\epsilon}_{xx} = \overline{u}_{,x} + \frac{1}{2} (\overline{u}_{,x})^2 \qquad \overline{\gamma}_{xy} = \frac{1}{2} (\overline{u}_{,y} + \overline{v}_{,x} + \overline{w}_{,x} \overline{w}_{,y})$$

$$\overline{\epsilon}_{yy} = \overline{v}_{,y} + \frac{1}{2} (\overline{w}_{,y})^2 \qquad \gamma_{xz} = \gamma_{yz} = \epsilon_{zz} = 0$$
(7)

The subscripts after commas denote the partial derivatives in the stated directions. Stresses are related to the strains as follows.

$$\sigma_{xx} = \frac{E_{(z)}}{1 - \mu^2} \left( \left( \bar{\epsilon}_{xx} - \alpha_{(z)} \Delta T_{(z)} \right) + \mu \left( \bar{\epsilon}_{yy} - \alpha_{(z)} \Delta T_{(z)} \right) \right) \qquad \qquad \tau_{xy} = \frac{E_{(z)}}{2(1 + \mu)} \bar{\gamma}_{xy}$$

$$\sigma_{yy} = \frac{E_{(z)}}{1 - \mu^2} \left( \left( \bar{\epsilon}_{yy} - \alpha_{(z)} \Delta T_{(z)} \right) + \mu \left( \bar{\epsilon}_{xx} - \alpha_{(z)} \Delta T_{(z)} \right) \right) \qquad \qquad \tau_{xz} = \tau_{yz} = \sigma_{zz} = 0$$
(8)

where  $\mu$  is the Poisson's ratio.  $\alpha_{(z)}$  is the coefficient of thermal expansion.  $\Delta T_{(z)}$  is the temperature increment from a reference state  $T_0$ , i.e.

$$\Delta T_{(z)} = T_{(z)} - T_0 \tag{9}$$

The thermal load will produce stresses in the plate only if is partially or fully restrained from expansion/retraction. Equation (9). expresses the case of full restriction of thermal expansion/retraction of the plate. Lastly, the second component of  $e_p$  of eq. (3) is the potential energy of the Pasternak elastic foundation  $F_p$ , which consists of normal and shear stiffness ( $k_n$ ,  $k_p$ ), and given as

$$F_{p} = \frac{1}{2} \int_{-b}^{b} \int_{-a}^{a} \left[ k_{n} w^{2} + k_{p} \left( (w_{,x})^{2} + (w_{,y})^{2} \right) \right] dx dy$$
(10)



Fig. 3. Cross-section of a typical FGM plate having its material composition varying from ceramic at the top surface to metal at its bottom surface, and its physical neutral plane is at offset distance z<sub>0</sub> from the mid-plane

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1404-1419



Substituting the constitutive equations of eq. (5) in eq. (7) and then in eq. (8) reveals the stress and strain components in terms of u, v, and w and their derivatives. Substituting those stresses and strains in eq. (4) gives  $U_p$ , which is then added to  $F_p$  of eq. (10) to give  $e_p$  of eq. (3) as a functional of  $u_{(x,y)}, v_{(x,y)}$  and  $w_{(x,y)}$ .

$$e_{p(u,v,w)} = \frac{1}{8} \int_{-b}^{b} \int_{-a}^{a} \left\{ \begin{aligned} 4k_{n}w^{2} + 4k_{p} \left( \left(w_{,y}\right)^{2} + \left(w_{,x}\right)^{2} \right) + 4D \left( \left(w_{,yy}\right)^{2} + 2(1-\mu) \left(w_{,xy}\right)^{2} + \left(w_{,xx}\right)^{2} + 2\mu w_{,xx} w_{,yy} \right) \\ + A \left[ 2(1-\mu) \left(u_{,y} + v_{,x}\right)^{2} + 4 \left( \left(u_{,x}\right)^{2} + \left(v_{,y}\right)^{2} \right) + 8\mu v_{,y} u_{,x} + \left( \left(w_{,x}\right)^{2} + \left(w_{,y}\right)^{2} \right)^{2} \\ + 4 \left( \left(w_{,x}\right)^{2} \left(\mu v_{,y} + u_{,x}\right) + \left(w_{,y}\right)^{2} \left(v_{,y} + \mu u_{,x}\right) + w_{,y} w_{,x} (1-\mu) \left(u_{,y} + v_{,x}\right) \right) \\ - 4\theta (1+\mu) \left(u_{,x} + \left(w_{,x}\right)^{2} + v_{,y} + \left(w_{,y}\right)^{2} \right) + 4\theta (1+\mu) \left(w_{,yy} + w_{,xx}\right) \\ - 8B_{0} \left( \begin{aligned} w_{,yy} \left(v_{,y} + \mu u_{,x} + \mu \left(w_{,x}\right)^{2} + \left(w_{,y}\right)^{2} \right) + (1-\mu) w_{,xy} \left(u_{,y} + v_{,x} + w_{,y} w_{,x}\right) \\ + w_{,xx} \left(\mu v_{,y} + u_{,x} + \left(w_{,x}\right)^{2} + \mu \left(w_{,y}\right)^{2} \right) \end{aligned} \right)$$

$$(11)$$

where D and A are integrals known as the bending and extension stiffness, respectively.  $\theta$  and  $\hat{\theta}$  are integrals contain  $\Delta T_{(z)}$ . Those integrals are given as follows.

$$D = \int_{-h/2}^{h/2} \left[ \frac{(z - z_0)^2 E_{(z)}}{1 - \mu^2} \right] dz \qquad A = \int_{-h/2}^{h/2} \left[ \frac{E_{(z)}}{1 - \mu^2} \right] dz$$

$$\theta = \int_{-h/2}^{h/2} \left[ \frac{E_{(z)} \alpha_{(z)} \Delta T_{(z)}}{1 - \mu^2} \right] dz \qquad \hat{\theta} = \int_{-h/2}^{h/2} \left[ \frac{(z - z_0) E_{(z)} \alpha_{(z)} \Delta T_{(z)}}{1 - \mu^2} \right] dz$$
(12)

Note that the last group of terms in eq. (11) will vanish as they are all multiplied by  $B_0$ , which is zero by definition as shown in eq. (6).  $\overline{\delta}^2 e_p$ , the second variation of the total potential energy, is obtained as follows.

$$\delta^{2} e = \frac{1}{2} \int_{-b}^{b} \int_{-a}^{a} \left[ \frac{2k_{n}(\delta w)^{2} + 2k_{p}\left((\delta w_{,y})^{2} + (\delta w_{,x})^{2}\right) + 2D\left(2\mu\delta w_{,xx}\delta w_{,yy} + 2(1-\mu)(\delta w_{,xy})^{2} + (\delta w_{,yy})^{2} + (\delta w_{,xx})^{2}\right)}{+(\delta w_{,x})^{2}\left(A\left(2\left(u_{,x} + \mu v_{,y}\right) + (w_{,y})^{2} + 3\left(w_{,y}\right)^{2}\right) - 2\theta(1+\mu)\right) + (\delta w_{,y})^{2}\left(A\left(2\left(\mu u_{,x} + v_{,y}\right) + 3\left(w_{,y}\right)^{2}\right) - 2\theta(1+\mu)\right)\right)} \right] + \delta w_{,y}\delta w_{,x}A\left(2(1-\mu)\left(u_{,y} + v_{,x}\right) + 4w_{,y}w_{,x}\right) + \delta w_{,y}A\left(2w_{,x}(1-\mu)\left(\delta u_{,y} + \delta v_{,x}\right) + 4w_{,y}\left(\mu\delta u_{,x} + \delta v_{,y}\right)\right)\right) + 2A(\delta v_{,y})^{2} + (1-\mu)A\left(\delta u_{,y} + \delta v_{,x}\right)^{2} + 4A\mu\delta u_{,x}\delta v_{,y} + \delta w_{,x}A\left(2w_{,y}(1-\mu)\left(\delta u_{,y} + \delta v_{,x}\right) + 4w_{,x}\left(\delta u_{,x} + \mu\delta v_{,y}\right)\right) + 4A\mu\delta u_{,x}\delta v_{,y}\right) \right]$$

$$(13)$$

where  $\delta u$ ,  $\delta v$ ,  $\delta w$ ,  $\delta u_x$ ,  $\delta u_y$ ,  $\delta v_x$ ,  $\delta v_y$ ,  $\delta w_x$ ,  $\delta w_y$ ,  $\delta w_{xx}$ ,  $\delta w_{yy}$ , and  $\delta w_{xy}$  are the variational displacements and their derivatives. The equilibrium of the flat plate implies that no lateral displacement occurs before the buckling point. Therefore, the lateral displacement w terms and its derivatives in  $\delta^2 e_p$  of eq. (13) vanish. Eliminating the w terms from  $\delta^2 e_p$  gives  $\overline{\delta}^2 e_p$ . Furthermore, note that after eliminating w and its derivatives the remaining terms multiplied by  $(\delta w_x)^2$ ,  $(\delta w_x)^2$  and  $\delta w_y \delta w_x$  contain nothing but the integrals of the equilibrium state stress component  $\sigma_{xx}$ ,  $\sigma_{yy}$  and  $\tau_{xy}$ , respectively. Those integrals are called the resultant forces  $N_{xx}$ ,  $N_{yy}$ , and  $N_{xy}$ , and given eq. (14) by integrating the stress components of eq. (8) with minor rearrangement using the notation shown in eq. (12).

$$\begin{bmatrix} N_{xx} \\ N_{yy} \\ N_{xy} \end{bmatrix} = \int_{-h/2}^{h/2} \begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{yy} \end{bmatrix} dz = \begin{bmatrix} A(u_{,x} + \mu v_{,y}) - \theta(1 + \mu) \\ A(\mu u_{,x} + v_{,y}) - \theta(1 + \mu) \\ \frac{A}{2}(1 - \mu)(u_{,y} + v_{,x}) \end{bmatrix} = \begin{bmatrix} -N_T \\ -N_T \\ 0 \end{bmatrix}$$
(14)

where  $N_T$  is the resultant force from the thermal load. From eq. (13) with w and its derivatives being eliminated, eq. (14),  $\overline{\delta}^2 e_p$  can be written as follows.

$$\overline{\delta}^{2} e_{p(u,v,w,\delta u,\delta v,\delta w)} = \overline{\delta}^{2} \widehat{e_{p(\delta w)}} + \overline{\delta}^{2} \widetilde{e_{p(\delta u,\delta v)}}$$

$$\overline{\delta}^{2} \widehat{e_{p}} = \int_{-b}^{b} \int_{-a}^{a} \left[ k_{n} (\delta w)^{2} + k_{p} ((\delta w_{,y})^{2} + (\delta w_{,x})^{2}) + D(2\mu \delta w_{,xx} \delta w_{,yy} + 2(1-\mu)(\delta w_{,xy})^{2} + (\delta w_{,yy})^{2} + (\delta w_{,xx})^{2}) \right] dxdy$$

$$\overline{\delta}^{2} \widetilde{e_{p}} = \frac{A}{2} \int_{-b}^{b} \int_{-a}^{a} \left[ (1-\mu)(\delta u_{,y} + \delta v_{,x})^{2} + 2(\delta u_{,x})^{2} + 2(\delta v_{,y})^{2} + 4\mu \delta u_{,x} \delta v_{,y}) \right] dxdy$$
(15)

In eq. (15),  $\overline{\delta^2} e_p$  is written as a summation of two uncoupled integrals. The first integral,  $\overline{\delta^2} \widehat{e_p}$ , is a functional of  $\delta w$  only and contains neither  $\delta u$  nor  $\delta v$  terms, while the second integral,  $\overline{\delta^2} \widetilde{e_p}$ , is a functional of  $\delta u$  and  $\delta v$  only, and has no  $\delta w$  terms. Therefore, a further variation of  $\overline{\delta^2} e_p$  results in an uncoupled set of equations. In addition,  $\overline{\delta^2} \widehat{e_p}$  contains the resultant force components, while the  $\overline{\delta^2} \widetilde{e_p}$  doesn't. So, it is safe to drop  $\overline{\delta^2} \widetilde{e_p}$  and only consider  $\overline{\delta^2} \widehat{e_p}$  while being sure that will not affect the resulting set of stability equations.





Fig. 4. Components of the resultant in-plane forces in the oblique coordinates ( $\xi - \eta$ )

The next step is to transform all the terms of  $\overline{\delta}^2 \hat{e_p}$  into the oblique coordinates using the transformation function shown in Section 2. Note that the resultant forces  $N_{xx}$ ,  $N_{yy}$ , and  $N_{xy}$  are transformed to the oblique coordinates as illustrated by Wang and Yuan [47] and shown in eq. (16).

$$N_{x} = \frac{1}{c} \left( N_{\xi} + 2s N_{\xi\eta} + s^{2} N_{\eta} \right) \qquad N_{y} = c N_{\eta} \qquad N_{xy} = N_{\xi\eta} + s N_{\eta}$$
(16)

where  $N_{\xi}$  and  $N_{\eta}$  are resultant the normal forces, and  $N_{\xi\eta}$  is the resultants shear force in the oblique coordinates, as shown in **Fig. 4**.

Then, solving eq. (16) for  $N_{\xi}$ ,  $N_{\eta}$  and  $N_{\xi\eta}$  in terms of the resultant thermal force  $N_{T}$  that defined in eq. (14), gives the following.

$$\mathbf{N}_{\xi} = \frac{-\mathbf{N}_{\mathrm{T}}}{\mathbf{c}} \qquad \mathbf{N}_{\eta} = \frac{-\mathbf{N}_{\mathrm{T}}}{\mathbf{c}} \qquad \mathbf{N}_{\xi\eta} = \frac{\mathbf{s}\mathbf{N}_{\mathrm{T}}}{\mathbf{c}} \tag{17}$$

Substituting eq. (17) and eq. (16) in eq. (15) and then implementing the coordinates transformation as presented in [27] gives  $\overline{\delta^2 e_p}$  as functional of the function  $\delta w_{(\varsigma,\eta)}$ , as

$$\overline{\delta}^{2} \widehat{e_{p}} = \int_{-b}^{b} \int_{-a}^{a} \left| \frac{k_{p}}{c} ((\delta w_{,\xi})^{2} + (\delta w_{,\eta})^{2} - 2s\delta w_{,\xi} \delta w_{,\eta}) + \frac{D}{c^{3}} ((\delta w_{,\xi\xi})^{2} + (\delta w_{,\eta\eta})^{2} + 2R_{1}\delta w_{,\xi\xi} \delta w_{,\eta\eta} - 4s\delta w_{,\xi\eta} (\delta w_{,\xi\xi} + \delta w_{,\eta\eta}) + 2R_{2}(\delta w_{,\xi\eta})^{2}) \right| d\xi d\eta$$

$$\left| -\frac{N_{T}}{c} (\delta w_{,\xi})^{2} - \frac{N_{T}}{c} (\delta w_{,\eta})^{2} + 2\frac{sN_{T}}{c} \delta w_{,\xi} \delta w_{,\eta} \right| d\xi d\eta$$

$$(18)$$

where  $R_1$  and  $R_2$  are constants given as  $R_1 = s^2 + \mu c^2$  and  $R_2 = R_1 - 1$ . The next step is to implement the EKM concept of expressing the unknown bivariate function  $\delta w_{(\xi,\eta)}$  as the summation of t terms, each is a multiplication of univariate functions of different variables, as illustrated [25, 27].

$$\delta \mathbf{w}_{(\xi,\eta)} = f_{(\xi)} \, g_{(\eta)} = f \, g \tag{19}$$

The functional  $\overline{\delta}^2 \widehat{e_p}$  becomes as follows.

$$\overline{\delta}^{2} \widehat{e_{p}}_{(f,g)} = \int_{-b}^{b} \int_{-a}^{a} \left| \frac{k_{p} (fg)^{2} + \frac{k_{p}}{c} ((f'g)^{2} + (fg')^{2} - 2s(f'g)(fg'))}{+ \frac{D}{c^{3}} ((f''g)^{2} + (fg'')^{2} + 2R_{1}(f''g)(fg'') - 4s(f'g')(f''g + fg'') + 2R_{2}(f'g')^{2})}{- \frac{N_{T}}{c} (f'g)^{2} - \frac{N_{T}}{c} (fg')^{2} + 2\frac{SN_{T}}{c} (f'g)(fg')} \right| d\xi d\eta +$$
(20)

From the definition of the temperature increment in eq. (9) along with eq. (14) and eq. (12),  $N_T$  can be expressed as

$$N_{\rm T} = (1+\mu)\theta = (1+\mu)\int_{-h/2}^{h/2} \left[\frac{E_{(z)}\alpha_{(z)}\Delta T_{(z)}}{1-\mu^2}\right] dz = \int_{-h/2}^{h/2} \left[\frac{E_{(z)}\alpha_{(z)}(T_{(z)} - T_0)}{1-\mu}\right] dz = G_1 - G_2$$
(21)

where  $G_1$  and  $G_2$  are the integrals given as follows.

$$G_{1} = \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} T_{(z)} \right] dz \qquad G_{2} = \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} T_{0} \right] dz \qquad \hat{\mu} = \frac{1}{1 - \mu}$$
(22)

Assuming the functions f are all known, then the two-dimensional functional  $\overline{\delta}^2 \widehat{e_p}_{(f,g)}$  in eq. (20) is reduced to a one-dimensional functional of the functions g. The stability equations are now obtainable by substituting  $\overline{\delta}^2 \widehat{e_p}_{(g)}$  in the Trefftz criteria shown in eq. (23):



$$\delta\left(\bar{\delta}^{2}e_{p_{(g)}}\right) = 0$$

$$= 2\int_{-b}^{b} \delta_{g}\left[\frac{D}{c^{3}}\left(R_{1}A_{(2,0)}g'' + A_{(2,2)}g - 2sA_{(2,1)}g'\right) + k_{n}cA_{(0,0)}g + \frac{k_{p}}{c}\left(A_{(1,1)}g - sA_{(1,0)}g'\right) - \frac{1}{c}(G_{1} - G_{2})A_{(1,1)}g + \frac{s}{c}(G_{1} - G_{2})A_{(1,0)}g'\right]d\eta$$

$$+ 2\int_{-b}^{b} \delta_{g}'\left[\frac{D}{c^{3}}\left(-2R_{2}A_{(1,1)}g' - 2sA_{(1,0)}g'' - 2sA_{(1,2)}g\right) + \frac{k_{p}}{c}\left(A_{(0,0)}g' - sA_{(0,1)}g\right) - \frac{1}{c}(G_{1} - G_{2})A_{(0,0)}g' + \frac{s}{c}(G_{1} - G_{2})A_{(0,1)}g\right]d\eta$$

$$+ 2\int_{-b}^{b} \delta_{g}''\left[\frac{D}{c^{3}}\left(A_{(0,0)}g'' - 2sA_{(0,1)}g' + R_{1}A_{(0,2)}g\right)\right]d\eta$$

$$(23)$$

where  $A_{(i,j)}$  are (t × t) matrices, given by

( - - - )

$$\mathbf{A}_{(i,j)} = \int_{-a}^{a} \left[ \left[ \frac{d^{i}f}{d\xi^{i}} \right]^{\mathrm{T}} \left[ \frac{d^{j}f}{d\xi^{j}} \right] \right] d\xi \tag{24}$$

Implementing the integration by parts on each integral contains derivatives of  $\delta_q$  gives

$$\delta\left(\overline{\delta}^{2} \,\widehat{\boldsymbol{e}_{p}}_{(g)}\right) = \mathbf{0} = \int_{-b}^{b} \delta_{g} \left[H_{1} + H_{T01} + H_{T1}\right] d\eta + \delta_{g} \left[H_{2} + H_{T02} + H_{T2}\right]_{-b}^{+b} + \delta_{g}' \left[H_{3}\right]_{-b}^{+b}$$
(25)

where H 's are single-column matrices (t× 1), obtained as

$$\begin{aligned} H_{1} &= \frac{D}{c^{3}} \Big[ A_{(0,0)} g^{'''} + 2s Q_{(1,0)} g^{'''} - 2s Q_{(2,1)} g' + A_{(2,2)} g + \Big( 2R_{2}A_{(1,1)} + R_{1} \Big( A_{(2,0)} + A_{(0,2)} \Big) \Big) g'' \Big] + k_{n} \Big[ cA_{(0,0)} g \Big] + \frac{k_{p}}{c} \Big[ A_{(1,1)} g - s Q_{(1,0)} g' - A_{(0,0)} g'' \Big] \\ H_{2} &= \frac{D}{c^{3}} \Big[ -A_{(0,0)} g''' - 2s Q_{(1,0)} g'' - \Big( 2R_{2}A_{(1,1)} + R_{1}A_{(0,2)} \Big) g' - 2s A_{(1,2)} g \Big] + \frac{k_{p}}{c} \Big[ A_{(0,0)} g' - s A_{(0,1)} g \Big] \\ H_{3} &= \frac{D}{c^{3}} \Big[ A_{(0,0)} g'' - 2s A_{(0,1)} g' + R_{1}A_{(0,2)} g \Big] \\ H_{Tot} &= \frac{G_{2}}{c} \Big[ -A_{(0,0)} g'' - s Q_{(1,0)} g' + A_{(1,1)} g \Big] \\ H_{Tot} &= \frac{G_{2}}{c} \Big[ A_{(0,0)} g'' - s A_{(0,1)} g' \Big] \\ H_{Tot} &= \frac{G_{2}}{c} \Big[ A_{(0,0)} g'' - s A_{(0,1)} g \Big] \\ H_{T1} &= \frac{G_{1}}{c} \Big[ A_{(0,0)} g'' + s Q_{(1,0)} g' - A_{(1,1)} g \Big] \\ H_{T2} &= \frac{G_{1}}{c} \Big[ -A_{(0,0)} g' + s A_{(0,1)} g \Big] \end{aligned}$$

$$(26)$$

where  $Q_{(i,j)}$  are (t × t) matrices, given by

$$Q_{(i,j)} = A_{(i,j)} - A_{(j,i)}$$
(27)

Since g is an arbitrary function, each of the three summed parts in eq. (25) has to vanish. Equating the integral part to zero produces t linear ordinary differential equations (ODE) that have to be satisfied through the interval (-*b*, +*b*), i.e. the governing system of equations. In order to obtain a nontrivial solution, the following governing equations have to be satisfied.

(

$$H_1 + H_{T1} + H_{T01} = 0 (28)$$

Equating each of the latter two parts to zero produces two systems of equations, each has t linear ODE's that have to be satisfied at the boundary points (-*b* and +*b*), i.e. the boundary conditions, given as

either 
$$g = 0$$
 or  $H_2 + H_{T02} + H_{T2} = 0$   
and either  $g' = 0$  or  $H_3 = 0$  (29)

To find the buckling factor  $\lambda$  of the thermal loads, the governing equations in eq. (28) are rewritten as a generalized eigenvalue problem as follows.

$$H_1 + H_{T01} = -\lambda H_{T1}$$
(30)

with the boundary conditions rewritten as

either 
$$g = 0$$
 or  $H_2 + H_{T02} + \lambda H_{T2} = 0$   
and either  $g' = 0$  or  $H_3 = 0$  (31)

Solving this generalized eigenvalue problem gives the buckling factor  $\lambda$  as the first eigenvalue, and a set of t functions represents g. Each edge of the plate can be either clamped (C) having (g = g' = 0), simply supported (S) having  $(g = H_3 = 0)$ , or free (F) having  $(H_2 + H_{T02} + \lambda H_{T2} = H_3 = 0)$ . The boundary conditions of a plate are described by stating the boundary condition of each edge in the counterclockwise direction, starting from the left edge, as shown in **Fig. 2**, in which the labeling sequence is written beside the edges. For example, (CSFC) means that edge: ( $\xi = -a$ ) is clamped, edge: ( $\eta = -b$ ) is simply supported, edge: ( $\xi = +a$ ) is free and edge: ( $\eta = +b$ ) is clamped.



| able | 1 Material | properties | of the | constituents | of the | Al/Al <sub>2</sub> O <sub>2</sub> FGM |
|------|------------|------------|--------|--------------|--------|---------------------------------------|
| avic | L. Wateria | properties | or the | constituents | or the | 111/11/2031 011                       |

| Material                                   | E (GPa) | μ   | α (/ °C)               | K (W /m ⁰C) |
|--------------------------------------------|---------|-----|------------------------|-------------|
| Aluminum (Al)                              | 70      | 0.3 | 23.0 ×10 <sup>-6</sup> | 204.0       |
| Alumina ( Al <sub>2</sub> O <sub>3</sub> ) | 380     | 0.3 | 7.4 ×10 <sup>-6</sup>  | 10.4        |

# 4. FGM Properties

The classical functionally graded material (FGM) used in the published studies on the plate's thermal buckling is the aluminum/alumina ( $Al/Al_2O_3$ ) FGM, as it is one of the common materials used to make thermal barriers [48]. The properties of its constituents are shown in Table 1. As assumed in the derivation of the stability equations, the properties of the plate vary in the thickness direction. The variation function is normally the simple power-law, as in [25, 26], but it can also be exponential as in [28], or any other continuous single function. It may be also modeled as a discrete function for the case of sandwich plate as in [24].

A comprehensive review of the variation functions of the FGM plates considered in the thermo-mechanical buckling analysis is provided in [3]. The variation of properties used in this study is the simple power law. This variation of effective properties can be obtained by making the constituents of the FGM change by the desired function and assume that properties at any point are derived using the Voigt's model. The effective properties are then given as follows.

$$E_{(z)} = E_m + E_{cm} V_{(z)}^n \qquad \alpha_{(z)} = \alpha_m + \alpha_{cm} V_{(z)}^n \qquad K_{(z)} = K_m + K_{cm} V_{(z)}^n$$

$$E_{cm} = E_c - E_m \qquad \alpha_{cm} = \alpha_c - \alpha_m \qquad K_{cm} = K_c - K_m$$

$$\mu_{(z)} = \mu_m = \mu_c \qquad V_{(z)} = \frac{2z + h}{2h}$$
(32)

where the subscripts *m* and *c* are used to indicate the properties of the metallic constituent (Al) and the ceramic constituent ( $Al_2O_3$ ), respectively, as shown in **Fig. 3**. *n* is the gradient index.  $V_{(z)}$  is the ceramic volume fraction.  $K_c$  and  $K_m$  are the conductivity coefficients of the ceramic and metallic constituents, respectively. Note that, if (n = 0), then the plate becomes pure ceramic, else, if ( $n = \infty$ ) the plate becomes pure metallic, otherwise, the plate is an FGM consisting of both the ceramic and metallic material. In the latter case, the material composition varies continuously through the thickness according to the given function from pure metallic at the bottom of the plate to pure ceramic at the top.

### 5. Temperature Distribution

The temperature distribution  $T_{(z)}$  through the thickness is either uniform, linear, or nonlinear. The uniform and linear distributions of temperature are given by simple formulae as following.

Uniform: 
$$T_{(z)} = T_m = T_c$$
Linear: 
$$T_{(z)} = T_m + (T_c - T_m) \left(\frac{2z + h}{2h}\right)$$
(33)

The nonlinear distribution is obtained by solving the heat conduction problem [49] shown in eq. (34).

$$\frac{-d}{dz}\left(K_{(z)}\frac{dT}{dz}\right) = 0 \tag{34}$$

The solution of this ordinary differential equation is the nonlinear distribution of temperature given as follows [32, 50].

Nonlinear: 
$$T_{(z)} = T_m + (T_c - T_m) \int_{-h/2}^{z} \left| \frac{1}{K_{(z)}} \right| dz / \int_{-h/2}^{h/2} \left| \frac{1}{K_{(z)}} \right| dz$$
 (35)

Conventionally, the thermal buckling problem is to find the critical uniform temperature  $\Delta T_U^{\sigma}$  in the case of the uniform temperature rise, otherwise, it is to find the critical difference between the two faces of the plate ( $T_c - T_m$ ), notated as  $\Delta T_L^{\sigma}$  and  $\Delta T_N^{\sigma}$  for the cases of linearly and non-linearly distributed temperature, respectively. In the literature, the nonlinear  $T_{(2)}$  is often approximated as a summation of a polynomial series as given by Javaheri and Eslami [29]. The more terms in the series the more accurate is the obtained temperature distribution. However, only the first seven terms are often included. The plot in **Fig. 5** shows the nonlinear temperature distribution through the thickness of the Al /Al<sub>2</sub>O<sub>3</sub> FGM plate having the properties shown in Table 1, gradient index n = 2, a metallic bottom at ( $T_m$  <sup>o</sup>C), and a ceramic top at ( $T_c$  <sup>o</sup>C). Note that using two terms gives the linear distribution of the temperature. The figure shows a significant difference in the temperature distribution between the seven-term approximate series solution and the more accurate converged one. The plot also shows that the polynomial series solution converges to the numerical integration solution shown in eq. (35).

The relation between the number of terms in the polynomial series and the average error in temperature distribution through the thickness for various values of the gradient index *n* is presented by the semi-logarithmic plot in **Fig. 6**, which shows that as using more terms the approximate series solution converges. Note that the average error vanishes when (n = 0) or ( $n = \infty$ ) as the material becomes pure ceramic or metallic, respectively, thus the temperature distribution becomes linear. The average percentage error plotted in **Fig. 6** is calculated as follows.

Average percentage error = 
$$100\% \times \left( \int_{-h/2}^{h/2} [T_{(z)}] dz - \int_{-h/2}^{h/2} [\hat{T}_{(z)}] dz \right) / ((T_c - T_m)h)$$
 (36)

where  $\hat{T}_{(z)}$  is the integration solution shown in eq. (35). The temperature distribution through the thickness of an Al /Al<sub>2</sub>O<sub>3</sub> FGM plate as a function of the gradient index *n* is shown by the equally spaced contours of the semi-logarithmic plot in **Fig. 7**. That is, the temperature difference is the same between each two consequent contour lines. The figure shows that very low values as well as very high values of *n* lead to a roughly linear distribution of the temperature. Clearly, the moderate values of *n* lead to a nonlinear variation of the temperature through the thickness. That is understandable as for the very low and very high values of *n* the material becomes almost homogeneous ceramic or metallic, respectively.

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1404-1419





Fig. 5. Nonlinear temperature distribution through the thickness of the Al /Al<sub>2</sub>O<sub>3</sub> FGM plate having n=2, with respect to the number of terms in the approximate series solution



Number of terms in the approximate series solution

Fig. 6. Average percentage error of approximate temperature distribution through the thickness of the  $A1/Al_2O_3$  FGM plate with respect to the number of terms in the approximate series solution and the gradient index *n* 



Fig. 7. Temperature distribution through the thickness of the Al /Al<sub>2</sub>O<sub>3</sub> FGM plate as a function of the gradient index *n*. (The contour lines are equally spaced)

# 6. ANSYS Finite Element Model

In addition to the analytical and numerical solutions found in the literature, EKM results are also compared to those obtained using the finite element method (FEM). FEM is implemented using ANSYS Mechanical APDL software. The finite element models of the FGM plate and the elastic foundation are as described in [25, 27, 51].

The plate model is meshed as 100 elements per edge, which is found fine enough to obtain the converged results. The variation of the properties through the thickness of the FGM material is modeled by considering the plate as a lamina, in which each laminate has its properties as a function of its position through the thickness. It is found that using 80 layers is well enough to obtain the converged result while being reasonably practical in terms of computational times.

|                  | Method Plate model Gradient index n |                        |                        |                       |                                                |                                        |                                  |                         |
|------------------|-------------------------------------|------------------------|------------------------|-----------------------|------------------------------------------------|----------------------------------------|----------------------------------|-------------------------|
|                  | Method                              | Plate mode             | 0                      | 0.5                   | 1                                              | 2                                      | 5                                | 10                      |
|                  | EKM                                 | CPT                    | 17.099                 | 9.6879                | 7.9438                                         | 7.0426                                 | 7.2657                           | 7.4692                  |
|                  | Galerkin [29                        | CPT                    | 17.099                 | 9.6879                | 7.9438                                         | 7.0426                                 | 7.2657                           | 7.4692                  |
|                  | IGA [52]                            | FSDT                   | 17.094                 | 6 9.6942              | 7.9557                                         | 7.0382                                 | 7.2555                           | -                       |
|                  | ANSYS (FEM                          | ) FSDT                 | 17.089                 | 5 9.6831              | 7.9401                                         | 7.0402                                 | 7.2715                           | 7.4753                  |
|                  | Galerkin [30                        | HSDT                   | 17.089                 | 5 9.6831              | 7.940                                          | 7.0390                                 | 7.2607                           | 7.4634                  |
| Gradient index n |                                     |                        |                        |                       |                                                |                                        |                                  |                         |
|                  | Method Plate model -                |                        | 0                      | 0.5                   | 1                                              | 2                                      | 5                                | 10                      |
|                  | EKM                                 | CPT                    | 68.3962                | 38.7515               | 31.7751                                        | 28.1704                                | 29.0628                          | 29.8771                 |
|                  | Galerkin [29]                       | CPT                    | 68.3964                | 38.7516               | 31.7751                                        | 28.1704                                | 29.0629                          | 29.8771                 |
|                  | IGA [52]                            | FSDT                   | 68.2429                | 38.7481               | 31.7874                                        | 29.1780                                | 29.0875                          | -                       |
|                  | ANICYC (TTNA)                       | FSDT                   | 68 2425                | 38.6749               | 31.7151                                        | 28.1170                                | 29.0240                          | 29.8304                 |
|                  | ANSIS (FEM)                         | 1301                   | 00.2120                |                       |                                                |                                        |                                  |                         |
|                  | Galerkin [30]                       | HSDT                   | 68.2425                | 38.6751               | 31.7149                                        | 28.1131                                | 28.9821                          | 29.7837                 |
| Table 4.         | Galerkin [30]<br>Critical uniform   | HSDT<br>temperature ri | 68.2425<br>se of squa: | 38.6751<br>re CCCC Al | 31.7149<br>/Al <sub>2</sub> O <sub>3</sub> FGN | 28.1131<br>I thin plate                | 28.9821<br>e (a / h = 1          | 29.7837<br>00) with res |
| Table 4.         | Galerkin [30]                       | HSDT<br>temperature ri | 68.2425<br>se of squar | 38.6751<br>re CCCC Al | 31.7149<br>/Al <sub>2</sub> O <sub>3</sub> FGM | 28.1131<br>I thin plate<br>radient inc | 28.9821<br>e (a / h = 1<br>lex n | 29.7837<br>00) with res |

Table 2. Critical uniform temperature rise of square SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM thin plate (a / h = 100) with respect to n

| N/01000                    |              |       |       |       |       |       |
|----------------------------|--------------|-------|-------|-------|-------|-------|
| Method                     | riate inouei | 0     | 0.5   | 1     | 2     | 5     |
| EKM                        | CPT          | 45.24 | 25.67 | 21.06 | 18.50 | 19.25 |
| Galerkin-power series [53] | CPT          | 45.51 | 25.79 | 21.15 | 18.75 | 19.34 |
| Element-free [54]          | FSDT         | 44.17 | 24.90 | 20.77 | 18.48 | 19.15 |
| FEM [32]                   | FSDT         | 47.50 | 26.54 | 21.70 | 19.18 | 19.70 |
| Galerkin [45]              | HSDT         | 45.28 | 25.65 | 21.04 | 18.65 | 19.23 |
| ANSYS (FÉM)                | FSDT         | 45.26 | 25.52 | 21.01 | 18.70 | 19.35 |

Table 5. Critical uniform temperature rise of square CCCC Al /Al<sub>2</sub>O<sub>3</sub> FGM moderately thick plate (a / h = 50) with respect to n

| Mathad                     | Dista madal | Gradient index n |         |        |        |        |  |  |
|----------------------------|-------------|------------------|---------|--------|--------|--------|--|--|
| Metriou                    | Plate model | 0                | 0.5     | 1      | 2      | 5      |  |  |
| EKM                        | CPT         | 181.757          | 102.979 | 84.440 | 74.860 | 77.232 |  |  |
| Galerkin-power series [53] | CPT         | 182.06           | 103.15  | 84.58  | 74.99  | 77.36  |  |  |
| Element-free [54]          | FSDT        | 175.82           | 99.16   | 82.35  | 71.01  | 74.59  |  |  |
| FEM [32]                   | FSDT        | 188.28           | 105.27  | 86.07  | 76.07  | 78.06  |  |  |
| Galerkin [45]              | HSDT        | 180.30           | 102.23  | 83.84  | 74.30  | 76.50  |  |  |
| ANSYS (FEM)                | FSDT        | 180.13           | 101.63  | 83.68  | 74.43  | 76.88  |  |  |

# 7. Validation of the Method

The derived stability equations are validated by comparing the results with the analytical and numerical solutions found in the literature in addition to the FEM solutions of ANSYS using the model described in Section 6. All the results in this study are obtained considering the material as Al  $/Al_2O_3$  FGM that is described in Section 4. Note that a large enough number of EKM terms t are used in obtaining the converged results presented here. The convergence study of the method with respect to the number of terms t is the exact same as the one presented in [27].

### 7.1 Uniform temperature rise

The buckling analysis of a square thin and a moderately thick FGM plate under uniform temperature rise is conducted first, then the buckling analysis of a thin plate with different values of the aspect ratio, and lastly, the buckling analysis of skew thin SSSS FGM. For the first case of square FGM thin (a / h = 100) and moderately thick (a / h = 50) plates, both simply supported SSSS and clamped CCCC FGM are considered. The results are compared with solutions of other methods found in the literature. In Tables (2 and 3), EKM results of the critical uniform temperature for thin and moderately thick SSSS FGM plates are compared with ANSYS (FEM), isogeometric analysis (IGA) [52] and Galerkin method [29, 30].

Note that those solutions are based on different plate theories. For instance, the FEM solutions of ANSYS and the IGA solutions at [52] are based on the first-order shear deformation theory (FSDT), while the Galerkin solutions at [29] are based on the classical plate theory (CPT) and the Galerkin solutions at [30] are based on the higher-order shear deformation theory (HSDT). The same comparison is conducted for the case of the SSSS FGM plates and presented in Tables (4 and 5). The second considered case is the rectangular SSSS  $A1/Al_2O_3$  thin FGM plates with different values of aspect ratio (b/a) under uniform temperature rise. EKM results are compared to others in Table 6. In both cases, EKM is found to be very accurate in obtaining the critical temperatures of rectangular FGM plates as well. A more detailed investigation of the accuracy and convergence of the EKM with respect to the skew angle of the plate and the number of EKM terms i can be found in [27]. In all of the cases, EKM is found to be very accurate in obtaining the critical temperatures of FGM plates under uniform terms i can be found in [27]. In all of the cases, EKM is found to be very accurate in obtaining the critical temperatures of FGM plates under uniform temperature rise.

#### 7.2 Linear temperature rise

The buckling under linearly distributed temperature through the thickness of a square SSSS FGM plates with different values of the length-to-thickness ratio is conducted first, then the buckling analysis of thin SSSS FGM plates with different values of the aspect ratio, and lastly, the buckling analysis of skew thin SSSS FGM. Tables (8 and 9) show the EKM results compared to other solutions for different values of the length-to-thickness ratio (a / h) and aspect ratio (b / a), respectively.

Note that the results shown in Table 9 are obtained considering  $T_m$  being zero. Table 10 is listing the critical temperature rise for the thin skew FGM plate having a = b, under linearly distributed temperature, obtained using EKM, and compared to the element-free Galerkin's solution (EFG) of [31] and the FEM solutions of ANSYS. In Table 9, the results assigned to the references [29] and [30] are obtained using their presented solution equations with  $T_m = 0$ , which are numerically different from those listed there, i.e. in [29] and [30], where  $T_m = 5$  is considered. Also, note that the results in Tables (9 and 10) are obtained considering  $T_m =$ 5. In all of the considered cases, EKM shows high accuracy in obtaining the critical temperatures of rectangular FGM plates under linearly distributed temperature.



n

**Table 6.** Critical uniform temperature rise of the SSSS Al  $/Al_2O_3$  FGM thin plate with respect to n and b / a

|    |               |               |         |          | -           | -        |
|----|---------------|---------------|---------|----------|-------------|----------|
| 10 | Mathad        | Dista model   |         | Aspect   | ratio b / a |          |
| п  | Methou        | Plate Illouel | 2       | 3        | 4           | 5        |
|    | EKM           | CPT           | 42.7478 | 85.4956  | 145.3423    | 222.2884 |
| 0  | Galerkin [29] | CPT           | 42.7478 | 85.4955  | 145.3424    | 222.2884 |
| 0  | ANSYS (FEM)   | FSDT          | 42.7327 | 85.46876 | 145.2989    | 222.2232 |
|    | Galerkin [30] | HSDT          | 42.6876 | 85.2551  | 144.6490    | 220.6706 |
|    | EKM           | CPT           | 19.8594 | 39.7189  | 67.5221     | 103.2690 |
| 1  | Galerkin [29] | CPT           | 19.8594 | 39.7189  | 67.5221     | 103.2690 |
| T  | ANSYS (FEM)   | FSDT          | 19.8538 | 39.7090  | 67.5061     | 103.2452 |
|    | Galerkin [30] | HSDT          | 19.8359 | 39.6248  | 67.2507     | 102.6356 |
|    | EKM           | CPT           | 18.1643 | 36.3286  | 61.7586     | 94.4543  |
| F  | Galerkin [29] | CPT           | 18.1643 | 36.3286  | 61.7586     | 94.4543  |
| 5  | ANSYS (FEM)   | FSDT          | 18.1839 | 36.3700  | 61.8304     | 94.5651  |
|    | Galerkin [30] | HSDT          | 18.1327 | 36.2025  | 61.3952     | 93.6070  |
|    | EKM           | CPT           | 18.6732 | 37.3464  | 63.4888     | 97.1005  |
| 10 | Galerkin [29] | CPT           | 18.6732 | 37.3464  | 63.4888     | 97.1006  |
| 10 | ANSYS (FEM)   | FSDT          | 18.6942 | 37.3910  | 63.5663     | 97.2202  |
|    | Galerkin [30] | HSDT          | 18.6367 | 37.2006  | 63.0687     | 96.1214  |

Table 7. Critical uniform temperature rise of skew SSSS Al /Al\_2O\_3 thin FGM with respect to n and  $\,\varphi$ 

| n | Method      | Plate model  | Skew angle $\phi$ |        |         |         |  |  |  |
|---|-------------|--------------|-------------------|--------|---------|---------|--|--|--|
|   | methoa      | r late mouel | 0 <sup>0</sup>    | 15°    | 30°     | 45°     |  |  |  |
| 4 | EKM         | CPT          | 7.9438            | 8.4069 | 10.1355 | 14.1530 |  |  |  |
| T | ANSYS (FEM) | FSDT         | 7.9171            | 8.3693 | 9.9972  | 14.1049 |  |  |  |
| 5 | EKM         | CPT          | 7.2657            | 7.6897 | 9.1713  | 12.9205 |  |  |  |
|   | ANSYS (FEM) | FSDT         | 7.3044            | 7.7213 | 9.2199  | 12.9890 |  |  |  |

Table 8. Critical rise of linearly changing temperature across the thickness of SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM square, with respect to n and a/h. (T<sub>m</sub> = 0)

| 10 | Mothod        | Plata model   | a / h     |           |          |         |  |  |
|----|---------------|---------------|-----------|-----------|----------|---------|--|--|
| п  | Method        | Plate Illouel | 10        | 25        | 50       | 100     |  |  |
|    | EKM           | CPT           | 3419.8214 | 547.1714  | 136.7929 | 34.1982 |  |  |
| 0  | Galerkin [29] | CPT           | 3419.8213 | 547.1714  | 136.7929 | 34.1982 |  |  |
| 0  | ANSYS (FEM)   | FSDT          | 3237.2481 | 542.2781  | 136.4850 | 34.1789 |  |  |
|    | Galerkin [30] | HSDT          | 3237.3638 | 542.27861 | 136.4850 | 34.1789 |  |  |
|    | EKM           | CPT           | 1489.8277 | 238.3724  | 59.5931  | 14.8983 |  |  |
| 4  | Galerkin [29] | CPT           | 1489.8277 | 238.3724  | 59.5931  | 14.8983 |  |  |
| T  | ANSYS (FEM)   | FSDT          | 1421.1020 | 236.3848  | 59.4326  | 14.8793 |  |  |
|    | Galerkin [30] | HSDT          | 1422.3454 | 236.5755  | 59.4802  | 14.8912 |  |  |
|    | EKM           | CPT           | 1250.6418 | 200.1027  | 50.0257  | 12.5064 |  |  |
| F  | Galerkin [29] | CPT           | 1250.6418 | 200.1027  | 50.0257  | 12.5064 |  |  |
| 5  | ANSYS (FEM)   | FSDT          | 1173.6360 | 198.9088  | 50.1517  | 12.5648 |  |  |
|    | Galerkin [30] | HSDT          | 1169.2917 | 197.8980  | 49.8867  | 12.4977 |  |  |
|    | EKM           | CPT           | 1323.6032 | 211.7765  | 52.9441  | 13.2360 |  |  |
| 10 | Galerkin [29] | CPT           | 1323.6032 | 211.7765  | 52.9441  | 13.2360 |  |  |
| 10 | ANSYS (FEM)   | FSDT          | 1238.3031 | 211.1854  | 53.2981  | 13.3563 |  |  |
|    | Galerkin [30] | HSDT          | 1227.4996 | 209.1543  | 52.7787  | 13.2257 |  |  |

Table 9. Critical rise of linearly changing temperature across the thickness of SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM thin plate, with respect to n and b/a. (T<sub>m</sub> = 5)

| 10 | Mothod        | Plate model | b/a    |        |         |         |         |  |  |
|----|---------------|-------------|--------|--------|---------|---------|---------|--|--|
| п  | Methou        |             | 1      | 2      | 3       | 4       | 5       |  |  |
|    | EKM           | CPT         | 24.198 | 75.496 | 160.991 | 280.685 | 434.577 |  |  |
| 0  | Galerkin [29] | CPT         | 24.198 | 75.495 | 160.991 | 280.684 | 434.576 |  |  |
|    | Galerkin [30] | HSDT        | 24.177 | 75.376 | 160.505 | 279.297 | 431.334 |  |  |
|    | EKM           | CPT         | 5.521  | 27.868 | 65.114  | 117.258 | 184.300 |  |  |
| 1  | Galerkin [29] | CPT         | 5.520  | 27.868 | 65.114  | 117.258 | 184.300 |  |  |
|    | Galerkin [30] | HSDT        | 5.513  | 27.823 | 64.936  | 116.748 | 183.110 |  |  |
|    | EKM           | CPT         | 3.900  | 22.660 | 53.926  | 97.698  | 153.977 |  |  |
| 5  | Galerkin [29] | CPT         | 3.899  | 22.659 | 53.925  | 97.698  | 153.977 |  |  |
|    | Galerkin [30] | HSDT        | 3.891  | 22.604 | 53.710  | 97.073  | 152.516 |  |  |
|    | EKM           | CPT         | 4.376  | 24.230 | 57.320  | 103.646 | 163.208 |  |  |
| 10 | Galerkin [29] | CPT         | 4.375  | 24.229 | 57.319  | 103.646 | 163.208 |  |  |
|    | Galerkin [30] | HSDT        | 4.364  | 24.165 | 57.061  | 102.901 | 161.471 |  |  |

Table 10. Critical rise of linearly changing temperature across the thickness of skew SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM plate, with respect to n, a/b, and  $\phi$ .(T<sub>m</sub>=5)

|     | φ   | n         |                |            |           |                |            |  |  |  |
|-----|-----|-----------|----------------|------------|-----------|----------------|------------|--|--|--|
| a/b |     |           | 1              |            |           | 5              |            |  |  |  |
|     |     | EKM (CPT) | EFG [31] (CPT) | FEM (FSDT) | ЕКМ (СРТ) | EFG [31] (CPT) | FEM (FSDT) |  |  |  |
|     | 0°  | 5.5209    | 5.5199         | 5.5207     | 3.8999    | 3.8991         | 3.8987     |  |  |  |
| 1   | 15° | 6.3806    | 6.3133         | 6.4022     | 4.6252    | 4.5651         | 4.6385     |  |  |  |
| T   | 30° | 9.5001    | 9.2260         | 9.7737     | 7.3198    | 7.6308         | 7.4681     |  |  |  |
|     | 45° | 17.6795   | 17.9718        | 19.0164    | 14.0963   | 14.3519        | 15.2242    |  |  |  |
|     | 0°  | 27.8683   | 27.8812        | -          | 22.6594   | 22.6704        | -          |  |  |  |
| 2   | 15° | 30.2000   | 30.1040        | -          | 24.6168   | 24.5363        | -          |  |  |  |
| Z   | 30° | 38.7561   | 38.2188        | -          | 31.8156   | 31.7856        | -          |  |  |  |
|     | 45° | 60.6512   | 60.4732        | -          | 50.2507   | 50.0298        | -          |  |  |  |

### 7.3 Nonlinearly distributed temperature

The buckling under nonlinearly distributed temperature through the thickness of a square SSSS FGM plates with different values of the length-to-thickness ratio is conducted first, then the buckling analysis of thin SSSS FGM plates with different values of the aspect ratio, and lastly, the buckling analysis of skew thin SSSS FGM. Tables (11 and 12) show the EKM results compared to



other solutions for different values of the length-to-thickness ratio (a / h) and aspect ratio (b / a), respectively. Table 13 is listing the critical temperature difference for the thin skew FGM plate having a = b, under nonlinearly distributed temperature, obtained using EKM, and compared to the element-free Galerkin's solution (EFG) of [31] and the FEM solutions of ANSYS. Note that the results shown in Tables (11 and 12) are obtained considering  $T_m = 5$ . Both the converged and the seven-term polynomial series solutions of the nonlinear distribution of the temperature through the thickness are considered. Both Table 11 and Table 12 show the significant difference in the resulting buckling temperature between the two cases. In all the considered cases, EKM shows high accuracy in obtaining the critical temperatures of rectangular FGM plates under nonlinearly distributed temperature.

# 8. Relations between the Critical Temperatures

The numerical results obtained below are all for a thin fully simply supported Al  $/Al_2O_3$  FGM plate, width b = 1m, and lengthto-thickness ratio a/h = 100, resting on the Pasternak elastic foundation. Conventionally, the stiffness of the elastic foundation is expressed in a non-dimensional form as

$$\mathbf{k}_{n}^{*} = \frac{\mathbf{k}_{n}a^{4}}{100D}$$
  $\mathbf{k}_{p}^{*} = \frac{\mathbf{k}_{p}a^{2}}{100D}$  (37)

where *a* is the half of the length of the plate.  $k_n$  is the out-of-plane extension stiffness coefficient in the units of the load over the unit area for the unit lateral deflection of that area (N/m<sup>2</sup>/m),  $k_p$  is the shear stiffness coefficient in the units of the load over unit in-plane shearing (N/m),  $k_n^*$  and  $k_p^*$  are the non-dimensional forms of  $k_n$  and  $k_p$ , respectively. In this section, only fully supported plates are considered. However, the same relations must be true for the cases of clamped plates and plates with any combinations of simply supported and clamped edges. **Fig. 8** shows the thermal buckling of the plate under uniform temperature rise ( $\Delta T_U^{cr}$ ), linear ( $\Delta T_L^{cr}$ ) and nonlinear ( $\Delta T_N^{cr}$ ) temperature change across the thickness, with respect to the aspect ratio *a/b* for different values of the parameters of Pasternak elastic foundation  $k_n^*$ ,  $k_p^*$ .

Table 11. Critical rise of nonlinearly changing temperature across the thickness of SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM square plate, with respect to n and a/h. (T<sub>m</sub> = 5)

| ю  | Mothod        | Terms in T(-) | Plate model - |          | a / n   |         |        |        |        |  |  |
|----|---------------|---------------|---------------|----------|---------|---------|--------|--------|--------|--|--|
| n  | Method        | Terms In T(z) | Plate Illouel | 10       | 20      | 40      | 60     | 80     | 100    |  |  |
|    | EKM           | 100           | CPT           | 3409.821 | 844.955 | 203.739 | 84.995 | 43.435 | 24.198 |  |  |
| 0  | EKM           | 7             | CPT           | 3409.821 | 844.955 | 203.739 | 84.995 | 43.435 | 24.198 |  |  |
| 0  | Galerkin [29] | 7             | CPT           | 3409.821 | 844.955 | 203.738 | 84.995 | 43.434 | 24.198 |  |  |
|    | Galerkin [30] | 7             | HSDT          | 3224.968 | 833.032 | 202.984 | 84.848 | 43.387 | 24.177 |  |  |
| 1  | EKM           | 100           | CPT           | 2633.408 | 645.842 | 148.950 | 56.933 | 24.727 | 9.821  |  |  |
|    | EKM           | 7             | CPT           | 2055.001 | 503.988 | 116.235 | 44.428 | 19.296 | 7.664  |  |  |
| T  | Galerkin [29] | 7             | CPT           | 2055.001 | 503.987 | 116.234 | 44.428 | 19.296 | 7.663  |  |  |
|    | Galerkin [30] | 7             | HSDT          | 1960.018 | 497.903 | 115.849 | 44.352 | 19.270 | 7.652  |  |  |
|    | EKM           | 100           | CPT           | 1749.960 | 428.396 | 98.004  | 36.821 | 15.407 | 5.495  |  |  |
| -  | EKM           | 7             | CPT           | 1553.336 | 380.261 | 86.993  | 32.684 | 13.675 | 4.877  |  |  |
| 5  | Galerkin [29] | 7             | CPT           | 1553.336 | 380.261 | 86.999  | 32.683 | 13.675 | 4.877  |  |  |
|    | Galerkin [30] | 7             | HSDT          | 1450.769 | 373.557 | 86.568  | 32.600 | 13.648 | 4.866  |  |  |
|    | EKM           | 100           | CPT           | 1633.873 | 400.210 | 91.794  | 34.680 | 14.690 | 5.438  |  |  |
| 10 | EKM           | 7             | CPT           | 1519.568 | 372.211 | 85.372  | 32.254 | 13.663 | 5.057  |  |  |
| 10 | Galerkin [29] | 7             | CPT           | 1519.568 | 372.211 | 85.372  | 32.254 | 13.662 | 5.057  |  |  |
|    | Galerkin [30] | 7             | HSDT          | 1408.132 | 364.857 | 84.905  | 32.162 | 13.634 | 5.044  |  |  |

Table 12. Critical rise of nonlinearly changing temperature across the thickness of SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM thin plate, with respect to n and b/a. (T<sub>m</sub> = 5)

|    | Mothod        | Torma in To   | Dista madel | b / a  |        |         |         |         |  |
|----|---------------|---------------|-------------|--------|--------|---------|---------|---------|--|
| n  | Method        | Terms in I(z) | Plate model | 1      | 2      | 3       | 4       | 5       |  |
|    | EKM           | 100           | CPT         | 24.198 | 75.496 | 160.991 | 280.685 | 434.577 |  |
| 0  | EKM           | 7             | CPT         | 24.198 | 75.496 | 160.991 | 280.685 | 434.577 |  |
| 0  | Galerkin [29] | 7             | CPT         | 24.198 | 75.495 | 160.991 | 280.684 | 434.576 |  |
|    | Galerkin [30] | 7             | HSDT        | 24.177 | 75.376 | 160.505 | 279.297 | 431.334 |  |
|    | EKM           | 100           | CPT         | 9.821  | 49.572 | 115.824 | 208.577 | 327.831 |  |
| 1  | EKM           | 7             | CPT         | 7.664  | 38.684 | 90.384  | 162.765 | 255.826 |  |
| T  | Galerkin [29] | 7             | CPT         | 7.663  | 38.683 | 90.384  | 162.764 | 255.825 |  |
|    | Galerkin [30] | 7             | HSDT        | 7.652  | 38.622 | 90.138  | 162.057 | 254.174 |  |
|    | EKM           | 100           | CPT         | 5.495  | 31.926 | 75.978  | 137.651 | 216.945 |  |
| F  | EKM           | 7             | CPT         | 4.877  | 28.339 | 67.441  | 122.185 | 192.569 |  |
| 5  | Galerkin [29] | 7             | CPT         | 4.877  | 28.338 | 67.441  | 122.184 | 192.569 |  |
|    | Galerkin [30] | 7             | HSDT        | 4.866  | 28.270 | 67.172  | 121.403 | 190.743 |  |
|    | EKM           | 100           | CPT         | 5.438  | 30.111 | 71.233  | 128.804 | 202.824 |  |
| 10 | EKM           | 7             | CPT         | 5.057  | 28.005 | 66.250  | 119.793 | 188.634 |  |
| 10 | Galerkin [29] | 7             | CPT         | 5.057  | 28.004 | 66.249  | 119.793 | 188.634 |  |
|    | Galerkin [30] | 7             | HSDT        | 5.044  | 27.929 | 65.951  | 118.932 | 186.627 |  |

**Table 13.** Critical rise of nonlinearly changing temperature across the thickness of skew SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM thin plate, with respect to n, a/b, and  $\phi$ . ( $T_m = 5$ )

|     |     | /IL       |                |            |           |                |            |
|-----|-----|-----------|----------------|------------|-----------|----------------|------------|
| a/b | φ   |           | 1              |            |           | 5              |            |
|     |     | EKM (CPT) | EFG [31] (CPT) | FEM (FSDT) | ЕКМ (СРТ) | EFG [31] (CPT) | FEM (FSDT) |
|     | 0°  | 7.6636    | 7.6621         | 7.6632     | 4.8774    | 4.8763         | 4.8758     |
| 1   | 15° | 8.8903    | 8.7634         | 8.8869     | 5.7865    | 5.7093         | 5.8011     |
| T   | 30° | 13.1818   | 12.8065        | 13.5668    | 10.0054   | 9.5433         | 9.3399     |
|     | 45° | 24.5723   | 24.9465        | 26.3965    | 17.6529   | 17.9490        | 19.0400    |
|     | 0°  | 38.6838   | 38.7017        | 38.6525    | 28.3389   | 28.3524        | 28.3067    |
| 2   | 15° | 41.9188   | 41.7871        | 41.9254    | 30.7883   | 30.6860        | 30.7810    |
| 2   | 30° | 53.7081   | 53.0512        | 54.0838    | 39.6498   | 39.7522        | 39.9718    |
|     | 45° | 85.2902   | 83.9423        | 85.5235    | 62.7607   | 62.5692        | 63.7321    |





**Fig. 8.** Critical temperature rise of thin rectangular SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM plate having n = 1, b = 1m, and a/h=100 under various temperature distributions across the thickness, with respect to a/b,  $T_m$ ,  $k_n^-$ , and  $k_p^-$ 

Note that  $T_m = 0$  °C and  $T_m = 5$  °C are both used in each of the cases of linear and nonlinear temperature distributions. It is found that the results of the three cases of different temperature distributions produce the exact same plot but with different scales. It is also notable that the results in the cases of  $T_m = 0$  °C and the corresponding ones of  $T_m = 5$  °C are linearly related by a just an offset. The zero values of the critical temperature rise in **Fig. 8** for the cases of the linear and nonlinear temperature distributions indicate that the uniform part  $T_m$  of the thermal load is just enough by its own to cause the buckling. These linear relations between the buckling temperatures of the FGM plate under various types of temperature distribution can be reasoned as follows. The only term that is derived from the temperature distribution is the force resultant of the thermal load  $N_T$ . So, the critical temperature is the one that produces the critical thermal force resultant  $N_T^{cr}$ . In the case of uniform temperature rise, shown in eq. (33), the temperature distribution becomes a constant ( $T_{(z)} = T_m$ ). Substituting the buckling uniform temperature  $\Delta T_u^{cr}$  in eq. (21) gives  $N_T^{cr}$ .

$$N_{T}^{cr} = \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} \Delta T_{U}^{cr} \right] dz = \Delta T_{U}^{cr} \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} \right] dz = \Delta T_{U}^{cr} C_{1}$$
(38)

where  $\hat{\mu}$  is as defined in eq. (22). When the temperature is linearly distributed through the thickness, as shown in eq. (33), the critical temperature difference  $\Delta T_{L}^{\alpha}$  between the ceramic and metallic surfaces ( $T_{c} - T_{m}$ ) is obtained by substituting  $\Delta T_{L}^{\alpha}$  in eq. (33) and then in eq. (21) gives

$$N_{T}^{cr} = \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} \left( T_{m} + \Delta T_{L}^{cr} \left( \frac{z}{h} + \frac{1}{2} \right) \right) \right] dz = \Delta T_{L}^{cr} C_{2} + T_{m} C_{1}$$
(39)

Comparing eq. (38) with eq. (39) gives

$$\Delta T_{\rm L}^{\rm cr} = \frac{C_{\rm l}}{C_{\rm 2}} \left( \Delta T_{\rm U}^{\rm cr} - T_{\rm m} \right) \tag{40}$$

where  $C_1$  and  $C_2$  are constants given as

$$C_{1} = \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} \right] dz \qquad C_{2} = \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} \left( \frac{z}{h} + \frac{1}{2} \right) \right] dz$$
(41)

In the case of nonlinear temperature distribution, shown in eq. (21), the critical temperature difference  $\Delta T_N^{\alpha}$  between the ceramic and metallic surfaces ( $T_c$ - $T_m$ ) is obtained from eq. (21) as

$$N_{T}^{cr} = \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} \left( T_{m} + \Delta T_{N}^{cr} \frac{K_{(z)}^{v}}{K^{c}} \right) \right] dz$$
(42)

Comparing eq. (38) with eq. (42) gives

$$\Delta T_N^{cr} = \frac{K^c C_1}{C_3} \left( \Delta T_U^{cr} - T_m \right)$$
(43)

where the function  $K^{\upsilon}_{\scriptscriptstyle(z)}$  and the constants  $K^{\scriptscriptstyle C}$  and  $C_{\scriptscriptstyle 3}$  are given as



$$K^{c} = \int_{-h/2}^{h/2} \left[ \frac{1}{K_{(z)}} \right] dz \qquad K^{v}_{(z)} = \int_{-h/2}^{z} \left[ \frac{1}{K_{(z)}} \right] dz \qquad C_{3} = \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} K^{v}_{(z)} \right] dz$$
(44)

By using the derived relations in eq. (40) and eq. (43), the critical temperature of the same FGM plate under any temperature distribution can be obtained from any given one. eq. (40) can be further simplified by substituting the assumed variation of properties, then becomes as follows.

$$\Delta T_{L}^{cr} = 2 \left( \frac{\frac{\alpha_{cm}E_{m} + \alpha_{m}E_{cm}}{n+1} + \frac{\alpha_{cm}E_{cm}}{2n+1} + \alpha_{m}E_{m}}{\frac{2(\alpha_{cm}E_{m} + \alpha_{m}E_{cm})}{n+2} + \frac{\alpha_{cm}E_{cm}}{n+1} + \alpha_{m}E_{m}} \right) (\Delta T_{U}^{cr} - T_{m})$$

$$\tag{45}$$

This simplification could not be implemented to the nonlinear temperature distribution of eq. (43), because no simple analytical solutions are found for the integrals  $C_3$  and  $K^c$ .

The same linear relations are also noticed when using any other material gradient index *n*. To show this the same analysis is conducted for the Al /Al<sub>2</sub>O<sub>3</sub> FGM plate but with different material gradient index, n = 2. From the results in **Fig. 9**, it is found that the exact plot also results, but again in different linear scales. So the linear transformations shown in eq. (45) and eq. (43) are valid for any value of the material gradient index *n*.

The same analysis is again conducted for the thin Al /Al<sub>2</sub>O<sub>3</sub> FGM plate having n = 1, but with skew angle  $\cdot = 30^{\circ}$ . The results in **Fig. 10** show that the critical temperatures are also linearly related for the skew FGM plates, as it is found that the exact plot also results, but again in different linear scales. The linear transformations in eq. (45) and eq. (43) are also valid for the skew thin FGM plates.

In addition, when comparing the critical temperatures of the two thin  $Al/Al_2O_3$  FGM plates having different material gradient indices *n* in **Fig. 8** and **Fig. 9** it can be easily noticed that the critical temperatures of the two cases are also linearly related. That is also noted for the case of the thin FGM skew plate, shown in **Fig. 10** and **Fig. 11**. The relation between the two cases of each FGM plate geometry can be derived from the stability equation eq. (30) by factoring out *D* and *G*<sub>1</sub>, given that *G*<sub>2</sub> vanishes since *T*<sub>0</sub> is considered zero. For the case of uniform thermal load, the relation between the critical uniform temperatures  $\Delta T_{U_1}^{cr}$  of a particular thin FGM plate can be obtained from the critical uniform temperature rise  $\Delta T_{U_2}^{cr}$  of any other plate with the same dimensions and boundary conditions but different materials using the equation below.

$$\frac{N_{uT_1}}{D_1} \Delta T_{U_1}^{cr} = \frac{N_{uT_2}}{D_2} \Delta T_{U_2}^{cr}$$
(46)

where the numeric subscripts "1" and "2" indicate the first and second FGM plates.  $N_{uT}$  is the resultant force from unit temperature rise, i.e.

$$N_{uT} = \int_{-h/2}^{h/2} \left[ \hat{\mu} E_{(z)} \alpha_{(z)} \right] dz$$
(47)

By using the linear transformations in eq. (45), eq. (43), and eq. (46), with only one known critical temperature of a particular FGM plate, all other critical temperatures can be obtained not only for that particular FGM plate but also for any other plate with the same dimensions and boundary conditions. The relations of the critical temperatures to the two parameters of the Pasternak elastic foundation are investigated. For the rectangular thin FGM plates, **Fig. 8** and **Fig. 9** show that regardless of the material of the plate, the shear stiffness  $k_p$  linearly scales the critical temperatures. From the stability equations, for two thin plates of the same materials resting on the Pasternak elastic foundation with different shear stiffness  $k_p$  the critical uniform temperatures are related by the following equation.

$$N_{uT_1} \Delta T_{U_1}^{cr} - k_{p_1} = N_{uT_2} \Delta T_{U_2}^{cr} - k_{p_2}$$
(48)

For the case of the skew plates, **Fig. 10** and **Fig. 11** show that  $k_p$  does not linearly scale the critical temperatures anymore. Since this work is focusing only on the linear relations, the effect of  $k_p$ , in this case, is not further investigated. In both **Fig. 10** and **Fig. 11**, the effect of the normal stiffness  $k_n$  of the Pasternak elastic foundation is found linear and decreasing as the aspect ratio a/b increases. Although  $k_n$  has a linear effect on the critical temperatures, it is found that there is no simple way to formulate this relation. It is found that the effect of the elastic foundations on the critical temperatures of a skew FGM plate is not easily described by linear relations. However, the linear relations between the different cases of temperature distributions are still the same as those for the rectangular plate, which are shown in eq. (40) and eq. (43).

In addition, comparing **Fig. 10** with **Fig. 11** shows the linear relation between the critical temperatures of different FGM skew plates having the same dimensions, boundary conditions and skew angle under the same temperature distributions. This linear relation is the same as the one of the rectangular plates shown in eq. (46).

One last important linear relation to mention is the effect of the square of the length-to-thickness ratio a/h on the critical temperature under various temperature distribution. As Table 8 shows, the square of the length-to-thickness ratio scales the critical temperatures by simple multiplication, given that  $T_m = 0$ . For two thin plates having the same material, boundary conditions, and aspect ratio a/b but different length-to-thickness ratio a/h with  $T_m = 0$ , the critical temperatures of them are related as follows.

Journal of Applied and Computational Mechanics, Vol. 6, No. SI, (2020), 1404-1419





**Fig. 9.** Critical temperature rise of thin rectangular SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM plate having n = 2, b = 1m, and a/h=100 under various temperature distributions across the thickness, with respect to a/b,  $T_m$ ,  $k_n$ , and  $k_p$ .



**Fig. 10.** Critical temperature rise of thin skew SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM plate having n = 1, b = 1m,  $\phi = 30^{\circ}$ , and a/h=100 under various temperature distributions across the thickness, with respect to a/b,  $T_m$ ,  $k_n^{\circ}$ , and  $k_p^{\circ}$ 



**Fig. 11.** Critical temperature rise of thin skew SSSS Al /Al<sub>2</sub>O<sub>3</sub> FGM plate having n = 2, b = 1m,  $\phi = 30^{\circ}$ , and a/h=100 under various temperature distributions across the thickness, with respect to a/b,  $T_m$ ,  $k_n^{\circ}$ , and  $k_p^{\circ}$ 

$$\Delta T_1^{cr} (a_1 / h_1)^2 = \Delta T_2^{cr} (a_2 / h_2)^2$$
(49)

Caution must be taken when implementing eq. (49) by considering only thin plates, i.e. larger values of the length-to-thickness ratio *a/h*, as the derived formulae are all based on the classical plate theory.

# 9. Conclusion

The relations between the critical temperatures of the thin FGM plates under various temperature distributions through the thickness of FGM plate resting on the Pasternak elastic foundation have been investigated. Both rectangular and skew plates are considered. Formulations are derived based on the classical plate theory (CPT) considering the von Karman nonlinearities and taking the physical neutral plane as the reference plane. By using the multi-term extended Kantorovich method (EKM) the stability equations and boundary conditions terms are derived according to Trefftz criteria of the minimum total potential energy using the variational calculus expressed in an oblique coordinate system. The nonlinearly distributed temperature is obtained by solving the heat conduction problem. The obtained formulations are validated by comparison with the analytical and numerical solutions found in the literature, and to the finite element solutions obtained using ANSYS software. Novel multi-scale plots are used to illustrate the linear relations between critical temperatures under various temperature distributions. It is found that the critical temperatures of a particular thin FGM plate under uniformly, linearly, and nonlinearly distributed temperature through the thickness are all linearly related. In addition, the critical temperatures of thin FGM plates of different materials but having the same dimensions and boundary conditions are found also linearly related. These are found true for the skew FGM plates as well. The shear stiffness of the Pasternak foundation is found to linearly scale the critical temperature of the thin rectangular FGM plate, but not the skew ones. The normal stiffness of the Pasternak foundation is found to linearly scale the critical temperature of both the thin rectangular and skew FGM plates, but its effect decreases as the aspect ratio increases. Lastly, the squared lengthto-thickness ratio is also found to linearly scale the critical temperatures of the thin FGM plate. It can be concluded that, by knowing one critical temperature for a thin FGM plate under specific temperature distribution, all other critical temperatures not only for this particular plate but also for any other thin FGM plate of different materials with the same in-plane dimensions and boundary conditions can be obtained by the derived simple linear relations. One benefit of these linear relations derived here is the speed it provides, which can be crucial in the optimization studies. The following investigations may be on the relations between the critical temperatures of thick plates based on higher-shear deformation theories.

# **Author Contributions**

A.H.A. Hassan developed the mathematical modeling, programmed the EKM method in MATLAB, conducted the comparisons in tables and figures, and wrote and revised the manuscript; N. Kurgan planned the scheme, initiated the project, and suggested the experiments; N. Can conducted the finite element analysis in ANSYS APDL. The manuscript was written through the contribution of all authors. All authors discussed the results, reviewed, and approved the final version of the manuscript.

# **Conflict of Interest**

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

# Funding

The authors received no financial support for the research, authorship, and publication of this article.

### References

[1] Shen, M., and Bever, M., Gradients in polymeric materials, Journal of Materials science, 7(7), 1972, 741-746.

[2] Bever, M., and Duwez, P., Gradients in composite materials, Materials Science and Engineering, 10, 1972, 1-8.

[3] Hassan Ahmed Hassan, A., and Kurgan, N., A Review on buckling analysis of functionally graded plates under thermo-mechanical loads, [4] Ichikawa, K., Functionally graded materials in the 21st century: a workshop on trends and forecasts, Springer Science & Business Media, 2001.
[5] Singh, A. K., Noise Emission form Functionally Graded Materials based Polypropylene Spur Gears-A Tribological Investigation, Materials Today:

Forceedings, 5(2), 2018, 8199-8205.
 [6] Singh, A. K., A novel technique for in-situ manufacturing of functionally graded materials based polymer composite spur gears, Polymer Composites, 40(2), 2019, 523-535.

[7] Tian, X., Zhao, J., Yang, H., Wang, Z., and Liu, H., High-speed intermittent turning of GH2132 alloy with Si 3 N 4/(W, Ti) C/Co graded ceramic tool, International Journal of Advanced Manufacturing Technology, 100(1-4), 2019, 401-408.

[8] Ngueyep, L. L. M., Ndop, J., Nkene, E. R. A., and Ndjaka, J.-M. B., Numerical and Analytical Calculations for Modeling and Designing Drilling Wicks or Rotary Cutters Based of Functionally Graded Materials, Journal of Engineering, 2018, 2018.

[9] Nikbakht, S., Kamarian, S., and Shakeri, M., A review on optimization of composite structures Part II: Functionally graded materials, Composite Structures, 214, 2019, 83-102.

[10] El-Galy, I., Saleh, B., and Ahmed, M., Functionally graded materials classifications and development trends from industrial point of view, SN Applied Sciences, 1(11), 2019, 1-23.

[11] Reddy, J. N., Theory and analysis of elastic plates and shells, CRC press, 2006.

[12] Cuba, L., Arciniega, R., and MANTARI, J. L., Generalized 2-Unknown's HSDT to Study Isotropic and Orthotropic Composite Plates, Journal of Applied and Computational Mechanics, 5(1), 2019, 141-149.

[13] Zenkour, A. M., Hafed, Z. S., and Radwan, A. F., Bending Analysis of Functionally Graded Nanoscale Plates by Using Nonlocal Mixed Variational Formula, Mathematics, 8(7), 2020, 1162.

[14] Sobhy, M., and Zenkour, A. M., A comprehensive study on the size-dependent hygrothermal analysis of exponentially graded microplates on elastic foundations, Mechanics of Advanced Materials and Structures, 27(10), 2020, 816-830.

[15] Jena, S. K., Chakraverty, S., Malikan, M., and Sedighi, H. M., Implementation of Hermite-Ritz method and Navier's technique for vibration of functionally graded porous nanobeam embedded in Winkler-Pasternak elastic foundation using bi-Helmholtz nonlocal elasticity, Journal of Mechanics of Materials and Structures, 15(3), 2020, 405-434.

[16] Sgouros, A. P., Kalosakas, G., Papagelis, K., and Galiotis, C., Compressive response and buckling of graphene nanoribbons, Scientific Reports, 8(1), 2018, 9593.

[17] Zarei, M., Faghani, G., Ghalami, M., and Rahimi, G. H., Buckling and Vibration Analysis of Tapered Circular Nano Plate, Journal of Applied and Computational Mechanics, 4(1), 2018, 40-54.

[18] Ventsel, E., Krauthammer, T., and Carrera, E., Thin plates and shells: theory, analysis, and applications, Applied Mechanics Reviews, 55(4), 2002, B72-



[19] Srinivasa, C., Kumar, Y. S. W. P., and Banagar, A. R., Bending Behavior of Simply Supported Skew Plates, Int. J. Sci. Eng. Res., 9, 2018, 21-26.

[20] Monroe-Aerospace, "Why Do Airplanes Have Swept Wings?," 2019, https://monroeaerospace.com/blog/why-do-airplanes-have-swept-wings/. [21] Shen, H.-S., and Wang, Z.-X., Nonlinear bending of FGM plates subjected to combined loading and resting on elastic foundations, Composite

Structures, 92(10), 2010, 2517-2524.

[22] Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E. A., and Mahmoud, S., A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations, Journal of Sandwich Structures & Materials, 21(6), 2019, 1906-1929

[23] Zhang, Y. F., and Liu, J. T., A widespread internal resonance phenomenon in functionally graded material plates with longitudinal speed, Scientific Reports, 9(1), 2019, 1907.

[24] Menasria, A., Kaci, A., Bousahla Abdelmoumen, A., Bourada, F., Tounsi, A., Benrahou Kouider, H., Tounsi, A., Adda Bedia, E. A., and Mahmoud, S. R., A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions, Steel and Composite Structures, 36(3), 2020, 355-367

[25] Hassan Ahmed Hassan, A., and Kurgan, N., Bending analysis of thin FGM skew plate resting on Winkler elastic foundation using multi-term extended Kantorovich method, Engineering Science and Technology, an International Journal, 23(4), 2020, 788-800.

[26] Zine, A., Bousahla Abdelmoumen, A., Bourada, F., Benrahou Kouider, H., Tounsi, A., Adda Bedia, E. A., Mahmoud, S. R., and Tounsi, A., Bending analysis of functionally graded porous plates via a refined shear deformation theory, Computers and Concrete, 26(1), 2020, 63-74.

[27] Hassan, A. H. A., and Kurgan, N., Buckling of thin skew isotropic plate resting on Pasternak elastic foundation using extended Kantorovich method, *Heliyon*, 6(6), 2020, e04236.

[28] Rabhi, M., Benrahou, K. H., Kaci, A., Houari, M. S. A., Bourada, F., Bousahla, A. A., Tounsi, A., Bedia, E. A., Mahmoud, S., and Tounsi, A., A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions, Geomechanics and Engineering, 22(2), 2020, 119.

 [29] Javaheri, R., and Eslami, M., Thermal buckling of functionally graded plates, AIAA Journal, 40(1), 2002, 162-169.
 [30] Javaheri, R., and Eslami, M., Thermal buckling of functionally graded plates based on higher order theory, Journal of Thermal Stresses, 25(7), 2002, 603-625.

[31] Saadatpour, M., Azhari, M., and Bradford, M., Buckling of arbitrary quadrilateral plates with intermediate supports using the Galerkin method, Computer Methods in Applied Mechanics and Engineering, 164(3-4), 1998, 297-306.

[32] Nguyen-Xuan, H., Tran, L. V., Nguyen-Thoi, T., and Vu-Do, H., Analysis of functionally graded plates using an edge-based smoothed finite element method, Composite Structures, 93(11), 2011, 3019-3039.

[33] Can, N., Kurgan, N., and Hassan Ahmed Hassan, A., Buckling Analysis of Functionally Graded Plates Using Finite Element Analysis, International Journal of Engineering and Applied Sciences, 12(1), 2020, 43-56.

[34] Kerr, A. D., An extension of the Kantorovich method, Quarterly of Applied Mathematics, 26(2), 1968, 219-229.

[35] Singhatanadgid, P., and Singhanart, T., The Kantorovich method applied to bending, buckling, vibration, and 3D stress analyses of plates: A literature review, Mechanics of Advanced Materials and Structures, 26(2), 2019, 170-188.

[36] Shufrin, I., Rabinovitch, O., and Eisenberger, M., A semi-analytical approach for the geometrically nonlinear analysis of trapezoidal plates, International Journal of Mechanical Sciences, 52(12), 2010, 1588-1596.

[37] Joodaky, A., Joodaky, I., Hedayati, M., Masoomi, R., and Farahani, E. B., Deflection and stress analysis of thin FGM skew plates on Winkler foundation with various boundary conditions using extended Kantorovich method, Composites Part B: Engineering, 51, 2013, 191-196.

[38] Joodaky, A., and Joodaky, I., A semi-analytical study on static behavior of thin skew plates on Winkler and Pasternak foundations, International Journal of Mechanical Sciences, 100, 2015, 322-327.

[39] Rajabi, J., and Mohammadimehr, M., Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach, Computers and Concrete, 23(5), 2019, 361-376.

[40] Eisenberger, M., and Alexandrov, A., Buckling loads of variable thickness thin isotropic plates, Thin-Walled Structures, 41(9), 2003, 871-889.

[41] Shufrin, I., and Eisenberger, M., Stability of variable thickness shear deformable plates—first order and high order analyses, Thin-Walled Structures, 43(2), 2005, 189-207.

[42] Shufrin, I., Rabinovitch, O., and Eisenberger, M., Buckling of laminated plates with general boundary conditions under combined compression, tension, and shear—A semi-analytical solution, Thin-Walled Structures, 46(7-9), 2008, 925-938.

[43] Eisenberger, M., and Shufrin, I. Buckling of plates by the multi term extended Kantorovich method, 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal, 2009.

[44] Jones, R. M., Buckling of bars, plates, and shells, Bull Ridge Corporation, 2006.

[45] Eslami, M. R., Eslami, J., and Jacobs, Buckling and postbuckling of beams, plates, and shells, Springer, 2018.

[46] Zhang, D.-G., and Zhou, Y.-H., A theoretical analysis of FGM thin plates based on physical neutral surface, Computational Materials Science, 44(2), 2008, 716-720.

[47] Wang, X., and Yuan, Z., Buckling analysis of isotropic skew plates under general in-plane loads by the modified differential quadrature method, Applied Mathematical Modelling, 56, 2018, 83-95.

[48] Khan, T., Zhang, N., and Akram, A. State of the art review of Functionally Graded Materials, 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 2019, 30-31 Jan. 2019.

[49] Ghannadpour, S., Ovesy, H., and Nassirnia, M., Buckling analysis of functionally graded plates under thermal loadings using the finite strip method, Computers & Structures, 108, 2012, 93-99.

[50] Zhang, D.-G., Modeling and analysis of FGM rectangular plates based on physical neutral surface and high order shear deformation theory, International Journal of Mechanical Sciences, 68, 2013, 92-104.

[51] Hassan Ahmed Hassan, A., and Kurgan, N., Modeling and Buckling Analysis of Rectangular Plates in ANSYS, International Journal of Engineering & Applied Sciences, 11(1), 2019, 310-329.

[52] Yu, T., Yin, S., Bui, T. Q., Liu, C., and Wattanasakulpong, N., Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads, Composite Structures, 162, 2017, 54-69.

[53] Kiani, Y., Bagherizadeh, E., and Eslami, M., Thermal buckling of clamped thin rectangular FGM plates resting on Pasternak elastic foundation (Three approximate analytical solutions), ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 91(7), 2011, 581-593

[54] Zhao, X., Lee, Y., and Liew, K. M., Mechanical and thermal buckling analysis of functionally graded plates, Composite Structures, 90(2), 2009, 161-171.

# ORCID iD

Ahmed Hassan Ahmed Hassan<sup>10</sup> https://orcid.org/0000-0002-4880-0184 Naci Kurgan<sup>10</sup> https://orcid.org/0000-0001-7297-7249 Nitat Can<sup>10</sup> https://orcid.org/0000-0002-5741-0890



© 2020 by the authors. Licensee SCU, Ahvaz, Iran. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0 license) (http://creativecommons.org/licenses/by-nc/4.0/).

How to cite this article: Hassan A.H.A., Kurgan N., Can N. The Relations between the Various Critical Temperatures of Thin FGM Plates, J. Appl. Comput. Mech., 6(SI), 2020, 1404-1419. https://doi.org/10.22055/JACM.2020.34697.2459

